

1. The N=28 region.

- 2. Coexistence at Z=16.
- 3. Perspectives & summary.

www.cea.fr

SHAPE TRANSITION & COEXISTENCE AROUND N=28

L. GAUDEFROY

CEA-DAM

ESNT – October 2017

02

THE N=28 REGION

THE N=28 REGION – NEUTRON SIDE

⁴⁸Ca : Mass measurement → Gap 4,8 MeV

THE N=28 REGION – NEUTRON SIDE

THE N=28 REGION – PROTON SIDE

THE N=28 REGION

- Reduction of neutron gap with N/Z.
- Near degeneracy of proton $s_{1/2} d_{3/2}$ orbits.
- Both favor quadrupole collectivity mandatory to understand structure evolution.
- Spherical/deformed shape transition : Ca \rightarrow Si.
- Transitional nature of sulfur isotopes.

ON THE WAY TOWARD ⁴³S

NUCLEAR MOMENTS OF ^{43M}S

Principle of the measurement :

g-factor @ GANIL & Q-moment @ RIKEN

NUCLEAR MOMENTS OF 43MS

⁴³S STRUCTURE INTERPRETATION

SM calculations :

ANTOINE : E. Caurier, IReS, Strasbourg 1989-2002. SDPF-U: F. Nowacki and A. Poves, PRC**79**, 014310 (2009).

⁴³S SM SHAPE PARAMETERS

E2 Rotational Invariants :

K. Kumar, PRL28, 249 (1972).

⁴³S SM SHAPE PARAMETERS

E2 Rotational Invariants :

K. Kumar, PRL28, 249 (1972).

⁴³S THEORETICAL COHERENCE

 \rightarrow Same conclusions with BMF approx. to SM.

AMD approach with D1S Gogny:

M. Kimura et al., PRC 87, 011301(R) (2013).

COEXISTENCE AT N=28 : ⁴⁴S

- → 1993 : Suggestion of N=28 erosion from short β -decay half-life of ⁴⁴S. O. Sorlin et al., PRC **47**, 2941 (1993).
- → 1996 : Deformation in ⁴⁴S (β =0.26) from B(E2).
- T. Glasmacher et al., PLB 395, 163 (1997).
- → 2005 : Observation of 0⁺₂ state coexistence?
 S. Grévy et al., EPJA 25, 111 (2005).
- → 2010 : ρ²(E0 0⁺₂ -> 0⁺₁) Sphe./Def. shape coexistence.
 C. Force et al., PRL 105, 102501 (2010).
- → 2017 : High K isomer 4^+_1 state : Triple shape coexistence. J.J. Parker et al., PRL **118**, 052501 (2017).

First reported in D. Santiago-Gonzales et al., PRC 83, 061305 (R) (2011).

 $\mathbb{C}2\mathbb{Z}$

γ AND e⁻ SPECTROSCOPY

GANIL

C. Force et al., PRL105, 102501 (2010).

y AND e⁻ SPECTROSCOPY

ESNT - Oct. 2017 | PAGE 15

 0^{+}

Expt

⁴⁴S : MEAN FIELD RESULTS

• HFB + GCM + AM Projection – D1S Gogny

T. R. Rodriguez and J. L. Egido, PRC 84, 051307(R) (2011)

• GS band \rightarrow toward prolate.

- Excited band → Shape evolution.
- → ⁴⁴S : Deformed/Deformed Shape coexistence.

T. R. Rodriguez and J. L. Egido, PRC 84, 051307(R) (2011)

R. Chevrier and L. Gaudefroy, PRC 89, 051301(R) (2014).

 \rightarrow Also good agreement on shape parameters.

⁴⁴S: THEORETICAL COHERENCE

Shape parameters from E2 invariants.

J^{π}	Q_i (e fm ²)	β	γ (deg)	$\sigma(\gamma)$ (deg)	4.5	0 ₂	4_{6}^{+} 6_{1}^{+}
$\begin{matrix} 0_1^+ \\ 2_1^+ \\ 4_2^+ \\ 6_2^+ \end{matrix}$	70 72 67 62	0.31 0.32 0.30 0.28	28 24 16 12	8 8 7 7 7	4.0 3.5	118	3^{+}_{2} 1^{-}_{27} 1^{-}_{27} 5^{+}_{1} 9^{-}_{98} 4^{+}_{4} 7^{-}_{75}
$egin{array}{c} 0_2^+ \ 2_2^+ \ 4_4^+ \end{array}$	68 66 65	0.30 0.29 0.29	20 30 31	6 8 8 8		4 ⁺ 2	2^+_{378} 2^+_{1} 3^+_{1} 3^+_{1} 3^{1} 3^+_{1} 3^{1} 3^{1} 3^{1} 3^{1} 3^{1} 3^{2} 3^{2}
2^+_3 3^+_2 4^+_6	64 65 60	0.29 0.29 0.27	34 29 34	7 8 10	1.5	2+	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3^+_1 4^+_1 5^+_1 6^+	65 65 63	0.29 0.30 0.28 0.27	26 26 26 28	4 5 4 3	1.0 0.5	73	
	01	0.27	20		0.0	0^{+}_{1}	^{44}S

R. Chevrier and L. Gaudefroy, PRC 89, 051301(R) (2014).

⁴⁴S : K=4 EXCITED BAND

SHAPE COEXISTENCE AT N=28

- N=28 \rightarrow Shape transition from Ca to Si/Mg.
- Complex coexistence features at Z=16.
- Large impact of triaxial degree of freedom.
- Convergence of all theoretical descriptions (BMF, AMD, SM).

