

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Decay and in-beam electron spectroscopy at TRIUMF

Adam Garnsworthy ARIEL Principal Scientist and TRIUMF Research Scientist

Shape coexistence and electric monopole transitions in atomic nuclei ESNT Workshop

23-27th October 2017

- A microscopic model for *EO* transition matrix elements
- First measurement of 2-2 *EO* strengths in spherical nuclei ^{58,60,62}Ni at ANU
- Shape coexistence studies at TRIUMF-ISAC using gamma-ray and electron spectroscopy
- Questions and observations

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 95, 011301(R) (2017)

Microscopic method for E0 transition matrix elements

 B. A. Brown,¹ A. B. Garnsworthy,² T. Kibédi,³ and A. E. Stuchbery³
 ¹Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory Michigan State University, East Lansing, Michigan 48824-1321, USA
 ²Physical Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
 ³Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
 (Received 7 April 2016; revised manuscript received 28 October 2016; published 13 January 2017)

Microscopic model for *E0* **transition matrix elements.** B.A. Brown *et al.*, PRC 95, 011301(R) (2017).

A theoretical model for *EO* matrix elements based on a combination of configuration interaction (CI) results in a spherical basis for orbital occupations and radii, together with energy-density functional (EDF) calculations for the monopole core polarization.

This core polarization is caused by the change in the nodal structure of the radial wave functions for the orbitals that participate in the valence transition. The core polarization is not proportional to the valence *EO* matrix element.

This method is a generalization of the two-level model and makes connections to isomer and isotope shifts via a common EDF approach.

Example of ⁹⁰Zr

Two configurations dominate:

$$|a\rangle = |C_a, (1p_{1/2})^2\rangle \quad |b\rangle = |C_b, (0g_{9/2})^2\rangle$$

where C is 88 Sr core.

Radial densities are given by (q=p for proton, q=n for neutron):

$$\rho_{qx}(r) = \sum_{k} O_{qxk} \psi_{qxk}^{2}(r)$$

where x = a/b and k = (n, l, j) are the quantum numbers for the spherical single-particle wave functions, $\psi_{qxk}(r)[Y^{(l)}(\check{r}) \otimes \chi^{(s)}]^{(j)}$. The *O* are the orbital occupations.

Simplest model: radial wavefunctions depend only on *k*. **EDF model:** also depend on a and b – different self-consistent potentials and different radial wavefunctions in the core

RTRIUMF

Example of ⁹⁰Zr Matrix element of *E0* operator:

$$\int \rho_{px} r^2 d\tau = \langle x | r^2 | x \rangle_p = \sum_k O_{pxk} \langle pxk | r^2 | pxk \rangle$$

Two states that mix, here maximal mixing...

$$|0_1^+\rangle = \alpha |a\rangle + \beta |b\rangle \qquad |0_2^+\rangle = \beta |a\rangle - \alpha |b\rangle$$

$$\begin{aligned} \langle 0_{1}^{+} | r^{2} | 0_{1}^{+} \rangle &= \langle 0_{2}^{+} | r^{2} | 0_{2}^{+} \rangle = \frac{1}{2} [\langle b | r^{2} | b \rangle + \langle a | r^{2} | a \rangle] \\ &= \frac{1}{2} \langle C_{b} | r^{2} | C_{b} \rangle + \frac{1}{2} \langle C_{a} | r^{2} | C_{a} \rangle \\ &= \frac{1}{2} \langle C_{b} | r^{2} | C_{b} \rangle + \frac{1}{2} \langle C_{a} | r^{2} | C_{a} \rangle \\ &+ \langle 0 g_{9/2} | r^{2} | 0 g_{9/2} \rangle + \langle 1 p_{1/2} | r^{2} | 1 p_{1/2} \rangle \end{aligned} \qquad \begin{aligned} \langle 0_{1}^{+} | r^{2} | 0_{2}^{+} \rangle &= \frac{1}{2} [\langle b | r^{2} | b \rangle - \langle a | r^{2} | a \rangle] \\ &= \frac{1}{2} \langle C_{b} | r^{2} | C_{b} \rangle - \frac{1}{2} \langle C_{a} | r^{2} | C_{a} \rangle \\ &+ \langle 0 g_{9/2} | r^{2} | 0 g_{9/2} \rangle - \langle 1 p_{1/2} | r^{2} | 1 p_{1/2} \rangle \end{aligned}$$

$$|a\rangle = |C_a, (1p_{1/2})^2\rangle$$
 $|b\rangle = |C_b, (0g_{9/2})^2\rangle$ where *C* is ⁸⁸Sr core.

Harmonic Oscillator (HO), core terms all cancel:

$$\langle 0_1^+ | r^2 | 0_2^+ \rangle = \frac{11}{2} b^2 - \frac{9}{2} b^2 = b^2$$

where $b^2 = \frac{\hbar}{m\omega}$. With $\hbar\omega = 45 A^{-1/3} - 25 A^{-2/3}$, $b^2 = 4.71 \text{ fm}^2$

Consider finite charge and relativistic contributions: 5.32fm² where increase is mainly due to spin-orbit contribution.

$$|a\rangle = |C_a, (1p_{1/2})^2\rangle$$
 $|b\rangle = |C_b, (0g_{9/2})^2\rangle$ where *C* is ⁸⁸Sr core.

Harmonic Oscillator (HO), core terms all cancel:

$$\langle 0_1^+ | r^2 | 0_2^+ \rangle = \frac{11}{2} b^2 - \frac{9}{2} b^2 = b^2$$

where $b^2 = \frac{\hbar}{m\omega}$. With $\hbar\omega = 45 A^{-1/3} - 25 A^{-2/3}$, $b^2 = 4.71 \text{ fm}^2$

Consider finite charge and relativistic contributions: 5.32fm² where increase is mainly due to spin-orbit contribution.

EO matrix element is closely connected to isomer shift between 1/2- GS and 9/2+ isomer. Example of ⁸⁹Y, Experimental $\delta < r^2 >_{ch} = 0.84(8) fm^2$

$$\begin{split} \delta\langle r^2 \rangle &= \langle C'_b, 0g_{9/2} | r^2 | C'_b, 0g_{9/2} \rangle - \langle C'_a, 1p_{1/2} | r^2 | C'_a, 1p_{1/2} \rangle \\ &= \langle C'_b | r^2 | C'_b \rangle - \langle C'_a | r^2 | C'_a \rangle \\ &+ \langle 0g_{9/2} | r^2 | 0g_{9/2} \rangle - \langle 1p_{1/2} | r^2 | 1p_{1/2} \rangle \qquad \delta < r^2 >_{ch} = 5.31 \, fm^2 \end{split}$$

Replace wavefunctions with Skyrme self-consistent EDF:

Example of ⁸⁹Y, Experimental $\delta < r^2 >_{ch} = 0.84(8) fm^2$

Replace wavefunctions with
Skyrme self-consistent EDF:Change in
core radiusSpin-orbit
($<0_1^+ |r^2|0_2^+ > = -4.00 + 4.10 + 0.61 = 0.71 \text{ fm}^2$ $<0_1^+ |r^2|0_2^+ > = -4.00 + 4.10 + 0.61 = 0.71 \text{ fm}^2$ Diff. in valence
point proton radii

Example of ⁸⁹Y, Experimental $\delta < r^2 >_{ch} = 0.84(8) fm^2$

Two-levels + inert core model

Replace wavefunctions with
Skyrme self-consistent EDF:Change in
core radiusSpin-orbit
/ $<0_1^+|r^2|0_2^+>=-4.00+4.10+0.61=0.71 \, fm^2$ Diff. in valence
point proton radii

Example of ⁸⁹Y, Experimental $\delta < r^2 >_{ch} = 0.84(8) fm^2$

Two-levels + inert core model, next replace with CI occupations

Proton radial transition density from difference of initial and final states.

Large orbital-dependent effect of core polarization from the valence nucleons.

RTRIUMF

Microscopic model for *E0* transition matrix elements

Form factors from inelastic electron scattering on ²⁶Mg

H. Blok *et al.*, PLB 149, 441 (1984).

Agreement is very good for large range of *A* and different active particles.

Result is sensitive to Skyme parameters and may provide new constraints for them.

$$\rho(E0) = \frac{\left\langle f \left| M(E0) \right| i \right\rangle}{eR^2}$$

EO Nuclear matrix element

		0+-0+	Free	New f	Model	Spin
		i-f	Exp.	s3	skx	orbit
Valence protons	⁹⁰ Zr	2-1	1.70(3)	0.57	0.90	0.53
Valence 20	²⁰⁶ Pb	2-1	1.72(6)	1.43	0.66	-0.04
neutrons	⁶⁸ Ni	2-1	1.41(3)	0.74	1.06	0.43
	⁵⁸ Ni	2-1	0.054(14)	1.80	1.47	0.33
Valence	⁵⁸ Ni	3-1	5.5(10)	2.62	1.69	-0.08
protons and	³² S	3-1	2.0(3)	1.06	0.74	-0.04
neutrons	²⁶ Mg	2-1	3.5(12)	1.11	0.93	0.16
	²⁶ Mg	3-1	3.8(10)	1.79	1.40	0.00

B.A. Brown *et al.*, PRC 95, 011301(R) (2017).

Skyme parameter sets from B.A. Brown et al., PRC 92, 014305 (2015).

Second-order corrections:

- Quadrupole zero-point motion eg. [2⁺_v ⊗ 2⁺_{coll}]^{j=0+} admixtures
- Octupole correlations

B.A. Brown *et al.,* PRC 95, 011301(R) (2017). Skyme parameter sets from B.A. Brown *et al.,* PRC 92, 014305 (2015).

- A microscopic model for *EO* transition matrix elements
- First measurement of 2-2 *EO* strengths in spherical nuclei ^{58,60,62}Ni at ANU
- Shape coexistence studies at TRIUMF-ISAC using gamma-ray and electron spectroscopy
- Questions and observations

Super-e at ANU

Super-e at ANU

¹⁷⁰Lu as calibration source

 170 Lu to 170 Yb Electron Capture. Q value = 3459 (19) keV. Half-life is 2.012(21) days.

Relative intensities and ICC known to good precision from several studies.

Produced by ¹⁷¹Yb(p,2n) at 18MeV. Alternatively produced by ISOL.

¹⁷⁰Lu source ($T_{1/2}$ =2 days) produced by ¹⁷¹Yb(p,2n)

Gamma relative efficiency

Electron relative efficiency

(E2/M1) mixing ratio measurements

Gamma-ray angular distributions using the CAESAR array to determine $\delta(E2/M1)$ mixing ratios.

 $\alpha =$

- Multiple peaks fitted simultaneously
- K-L energy difference fixed
- For Pure E2: intensity ratio of K and L fixed
- Higher than L omitted (<1.5%)
- Reduced chi-squared below = 1.2

Pure E2 ICC are well reproduced.

Some mixed transitions indicate significant E0 components.

Monte Carlo method used for value and error determination.

- Treat all input values as a normal probability distribution (μ,σ).
- Output is not a normal distribution.
- Uncertainty obtained from region containing 68% with y(x₁)=y(x₂).

REFILME Identification of significant E0 strength in the 2_2 - 2_1 transitions of ^{58,60,62}Ni

(diamond) Ni isotopes.

Literature values grouped by the sign of $Q_s(2_1^+)$: (circles) prolate, (square) oblate.

Data from compilation by Wood et al., NPA 651, 323 (1999).

TRIUMF

Good reproduction for 0-0 but not for 2-2 transitions.

Table 3:	Calculated and	l experimenta	l properties of	the first a	nd second 2^+ s	states in [!]	^{58,60,62} Ni
Theor	ry						
	B(M1)	B(E2)	μ	Q	M(E0)	E_2	E_1
	$2^+_2 \to 2^+_1$	$2^+_2 \to 2^+_1$	2_{1}^{+}	2_{1}^{+}	Skx~(s3)	2^{+}_{2}	2_{1}^{+}
	μ_N^2	$e^2 fm^4$	μ_N	efm^2	fm^2	MeV	MeV
⁵⁸ Ni	0.165	30.3	-0.14	-2.7	1.66(0.80)	2.64	1.48
⁶⁰ Ni	0.044	269	0.30	2.3	0.38(0.50)	2.29	1.56
62 Ni	0.0039	151	0.61	25.3	0.53(1.06)	2.34	1.15
Expe	riment						
	B(M1)	B(E2)	μ	Q	M(E0)	E_2	E_1
	$2^+_2 \rightarrow 2^+_1$	$2^+_2 \to 2^+_1$	2^{+}_{1}	2^{+}_{1}		2^{+}_{2}	2^{+}_{1}
	μ_N^2	$e^2 fm^4$	μ_N	efm^2	fm^2	MeV	MeV
⁵⁸ Ni	0.027^{+11}_{-13}	133^{+147}_{-93}	0.076(18)	-10(6)	$11.0^{+1.4}_{-1.9}$	2.77	1.45
⁶⁰ Ni	0.075^{+25}_{-25}	$530^{+5\bar{3}0}_{-279}$	0.32(6)	3(5)	10^{+2}_{-7}	2.16	1.33
62 Ni	0.0028_{-16}^{+14}	204_{-58}^{+102}	0.33(5)	5(12)	$8.4^{+1.4}_{-2.1}$	2.30	1.17

Second-order corrections may be needed – coupling valence nucleons to the 1p-1h giant quadrupole excitation.

- A microscopic model for *EO* transition matrix elements
- First measurement of 2-2 *EO* strengths in spherical nuclei ^{58,60,62}Ni at ANU
- Shape coexistence studies at TRIUMF-ISAC using gamma-ray and electron spectroscopy
- Questions and observations

Cvclotron

Isotope Separator and ACcelerator

1 RIB delivery to experiments 500MeV p⁺ at 100μA on ISOL target

> SiC, NiO, Nb, ZrC, Ta, UC_x Targets Surface, FEBIAD, IG-LIS ion sources

ISAC-I Low-Energy <60keV Ground state + decay, material science ISAC-I Medium E <1.5MeV/u Astrophysics ISAC-II SC LINAC <10MeV/u Nuclear reactions and structure

TRIUMF-ARIEL

Advanced Rare-IsotopE Laboratory

1 RIB → 3 simultaneous RIBs

ARIEL Project:

- new electron linac driver for photo-fission
- new target stations and front end
- new proton beamline

E-linac and electron beamline Sept. 2014

ARIEL beams to ISAC experiments

ARIEL Completion to Science

GRIFFIN

Precision studies with stopped RIBs

TIGRESS

Experiments with accelerated RIBs

Decay spectroscopy

GRIFFIN

Precision studies with stopped RIBs

PACES – electron spectrometer

SPICE – in-beam electron spectrometer

TIGRESS

Experiments with accelerated RIBs

RUMF ISAC-II High Mass: ^{156,158,160}Er Coulomb Excitation with TIGRESS

A>29 beams require charge-breeding.

- Currently use ISAC CSB
- CANREB EBIS from 2019

S1750, J. Smallcombe & A.B. Garnsworthy HPTa target with TRILIS and CSB. Beams delivered to TIGRESS, Oct 2017:

¹⁵⁶Er²³⁺: 1x10⁸ total pps, 25% ¹⁵⁶Er, ~14hrs
¹⁵⁸Er²³⁺: 1x10⁸ total pps, 50% ¹⁵⁸Er, ~14hrs
¹⁶⁰Er²³⁺: 1x10⁸ total pps, 50% ¹⁶⁰Er, ~14hrs

3.9MeVA Coulex on ⁵⁸Ni target

Will measure quadrupole moments of low-lying states to determine the shape of these nuclei, and investigate coexistence at *N*=88,90.

The GRIFFIN Spectrometer for precision decay studies

GRIFFIN reuses the full suite of ancillary detectors developed for the 8π spectrometer

Zero-Degree Fast scintillator Fast-timing signal for betas

HPGe: 16 Clovers Detect gamma rays and determines branching ratios, multipolarities and mixing ratios

LaBr₃: 8 LaBr₃ Fast-timing of photons to measure level lifetimes

PACES: 5 Cooled Si(Li)s Detects Internal Conversion Electrons and alphas/protons

SCEPTAR: 10+10 plastic scintillators Detects beta decays and determines branching ratios

DESCANT Neutron array Detects neutrons to measure betadelayed neutron branching ratios

GRIFFIN HPGe Clover Detectors

4096 crystal pairs at 52 unique angles for γ-γ angular correlations

J.K. Smith, A.C. MacLean *et al. In preparation for NIM A (2017).*

Development of $\gamma - \gamma$ angular correlation analysis techniques with GRIFFIN.

- Finite size and shape of crystals means theoretical distribution is attenuated.
- Obtain 'template' from high-statistics GEANT4 simulation
- Fit template to experimental data.

Ideally:

- Fit experimental data
- Plug coefficients into simple equations
- Obtain corrected 'true' coefficients

RIUMF GRIFFIN Results: Spectroscopy of ⁵⁰Sc and *ab initio* calculations of *B(M3)* strengths

 $\delta = 0.015(25)$ $X^{2}/v = 1.20$ 1.1 Normalized Counts 1.05 1 0.95 0.9 γγ(θ): 1519-71 keV (1+-3+-2+) 0.85 0.8 -0.7 -0.5 0.5 -1.1 -0.9 -0.3 -0.1 0.1 0.3 0.7 0.9 cosθ

A.B. Garnsworthy, M. Bowry, B. Olaizola, J.D. Holt, S.R. Stroberg *et al.*, Accepted to PRC (Oct 2017). http://arxiv.org/abs/1710.06338

Gamma-gamma angular correlations with GRIFFIN confirm *M3* isomer in ⁵⁰Sc.

Isotope	E_{γ}	$J_i^{\pi} \to J_f^{\pi}$	ΔT	$T_{1/2}$	I_{γ}	α_{Tot}	I_{Tot}	Exp.
	(keV)			,				B(M3)
²⁴ Na [46–49]	472.2074(8)	$1^+ \rightarrow 4^+$	0	20.18(10) ms	0.9995(5)	0.000469(7)	0.9995(5)	9.10(7)
^{24}Al [50]	425.8(1)	$4^+ \rightarrow 1^+$	0	131.3(25) ms	0.83(3)	0.001144(16)	0.83(3)	2.4(6)
^{34}Cl [51]	146.36(3)	$3^+ ightarrow 0^+$	1	31.99(3)min	0.383(5)	0.1656(24)	0.446(6)	0.10(1)
38 Cl [48, 52, 53]	671.365(8)	$5^- \rightarrow 2^-$	0	$715(3) \mathrm{ms}$	0.3826(8)	0.000599(9)	1	0.0118(8)
38 K [54]	130.1(2)	$0^+ \rightarrow 3^+$	1	924.33(27) ms	$8(1) \times 10^{-6}$	0.394(7)	0.00033(4)	0.29(10)
${}^{50}Sc$ [33]	257.895(1)	$2^+ \rightarrow 5^+$	0	$350(40) \mathrm{ms}$	0.97(3)	0.0350(5)	0.99(1)	13.6(7)

First calculation of *B(M3)* strengths using *ab initio* Valence-Space In-Medium Similarity Renormalization Group method and effective operator.

				Phenomenological	VS-IMSRG
Isotope	$J_i^{\pi} \to J_f^{\pi}$	ΔT	Exp.	shell model	Effective Op.
			B(M3)	B(M3)	
24 Na	$1^+ \rightarrow 4^+$	0	9.10(7)	19.9	4.45
^{24}Al	$4^+ \rightarrow 1^+$	0	2.4(6)	2.72	1.76
^{34}Cl	$3^+ \rightarrow 0^+$	1	0.10(1)	0.157	0.0013
^{38}Cl	$5^- \rightarrow 2^-$	0	0.0118(8)	0.0003	0.022
³⁸ K	$0^+ \rightarrow 3^+$	1	0.29(10)	0.324	0.015
50 Sc	$2^+ \rightarrow 5^+$	0	13.6(7)	13.9	9.62

0+-

Compton Polarimetry using GRIFFIN

Dan Southall, TRIUMF research student, 2016

Define Polarization plane from $\gamma - \gamma$ coincidence detection. Then examine azimuthal scattering angle to determine electric or magnetic nature of the radiation.

- Two hemispheres of 10 plastic scintillators
- Detects beta particles with ~80% solid angle coverage
- Improves peak-to-background of HPGe spectra

RUMF PACES - Pentagonal Array for Conversion Electron

Five 5mm thick, 200mm² Si(Li), LN₂-cooled Si diode and FET

Solid angle coverage: 1.4% each, 7% total

Gamma-Electron Angular correlations

LaBr₃ Fast-Scintillator Array for Excited-State Lifetime

RETRIUME The GRIFFIN Spectrometer for precision decay studies at ISAC

TRIUMF

GRIFFIN studies around doubly-magic ⁴⁸Ca

Two beamtime periods with GRIFFIN

- 1 publication accepted, 3 in preparation
- 1 PhD thesis, 1 Masters thesis

⁵⁰Sc - ⁵⁰Ti, Nov 2016, 1x10⁶pps, ~8hrs "Search for particle-hole excitations across the N=28 shell closure", C. Jones, Masters thesis (2018).

⁵⁰Ca - ⁵⁰Sc, Nov 2016, 1x10⁶pps, ~2hrs

"Spectroscopy of 50 Sc and the first calculation of *B(M3)* strengths using *ab initio* methods", A.B. Garnsworthy, accepted in Phys. Rev. C (Oct 2017).

⁴⁷K – ⁴⁷Ca, Dec 2014, 1x10⁵pps, ~90hrs "Detailed decay spectroscopy of ⁴⁷Ca", J.K. Smith, in preparation for Phys. Rev. C (2017).

⁴⁶K – ⁴⁶Ca, Dec 2014, 4x10⁵pps, ~40hrs

"Detailed spectroscopy of ⁴⁶Ca: The investigation of the β decay of ⁴⁶K with the GRIFFIN γ -ray spectrometer", J.L. Pore, PhD thesis (2017), in preparation for Phys. Rev. C (2017).

⁴⁶K beam of 4x10⁵pps for ~40hrs

~200 gamma-ray transitions newly placed.

14 previously unobserved excited states (45 total observed).

- States observed to within 815keV of the 7.7MeV Q value.
- Branching ratios observed down to 10⁻³.
- Weakest γ -ray observed has intensity of 0.0015% that of the 2₁⁺ to 0₁⁺ transition.
- PhD thesis of J. Pore, Simon Fraser University.
- In preparation for PRC.

${}^{50}Sc - {}^{50}Ti$ Search for p-n excitations across N=28 gap

Rowanwood Sect. 2.6 Fig. 2.6.5 v.7/26/16

Seniority structures for the N = 28 isotones. The structure reflects the dominance of the $1f_{7/2}$ orbital. The v = 4 states are confined to 52 Cr. Note the order of the v = 2 and v = 4, J^{π} = 4⁺ states in 52 Cr. Probable deformed structures due to the v 2p-2h configuration are observed in 50 Ti, 52 Cr, 54 Fe. Selected v 1p-1h states and the π 2p-2h in 48 Ca are shown. The vertical arrows indicate excitation energies above which other states are established.

50 Sc – 50 Ti Search for p-n excitations across *N*=28 gap

⁵⁰Sc – ⁵⁰Ti Search for p-n excitations across *N*=28 gap

RIUMF

Timing resolution for Co-60 of the full array. FWHM~350 ps, mainly for contributions of "bad" crystals Good crystals down to FWHM~280 ps

Mass (A)

B.Olaizola, M. Bowry *et al.* TRIUMF Beamtime April 2017

Detailed time-walk corrections need to be completed before results obtained for other isotopes

R.A. Diamond and F.S. Stephens, NPA 45, 632 (1963). more complicated than those of the

The nature of the excited states in the even-mass thallium isotopes is probably even more complicated than those of the odd-mass nuclei, and little can be said about them.

Electron spectroscopy of ¹⁹⁸TI isomeric decay

CTRIUMF

Electron spectroscopy of ¹⁹⁸TI isomeric decay

^A Coulex (¹⁶O,¹⁶O'γ), R.Lecomte et al., PRC 22, 2420 (1980).
 ^B DSAM (n,n'γ), S.W. Yates, private communication (2016).

RIUMF Ultra-high statistics beta-decay spectroscopy of ⁷²Ga-⁷²Ge

A.B. Garnsworthy, J. Henderson, J. Smallcombe, J.K. Smith, M. Bowry, et al., Beamtime Oct 2017

 $T_{1/2}$ =14 hours. Data collected for ~12 half lives.

The two GRIFFIN and PACES spectra below each represent 10GB out of a total of 8,000GB = 0.125%!

- Identify benchmark cases for theory (*E0* strength):
 - ⁹⁰Zr = Doubly magic
 - ²⁰⁶Pb, ⁶⁸Ni = valence neutrons
 - ²⁶Mg, ³²S & ⁵⁸Ni = valence protons and neutrons
 - Something = away from closed shells
- Standard sources for Internal conversion electron efficiency
- Lack of systematic information on behavior of ρ² values. No bench-marking of 'normal' values.

133Ba	10.551 yrs				
	E (keV)		I (%)		ICC
	80.9971	12	34.11	28	1.703
	276.3997	13	7.147	30	0.0566
	302.851	6	18.3	6	0.0434
	356.0134	6	61.94	14	0.0254
	383.848	12	8.905	29	0.0202
207Bi	31.55 yrs				
	$E(k_0)/$		1 (%)		
	L (KEV)		1 (70)		
	569.698	2	97.74	3	0.0217
	569.698 1063.656	2	97.74 74.5	3	0.0217

There is a very limited number of ICE calibration sources.

Often in-beam calibrations are done using the theoretical ICC of pure *E2* transitions.

Potential long-lived ICE calibration sources

133Ba	10.551 yrs				
	E (keV)		I (%)		ICC
	80.9971	12	34.11	28	1.703
	276.3997	13	7.147	30	0.0566
	302.851	6	18.3	6	0.0434
	356.0134	6	61.94	14	0.0254
	383.848	12	8.905	29	0.0202

207Bi	31.55 yrs				
	E (keV)		I (%)		ICC
	569.698	2	97.74	3	0.0217
	1063.656	3	74.5	2	0.128
	1770.228	9	6.87	4	0.0041

182Ta	114.43 days	114.43 days			neutron capture on 181Ta (99%)		
	E (keV)		I (%)		ICC		
	100.10595	7	14.23	25	3.89		
	152.42991	26	7.02	8	0.1258		
	222.1085	3	7.57	8	0.048		
	1121.29	3	35.3	2	-		
	1189.04	3	16.42	10	0.0047		
	1221.395	3	27.2	22	0.00305		
	1231.004	3	11.57	8	0.00301		

192lr	73.831 days				neutron cap	ture on	191lr (37%)
	E (keV)		I (%)		ICC		
	136.39	3	0.24	3	1.53		
	295.95965	15	28.7	1	0.1047		
	308.45507	17	29.8	1	0.0943		
	316.50618	17	83	3	0.0841		
	468.06885	26	47.7	2	0.0291		
	588.581	7	4.49	2	0.01682		
	604.41105	25	8.11	4	0.0258		
	612.46215	26	5.28	3	0.01536		
228Th	1.9131 yrs		Alpha d	leca	y + Daughter	decays	
	E (keV)		I (%)		ICC		
	84.4		1.22	2	21.2		
	238.6		43.5	4	0.909		
	241		4.1	5	0.276		
	277.4		2.3	3			
	300.1		3.25	3	0.484		
	300.1 510.8		3.25 8.18	3 10	0.484		
	300.1 510.8 583.187	2	3.25 8.18 30.6	3 10 2	0.484		
	300.1 510.8 583.187 727.3	2	3.25 8.18 30.6 6.69	3 10 2 9	0.484		
	300.1 510.8 583.187 727.3 860.6	2	3.25 8.18 30.6 6.69 4.5	3 10 2 9 4	0.484		
	300.1 510.8 583.187 727.3 860.6 1620.7	2	3.25 8.18 30.6 6.69 4.5 1.49	3 10 2 9 4 5	0.484		
	300.1 510.8 583.187 727.3 860.6 1620.7 2614.511	2	3.25 8.18 30.6 6.69 4.5 1.49 35.86	3 10 2 9 4 5 6	0.484		

¹⁷⁰Lu 2days ¹⁷¹Yb(p,2n) or ISOL

$$\begin{array}{c} 0^{+} \\ 1g_{9/2} \text{ and } 2p_{1/2} \\ \hline 0^{+} & SM: & 4.71 \\ 9^{0}Zr & MM: & 0.71 \end{array}$$

Largest node changes on the chart:

N=60 $(1g_{7/2}-3s_{1/2})^{98}$ Sr N=104 $(3p_{3/2}-1i_{13/2})^{186}$ Pb

Maybe expect the largest core-polarization effect in these regions (not necessarily the largest *EO* strength)