

UNIVERSITY of the WESTERN CAPE

Collective excitations and shape co-existence in the Cd/Sn region

Paul Garrett University of Guelph University of the Western Cape

Shape coexistence pervasive throughout nuclear chart

Characteristic pattern of deformed intruder bands

at closed shells

Two-proton transfer
strongly populates
excited 0⁺ state –
reminiscent of
proton pairing
vibration – assigned
as 2p-2h excitation
across Z=50 closed
shell

Fielding et al., Nucl. Phys. **A281**, 392 (1977)

- Te target protons in 2p state
- Removal of α particle favours population of 0*p*-0*h* (gs) or
 2*p*-2*h* state (intruder)

Strong evidence for persistence of intruder states in

odd-mass Sn isotopes

2017-10-26

Intruder states in odd mass In isotopes

McDonald et al., Nucl. Phys. A224 13 (1974)

Nilsson states near Z=50

Proton stripping dl'He,t 200 E=27.0 MeV reactions on Cd ⊖=50° OUNIS targets (2h) 100 preferentially 0.393 populate 1*h* or 1*p*-2*h* states in final nucleus • 1/2 + [431] has large 112Cd(³He,d components d5/2 and g7/2 600 E=27.0 MeV ⊖=30° **Fingerprint pattern** SINO SINO confirms Nilsson assignment 200 Markham and Fulbright, 0.648 Phys. Rev. C 9, 1633 (1974) 8 DISTANCE ALONG FOCAL PLANE

FEBRUARY PHYSICAL REVIEW C VOLUME 45, NUMBER 2 Cd Systematic study of low-spin states in even Cd nuclei • -- intruder 0+,2+,4+,6+ Z = 40J. Kumpulainen, R. Julin, J. Kantele, A. Passoja,* W. H. Trzaska, E. Verho, and J. Väärämäki Department of Physics, University of Jyväskylä, SF-40100 Jyväskylä, Finland D. Cutoiu and M. Ivascu Department of Heavy Ion Physics, Institute of Atomic Physics, Bucharest, R-76900, Romania (Received 15 January 1991) 6 Neutron number Neutron number 58 62 66 74 58 62 66 70 74 70 2.5 2.5 (b) (a) 23 2+3 0 2 2.0 (MeV) 2.0 00 0 1.5 0+B 1.5 E_x(MeV) 1.0 2 1.0 (C) 3.0 Energy ratio 0.5 2.0 1.0 0.0 0.0 110 118 122 106 110 114 118 122 106 114 Mass number Mass number FIG. 17. (a) Systematics of low-lying, low-spin states in the even 105-120Cd. For clarity of presentation symbols marking the 2,1 50 60 80 70

and 4_1^+ levels are omitted. (b) Systematics of the 2_1^+ , 0_4^+ , and 0_8^+ states in the even 106-120 Cd. (c) Energy ratios of the selected levels in even 106-120Cd

Most detailed Coulex study to date on Cd isotopes [Fahlander, NPA 485, 317 (1988)] ¹⁶O, ⁴⁰Ca, ⁵⁸Ni, ²⁰⁸Pb on ¹¹⁴Cd

Remarkably few nuclei studied in detail by Coulomb excitation with modern spectrometers

Coulex is one of the most
 powerful methods to explore
 collectivity – but few nuclei have
 been explored with modern
 spectrometers

 $2_1^+ \rightarrow 0^+$ absolute B(E2) in W.u.; others relative to $B(E2;2_1^+ \rightarrow 0^+)$

 Apart from ¹¹⁴Cd, the remaining Cd nuclei were studied with heavy-ion Coulex with state-of-the-art equipment circa 1965

McCowan et al., NP 66, 97 (1965), Milner et al., NPA 129, 687 (1969)

E0's extracted from α coefficients and evaluated lifetimes (Wood et al, NPA 651, 323 (1999) & Kibedi and Spear, At. Data Nucl. Data Tab. 80, 35 (2002))

New *E* θ transitions in ¹¹⁰Cd through γ -gated

e⁻ spectroscopy

Jigmeddorj et al., EPJ A 52, 36 (2016)

ERSITY

ERSITY

of (il

Assume 2-level mixing model – may not always be appropriate
 Describe levels using β, γ shape parameters, mixing amplitude a

 $\rho^2(E0)$

$$= a^{2}(1-a^{2})\left(\frac{3Z}{4\pi}\right)^{2} \left[(\beta_{1}^{2}-\beta_{2}^{2}) \qquad \sim \mathbf{0}$$

- If shape parameters are known, the mixing amplitude can be determined
- Use the results from Coulomb excitation (available for ¹¹⁴Cd)

Analysis of 0⁺ ρ^2 (E0) values in ¹¹⁴Cd

ERSITY

- While mixing is small, important consequences: Consider ¹¹⁴Cd
- Write 0⁺ wave functions

 $|0_{gs}^{+}\rangle = a|0_{A}^{+}\rangle + b|0_{B}^{+}\rangle$ $|0_{I}^{+}\rangle = -b|0_{A}^{+}\rangle + a|0_{B}^{+}\rangle$

• Assume:

• inband $2^+ \rightarrow 0^+$ transitions equal the observed values (since we know mixing is small) $2_B^+ \rightarrow 0_B^+ = 65 \pm 9$ W.u.

•
$$2_{\rm B}^+ \rightarrow 0_{\rm A}^+ = 0$$

with admixture of 8% results in 26 ± 4 W.u. consistent with observed value of 27.4 ± 1.7 W.u.

Important contribution to $0_2^+ \rightarrow 2_1^+$ E2 strength from mixing

Invariants for ¹¹⁰Pd from Coulomb excitation

- Pd behave as
 (approx.)
 prolate rotors –
 at spin 4⁺ in gsb
 shape has
 stabilized
- 0₂⁺ band rotorlike from spin 0
- 0₃⁺ band also
 appears to be
 shape
 coexistence
 band

D. Cline, Ann. Rev. Nucl. Part. Sci. 36, 683 (1986)

Possible intruder states in the Te isotopes

- Energy systematics
 of excited states in
 the Te isotopes
 suggest intruder
 origin or possibly
 just a changing
 overall structure?
- Is there any real evidence for intruders?

ERSITY

Strong similarity in structure of Cd and Te nuclei – properties of 0₂⁺ states in Te match intruder 0⁺ states in Cd

I JNIVERSITY

of GUEI

show clear shape coexistence

Detailed Coulomb excitation studies enable extraction of shape-invariants clearly indicating different shapes for 0₁⁺ and 0₂⁺ states

Zielinska et al., NPA 712, 3 (2002), Wrzosek-Lipska et al., PRC 86 064305 (2012)

- Evidence to date strong for 2p-2h excitation across Z=50 closed shell evidence for higher excitations?
- Systematics in energy of 0+4 level in mid-shell Cd
 nuclei, combined
 with favored decay
 to intruder 2+ level,
 suggest an intruder
 assignment

Eg. ¹¹²Cd decay of 0₄⁺ state

Paul Garret GFEEN Set al., PRC 80, 032502(R) (2009).

ERSITY

29

Enhanced relative or absolute *B(E2)* values for decay to

2⁺ intruder band members in ^{110,112,114}Cd

- Observe low-energy transitions, e.g., the missing $2^+ \rightarrow 0^+$ transitions
 - β decay may be the best technique to use: LOI with GRIFFIN@TRIUMF to do this in Cd isotopes, extend to Te isotopes, Xe, etc...
 - Proposal at iThemba to study ^{98,100}Rh decay to Ru
 - (n, γ) reactions with FIPPS@ILL: ^{111,113}Cd(n, γ) and ¹²⁵Te(n, γ) approved
- Measure in Coulex extract rotational invariants <Q²> and, ideally, <cos3δ>
 - ¹¹⁴Cd is the only Cd studied in detail by Coulex only recently has work commenced on other stable Cd: eg. ¹¹⁰Cd with ³²S at HIL, Warsaw (K. Wrzosek-Lipska et al.), Cd on ²⁰⁸Pb at ANL (M. Allmond)

Probe nature with transfer reactions

- 2p-2h in Sn may be populated in (⁶Li,d) reactions from Cd isotopes, 2p-4h in Cd with Pd targets, 2p-6h in Pd with Ru targets, etc. Feasible, and we will do this in Munich with the Q3D
- 2*p-2h* states in Sn with (d,⁶Li) reactions on Te (has been done). To populate 4*p-2h* states in Te requires Xe targets
- (¹²C,α) reactions may populate higher *np-mh* configurations, ex. ¹⁰⁸Pd to ¹¹⁶Sn to populate *4p-4h* state. (Our attempt in Munich was unsuccessful)

Two neutron and two-proton transfer reactions, e.g. (³He,nγ) at iThemba