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Structure models for superheavy nuclei

Macro-micro models 

The microscopic part (single-particle potential) is adjusted to empirical low-energy single-particle 
nuclear spectra, and a macroscopic energy formula is constructed separately to reproduce exp.  
masses.

Self-consistent models based on Energy Density Functionals 

➡ adjusted to selected bulk nuclear properties, e.g. masses, charge radii, and empirical properties 
of homogeneous nuclear matter.  

➡ universal theory framework that can be applied to nuclei over the entire mass table. 

➡ important for extrapolations to mass regions where only few data are available.



Extrapolation to SHE

EDFs and the corresponding structure models are applied to a region far from those in 
which their parameters are determined by data ➠ large uncertainty in model predictions? 

Much higher density of single-particle states close to the Fermi energy ➠ the evolution of 
deformed shells with nucleon number will have a more pronounced effect on energy 
gaps, separation energies, Qα-values, band-heads in odd-A nuclei, K-isomers …

Much stronger competition between the attractive short-range nuclear interaction and 
the long-range electrostatic repulsion ➠ impact on the Coulomb, surface and isovector 
energies! Shape transitions! Exotic shapes!



Equilibrium quadrupole deformation parameters β20 of even–even SH nuclei 

P.-H. Heenen, J. Skalski, A. Staszczak, D. Vretenar / Nuclear Physics A 2015 



Equilibrium quadrupole deformation 
parameters β20 for the Z = 114, 120 and 
126 isotopic chains: macro–micro and 
mean-field models. 

Evolution of shapes 

Importance of collective correlations that arise 
from restoration of broken symmetries and 
fluctuations of collective variables! 

P.-H. Heenen et al. / Nuclear Physics A 2015 



Deformation energy curves (SLy4 EDF): projection on particle numbers only (black), and projection on angular 
momentum I = 0 (blue). Collective wave function, energy and mean deformation of the three lowest 0+ states.

P.-H. Heenen et al. / Nuclear Physics A 2015 



Collective Hamiltonian

... nuclear excitations determined by quadrupole 
vibrational and rotational degrees of freedom:

Hcoll = Tvib(�, ⇥) + Trot(�, ⇥,�) + Vcoll(�, ⇥)
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The dynamics of the collective Hamiltonian is determined by: the self-consistent collective potential, 
the three mass parameters: Bββ, Bβγ, Bγγ, and the three moments of inertia Ik, functions of the intrinsic 
deformations β and γ.

Phys. Rev. C 79, 034303 (2009). 
Prog. Part. Nucl. Phys. 66, 519 (2011). 
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Self-consistent RHB triaxial energy maps of 254No and 256Rf isotopes in the β–γ plane (0 ≤ γ ≤ 60◦). 
DD-PC1 energy density functional and a separable pairing force of finite range. 



Transactinides 



Transactinides 
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Energy gaps are small! Shape stabilization depends on how fast the shell structures  
vary with deformation!
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Neutron and proton shell gaps

270Hs ➠ deformed “doubly magic” nucleus



Triaxial deformation energy maps



Triaxial deformation energy maps
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STRUCTURE OF TRANSACTINIDE NUCLEI WITH . . . PHYSICAL REVIEW C 88, 044324 (2013)
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FIG. 15. (Color online) The ratio R4/2 of excitation energies of the levels 4+
1 and 2+

1 (a), the ratio of reduced transition probabilities
R = B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) (b), and the excitation energy of the level 0+

2 (c), in No isotopes as functions of the number of
neutrons.

reported for 152Sm and other N = 90 isotones [45]. In a series
of studies [46–48] we have analyzed microscopic signatures
of nuclear ground-state shape phase transitions in Nd isotopes
using excitation spectra and collective wave functions obtained
by diagonalization of a five-dimensional Hamiltonian for
quadrupole vibrational and rotational degrees of freedom,
with parameters determined by constrained self-consistent
relativistic mean-field calculations for triaxial shapes. It has
been shown that a number of observables, e.g., energy gaps
between the ground state and the excited vibrational states
with zero angular momentum, isomer shifts, and monopole
transition strengths, exhibit sharp discontinuities at neutron
number N = 90, characteristic of a first-order quantum phase
transition.

For the sequence of No nuclei, in Fig. 15 we display
the isotopic dependence of three characteristic quantities,
calculated with the collective Hamiltonian based on the DD-
PC1 functional: the ratio R4/2 of excitation energies of the yrast
states 4+

1 and 2+
1 , the ratio of reduced transition probabilities

R = B(E2; 4+
1 → 2+

1 )/B(E2; 2+
1 → 0+

1 ), and the excitation
energy of the first-excited (second) 0+ state. It is interesting to
note that all three observables display a pronounced variation
between N = 166 and N = 170. For N = 168, in particular,
we can compare the calculated values with the predictions
of the X(5) analytical model for the critical point of shape
phase transition [44]: R4/2 = 2.94 for 270No compared to
2.91 in the X(5) model, and the calculated ratio of reduced
transition probabilities is R = 1.57 for 270No while the
X(5) value is 1.58. This is indeed a remarkable agreement
between the microscopic calculation based on a global energy
density functional and parameter-free X(5) predictions for

spectroscopic properties at the point of phase transition. In
addition, the pronounced dip in the excitation energy of the
band-head 0+

2 of the quasi-β band can be attributed to the
softness of the potential with respect to β deformation. This
example illustrates the richness of structure phenomena that
one can expect to find in very heavy nuclei with Z ! 100,
including the possible occurrence of shape phase transitions.
We emphasize, however, that the physical control parameter—
the nucleon number—is not continuous and thus in general a
microscopic calculation cannot exactly reproduce the point of
phase transition.

V. SUMMARY AND OUTLOOK

The framework of relativistic nuclear energy density func-
tionals (EDFs) has been applied to a study of the structure
of transactinide nuclei. Based on the functional DD-PC1, that
has successfully been tested in various mass regions including
superheavy nuclei, and on a separable pairing interaction,
self-consistent relativistic Hartree-Bogoliubov calculations
have been performed for several isotopic chains from Fm
to Fl, with neutron number in the interval 154 " N " 172.
Assuming axially symmetric shapes, in particular, we have
analyzed the deformed shell gap for neutrons at N = 162
and how it affects the stability of nuclei around 270Hs.
Triaxial deformation energy surfaces have been computed
for the even-even isotopes of No, Rf, Sg, Hs, and Ds, with
N = 158–168. Although Z ranges from 102 to 110, all the
isotones with N = 158, 160, 162 display similar deformation
energy maps: well-developed, deep mean-field minima at

044324-9

Shape-phase transitions and critical-point phenomena in the region of superheavy nuclei 

The ratio R4/2 of excitation energies of the levels 4+1 and 2+1 (a), 

the ratio of reduced transition probabilities R = B(E2; 4+1 → 2+1 )/

B(E2; 2+1 → 0+1 ) (b), and the excitation energy of the level 0+2 (c), 
in No isotopes as functions of the number of neutrons. 
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Axially deformed nuclei      ➠      two-quasiparticle K-isomers

Two-quasiparticle isomers
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High-K isomers in transactinide nuclei close to N = 162
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We extend our recent study of shape evolution, collective excitation spectra, and decay properties of
transactinide nuclei [V. Prassa, T. Nikšić, and D. Vretenar, Phys. Rev. C 88, 044324 (2013)], based on the
microscopic framework of relativistic energy density functionals, to two-quasiparticle (2qp) excitations in the
axially deformed Rf, Sg, Hs, and Ds isotopes, with neutron number N = 160–166. The evolution of high-K
isomers is analyzed in a self-consistent axially symmetric relativistic Hartree-Bogoliubov calculation using the
blocking approximation with time-reversal symmetry breaking. The occurrence of a series of low-energy high-K
isomers is predicted, in particular the 9−

ν in the N = 160 and N = 166 isotopes, and the 12−
ν in the N = 164

nuclei. The effect of the N = 162 deformed-shell closure on the excitation of 2qp states is discussed. In the
N = 162 isotones we find a relatively low density of 2qp states, with no two-neutron states below 1.6 MeV
excitation energy and two-proton states at ≈0.5 MeV higher energy than the lowest 2qp states in neighboring
isotopes. This is an interesting result that can be used to characterise the occurrence of deformed shell gaps in
very heavy nuclei.

DOI: 10.1103/PhysRevC.91.034324 PACS number(s): 21.60.Jz, 21.10.Gv, 21.10.Hw, 27.90.+b

I. INTRODUCTION

Relatively long-lived elements beyond the actinides owe
their existence to the underlying single-nucleon shell structure.
Nuclei in this region often display axially deformed equilib-
rium shapes and intruder single-nucleon states with high-"
values (projection of the single-particle angular momentum
onto the symmetry axis of the nucleus) appear close to
the Fermi level. The unpaired quasiparticle excitations form
isomeric states with high values of total K = #i"i [2].
Because they can only decay by K-forbidden transitions,
these states have lifetimes that are significantly longer than
most of the neighboring states. The decay of isomeric states
provides information on the nuclear wave function, single-
nucleon states, pairing gaps, and residual interactions [3].
Systematic experimental efforts in the region of very heavy
nuclei have produced detailed spectroscopic data in nuclei
around 254No [4–8]. In addition to the detection of α and γ
decays, recent studies have made use of conversion electrons
(CE) to investigate possible K-isomeric states in heavy high-Z
nuclei such as, for instance, 256Rf, in which internal conversion
becomes the preferred decay mode [9,10]. The heaviest
nuclei for which characteristic high-K isomeric decays have
been investigated are 270Ds and its α-decay daughter 266Hs
[11,12].

Theoretical studies of quasiparticle excitations in the region
of transactinide nuclei have been based on the microscopic-
macroscopic approach [13–24], self-consistent models with
Skyrme functionals [25–30], the Gogny force [31–33], and
relativistic energy density functionals [1,34–38].

In the study of Ref. [1] we used a microscopic theoretical
framework based on relativistic energy density functionals
(REDFs) to analyze shape evolution, collective excitation
spectra, and decay properties of transactinide nuclei. Axially

symmetric and triaxial relativistic Hartree-Bogoliubov (RHB)
calculations [36,39], based on the functional DD-PC1 [40]
and with a separable pairing force of finite range [41,42],
were carried out for the even-even isotopic chains between
Fm and Fl. The occurrence of a deformed shell gap at neutron
number N = 162 and its role on the stability of nuclei in
the region around Z = 108 was investigated. A quadrupole
collective Hamiltonian, with parameters determined by self-
consistent constrained triaxial RHB calculations, was used to
examine low-energy spectra of No, Rf, Sg, Hs, and Ds with
neutron number in the interval 158 ! N ! 170. In particular,
we explored the isotopic dependence of several observables
that characterize the transitions between axially symmetric
rotors, γ -soft rotors, and spherical vibrators. The ratio R4/2
of excitation energies of the yrast states 4+

1 and 2+
1 , the

ratio of reduced transition probabilities R = B(E2; 4+
1 →

2+
1 )/B(E2; 2+

1 → 0+
1 ), B(E2) values for transitions within the

ground-state band, and the level of K-mixing as reflected in
the energy staggering between odd- and even-spin states in
the (quasi-)γ bands, clearly show that all five isotopic chains
display minimal variation from the axial rigid-rotor limit in the
interval N = 158–166. For neutron numbers N " 168 their
potential energy surfaces become more γ -soft. This is also
reflected in the characteristic observables of rotational spectra.

As an illustration, in Fig. 1 we plot the self-consistent
triaxial RHB energy surfaces in the β-γ plane (0◦ ! γ ! 60◦)
for 268,270,272,274Hs (Z = 108). For each nucleus energies
are normalized with respect to the binding energy of the
equilibrium deformation. The color code refers to the energy
at each point on the surface relative to the minimum. Details of
the calculation and the choice of effective interactions in the
particle-hole (DD-PC1 [40]) and particle-particle (a pairing
force separable in momentum space [41,42]) channels, are
given in Refs. [1,35]. The energy surfaces of Hs isotopes,

0556-2813/2015/91(3)/034324(6) 034324-1 ©2015 American Physical Society
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K-forbidden transitions ➠ information on the single-nucleon states, pairing gaps, and residual interactions.
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We extend our recent study of shape evolution, collective excitation spectra, and decay properties of
transactinide nuclei [V. Prassa, T. Nikšić, and D. Vretenar, Phys. Rev. C 88, 044324 (2013)], based on the
microscopic framework of relativistic energy density functionals, to two-quasiparticle (2qp) excitations in the
axially deformed Rf, Sg, Hs, and Ds isotopes, with neutron number N = 160–166. The evolution of high-K
isomers is analyzed in a self-consistent axially symmetric relativistic Hartree-Bogoliubov calculation using the
blocking approximation with time-reversal symmetry breaking. The occurrence of a series of low-energy high-K
isomers is predicted, in particular the 9−

ν in the N = 160 and N = 166 isotopes, and the 12−
ν in the N = 164

nuclei. The effect of the N = 162 deformed-shell closure on the excitation of 2qp states is discussed. In the
N = 162 isotones we find a relatively low density of 2qp states, with no two-neutron states below 1.6 MeV
excitation energy and two-proton states at ≈0.5 MeV higher energy than the lowest 2qp states in neighboring
isotopes. This is an interesting result that can be used to characterise the occurrence of deformed shell gaps in
very heavy nuclei.
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I. INTRODUCTION

Relatively long-lived elements beyond the actinides owe
their existence to the underlying single-nucleon shell structure.
Nuclei in this region often display axially deformed equilib-
rium shapes and intruder single-nucleon states with high-"
values (projection of the single-particle angular momentum
onto the symmetry axis of the nucleus) appear close to
the Fermi level. The unpaired quasiparticle excitations form
isomeric states with high values of total K = #i"i [2].
Because they can only decay by K-forbidden transitions,
these states have lifetimes that are significantly longer than
most of the neighboring states. The decay of isomeric states
provides information on the nuclear wave function, single-
nucleon states, pairing gaps, and residual interactions [3].
Systematic experimental efforts in the region of very heavy
nuclei have produced detailed spectroscopic data in nuclei
around 254No [4–8]. In addition to the detection of α and γ
decays, recent studies have made use of conversion electrons
(CE) to investigate possible K-isomeric states in heavy high-Z
nuclei such as, for instance, 256Rf, in which internal conversion
becomes the preferred decay mode [9,10]. The heaviest
nuclei for which characteristic high-K isomeric decays have
been investigated are 270Ds and its α-decay daughter 266Hs
[11,12].

Theoretical studies of quasiparticle excitations in the region
of transactinide nuclei have been based on the microscopic-
macroscopic approach [13–24], self-consistent models with
Skyrme functionals [25–30], the Gogny force [31–33], and
relativistic energy density functionals [1,34–38].

In the study of Ref. [1] we used a microscopic theoretical
framework based on relativistic energy density functionals
(REDFs) to analyze shape evolution, collective excitation
spectra, and decay properties of transactinide nuclei. Axially

symmetric and triaxial relativistic Hartree-Bogoliubov (RHB)
calculations [36,39], based on the functional DD-PC1 [40]
and with a separable pairing force of finite range [41,42],
were carried out for the even-even isotopic chains between
Fm and Fl. The occurrence of a deformed shell gap at neutron
number N = 162 and its role on the stability of nuclei in
the region around Z = 108 was investigated. A quadrupole
collective Hamiltonian, with parameters determined by self-
consistent constrained triaxial RHB calculations, was used to
examine low-energy spectra of No, Rf, Sg, Hs, and Ds with
neutron number in the interval 158 ! N ! 170. In particular,
we explored the isotopic dependence of several observables
that characterize the transitions between axially symmetric
rotors, γ -soft rotors, and spherical vibrators. The ratio R4/2
of excitation energies of the yrast states 4+

1 and 2+
1 , the

ratio of reduced transition probabilities R = B(E2; 4+
1 →

2+
1 )/B(E2; 2+

1 → 0+
1 ), B(E2) values for transitions within the

ground-state band, and the level of K-mixing as reflected in
the energy staggering between odd- and even-spin states in
the (quasi-)γ bands, clearly show that all five isotopic chains
display minimal variation from the axial rigid-rotor limit in the
interval N = 158–166. For neutron numbers N " 168 their
potential energy surfaces become more γ -soft. This is also
reflected in the characteristic observables of rotational spectra.

As an illustration, in Fig. 1 we plot the self-consistent
triaxial RHB energy surfaces in the β-γ plane (0◦ ! γ ! 60◦)
for 268,270,272,274Hs (Z = 108). For each nucleus energies
are normalized with respect to the binding energy of the
equilibrium deformation. The color code refers to the energy
at each point on the surface relative to the minimum. Details of
the calculation and the choice of effective interactions in the
particle-hole (DD-PC1 [40]) and particle-particle (a pairing
force separable in momentum space [41,42]) channels, are
given in Refs. [1,35]. The energy surfaces of Hs isotopes,
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finds such cases depending on the underlying single-particle level scheme and, therefore, the pre-
dictions are model-dependent. Usually α energies detected for one isotope show some spread.2

If larger than expected, it may indicate that two or more different transitions are involved. Inde-
pendently of the energy, a measurement of two different life-times presents evidence that at least 
one of the decays is isomeric.

The deformation of a nucleus affects its α-decay in several ways. Firstly, deformation can 
result in very large energy gain with respect to the spherical configuration, up to more than 
20 MeV [9]. Secondly, rapid changes of deformation with respect to the number of protons and 
neutrons might produce large differences between the wave functions of the initial and final 
state in an α-decay, thus considerably reducing the corresponding transition probability. Finally, 
several local minima can appear as a function of deformation and favor transitions to excited 
states in the daughter nucleus.

3.1. Qα values

While keeping in mind reservations mentioned above, in the following we compare available 
data to predicted g.s. → g.s. Qα values:

Qα(Z,N) = M(Z,N) − M(Z − 2,N − 2) − M(2,2)

= B(Z − 2,N − 2) − B(Z,N) + B(2,2), (2)

where B denotes the binding energy (Mexc(2, 2) ≈ 2.425 MeV, B(2, 2) ≈ 28.30 MeV). Theo-
retical Qα values are obtained directly from predicted masses, and thus the quality of both are 
related. However, since many approximations and inaccuracies in the latter cancel in the former, 
good mass predictions are in fact much more difficult to obtain. Large-scale self-consistent mass 
fits based on Skyrme effective forces have been reported by S. Goriely and collaborators [55,
60–64]. Although they present a remarkable achievement, we note that many of these mass mod-
els have been adjusted with a view on astrophysical applications and, therefore, do not necessarily 
provide the best extrapolation to the SH region (there are, for instance, ≈5 MeV differences be-
tween mass predictions of the HFB24 and HFB27* models in the SHE region, cf. Fig. 4 in [55]). 
The very good quality of these mass fits necessitates phenomenological corrections for collective 
excitations and a careful fit of pairing strengths. It must also be emphasized that a satisfactory 
mass fit with an effective interaction does not guarantee a reasonable description of fission bar-
riers. An instructive recent example are the large differences between barriers predicted by the 
density functionals UNEDF0 and UNEDF1, cf. Fig. 10 in [68]. The converse may also be true – 
for instance, the functional SkM* predicts relatively reasonable barriers, but not masses.

In BCS (or HFB) pairing calculations of odd-A and odd–odd nuclei the blocking procedure 
often leads to an excessive reduction of the pairing gap. For Qα values, fortunately, this ef-
fect partially cancels out unless the pairing reduction in the parent and daughter nucleus is very 
different. When a full particle-number projection is not feasible, one way to avoid an excessive 
even–odd staggering in nuclear binding is to adopt a stronger (typically by ∼5%) pairing interac-
tion for odd-particle-number systems [60]. Another way is to use the Lipkin–Nogami procedure, 
or rely on the quasiparticle approximation.

In odd–odd nuclei the ground state configuration results from the coupling of the unpaired 
neutron and proton. The energy ordering of the corresponding coupled states with good total 

2 The alpha particle energy can be directly related to the Qα value: Eα = A−4
A Qα , where A is the mass number.
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superheavy nuclei are contained in it. It is clear from table 1 that we should not use the masses
of the DZ and NS models in our analysis, but those of WS3+, WS4+ and HN.

One should mention here that our result on the good accuracy of the description of aQ for
SHN by the model WS4+ is in line with the results of [17]. This reference is a very wide and
detailed review of the accuracy of description of SHN by various approaches. Similar ana-
lyses are also performed in [18, 19].

2.2. Alpha-decay half-life

The calculations of the α-decay half-lives are based on the phenomenological model of α
decay worked out in [6]. For an even–even nucleus, as considered in this paper, the formula
for the logarithm of the α half-life, aT th, has the form

( ) [ ( )] ( )= + +a a
-T Z N aZ Q Z N bZ clog , , , 110

th 1 2

where aQ is the α-decay energy (the ground-state to ground-state transition).
The parameters a b c, , , adjusted to experimental data for even–even nuclei [20–22], have

the values

( )= = - = -a b c1.5372, 0.1607, 36.573. 2

3. Results and discussion

3.1. Results

The results are collected in table 2. These are mainly the α-decay energies aQ and the half-
lives aT . Both experimental and theoretical values are given. The latter are calculated in three
variants using three nuclear-mass models: two recent global models WS3+ [12] and WS4+

Table 2. Calculated and measured values of the α-decay energies aQ (in MeV), α-
decay and spontaneous-fission half-lives, aT and Tsf , for the decay chain of the nucleus
294118. Some quantities derived from them are also given (see text).

Nucleus 294118 290Lv 286Fl 282Cn

aQ (WS3+) 12.12 11.09 10.21 10.22
aQ (WS4+) 12.17 11.06 9.94 10.11
aQ (HN) 12.11 11.08 10.86 10.46
aQ (exp) 11.82 11.00 10.35

d aQ (WS3+) 0.30 0.09 −0.14
d aQ (WS4+) 0.35 0.06 −0.41
d aQ (HN) 0.29 0.08 0.51
aT (WS3+) 0.38 ms 22 ms 0.87 s 0.19 s
aT (WS4+) 0.29 ms 26 ms 4.9 s 0.37 s
aT (HN) 0.39 ms 23 ms 19 ms 46 ms
f(WS3+) 1.8 2.6 4.4
f(WS4+) 2.4 3.1 24
f(HN) 1.8 2.8 11
aT (exp) 0.69 ms 8.3 ms 0.20 s

Tsf
th 1.3 · s103 7.4 ·10 s2 1.5 s 71 ms

Tsf
exp 0.30 s 0.91 ms
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TABLE I. Rms (in keV) of the discrepancies between measured
and calculated masses. The latter are obtained with the use of the
indicated models for the regions of global (Z,N ! 8), heavy (Z ! 82,
N ! 126) and very heavy (Z ! 100) nuclei. The year of publication
of each model, as well as the number of nuclei with measured masses
in each region, Nnucl, are also specified.

Model FRDM DZ INM WS3+ WS4+ HN Nnucl

Year 1995 1995 2012 2010 2014 2001

Z,N ! 8 654 394 362 248 170 2353
Z ! 82, N ! 126 484 398 258 136 115 355 312
Z ! 100 676 828 471 126 130 118 36

mathematical method of extrapolation of known data of some
quantity to predict unknown values for it.

One can see in Table I that the rms for the FRDM, DZ, and
INM models are significantly larger than for the WS3+ and
WS4+ approaches in all the considered regions. Especially
interesting are the results for the heaviest nuclei (Z ! 100) as
all SHN are contained in it. It is clear from Table I that the three
models WS3+, WS4+, and HN should be used in predictions
for the nucleus 296118. Simultaneously, the sensitivity of the
results to the differences between them will be instructive.

One could ask the question, does a good description of
masses by a given model result in a good description of the
decay energy Qα? It seems the answer is yes, at least for even-
even nuclei, for which Qα is directly the difference between
the masses of nuclei differing in Z and N by 2. Let us test this
in the case of SHN.

Table II shows the discrepancies between calculated and
measured masses, δM , and the respective discrepancies, δQα ,
for the four heaviest nuclei, for which both these quantities are
known experimentally. The discrepancies are calculated for all
six models considered in Table I.

It is seen in Table II that a small δM (WS3+ and WS4+)
has as a consequence small δQα . Accidentally, a relatively
large δM may be accompanied by small δQα (e.g., the case of
FRDM for 264Hs and 262Sg).

One should mention that the result showing the good
accuracy of the description of Qα for SHN by the model WS4+
agrees with the results of Ref. [37], which gives a very wide
and detailed review of the accuracy of the description of SHN
by various approaches. Similar analyses are also performed in
Refs. [30,38].

The calculations of the α-decay half-lives are based on
the phenomenological model of α decay worked out in

Ref. [8]. For even-even nuclei, as considered in this Rapid
Communication, the formula for the logarithm of the α half-life
T th

α has the form

log10T
th
α (Z,N ) = aZ[Qα(Z,N )]−1/2 + bZ + c, (1)

where Qα is the α-decay energy (the ground-state to ground-
state transition). The parameters a,b,c, adjusted to experimen-
tal data for even-even nuclei [51–53], have the values

a = 1.5372, b = −0.1607, c = −36.573. (2)

Results. The results are collected in Table III. These are
mainly the α-decay energies Qα and the half-lives Tα . Both
experimental and theoretical values are given. The latter are
calculated in three variants using three nuclear-mass models:
two recent global models WS3+ [7] and WS4+ [48] and one
older, the Warsaw local model HN [49] (see also Ref. [50]). As
already mentioned earlier, the experimental values are based
on measurements described in Refs. [9–16] and reviewed in
Refs. [17,18]. The nucleus 288Fl decays by both α emission
and spontaneous fission, while the next nuclide, 284Cn, decays
only by spontaneous fission, ending the chain. The respective
experimental half-lives of spontaneous fission T

expt
sf are 0.30 s

and 38 ms, as compared with the theoretical ones, T th
sf , 2.1 ×

103 and 4.0 s, taken from Refs. [54,55].
One can see in Table III that the description of Qα(expt)

by the three variants of the calculations are of similar quality
and are quite good. The absolute values of the discrepancies,
| δQα |, between theory and experiment are smaller than
0.45 MeV for the two α decays in all three variants of the
calculations. The average (Avg.) of these values in the chain
are given in the last column of the table.

The quality of the description of the experimental Tα , noted
as Tα(expt), by theory is characterized in the table by the
factor f, which is the ratio of the larger value of T th

α and
T

expt
α to the smaller one. The average values of f for the chain

are given in the last column. It is seen that they are related
with the average values of the discrepancies | δQα |. Thus, the
experimental half-lives Tα are reproduced on the average by
the theory within a factor smaller than 33 in all three variants
of the calculations, i.e., with a reasonable accuracy. The best
description is obtained by the HN model: with the average
of | δQα | equal to 260 keV and the half-lives Tα reproduced
within an average factor equal to 1.7, i.e., with a very good
accuracy.

Figures 1 and 2 illustrate the results in graphical form. It is
seen that the α-decay energies Qα obtained within the recent
nuclear mass models WS3+ and WS4+ are close to each other

TABLE II. Discrepancies between calculated and measured masses, δM , and decay energies, δQα , both in MeV, obtained for four heaviest
nuclei, for which experimental values of both these quantities exist. Theoretical values are calculated for all six models considered in Table I.

Model FRDM FRDM DZ DZ NS NS WS3+ WS3+ WS4+ WS4+ HN HN
Nucleus δM δQα δM δQα δM δQα δM δQα δM δQα δM δQα

270Ds −2.00 −0.80 −3.06 −1.37 0.62 −0.27 0.06 −0.03 −0.06 0.08 −0.09 0.25
266Hs −1.20 −0.66 −1.69 −1.39 0.89 −0.04 0.09 0 −0.14 −0.01 −0.34 −0.30
264Hs −0.83 −0.01 −0.79 −1.41 1.18 0.36 0.08 0.05 −0.02 0.07 0.13 0
262Sg −0.54 0.01 −0.30 −0.49 0.33 0.76 0.09 0.07 −0.13 0.05 −0.04 −0.10
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TABLE III. Calculated and measured values of the α-decay
energies Qα (in MeV), α-decay and spontaneous-fission half-lives,
Tα and Tsf , for the decay chain of the nucleus 296118. Some quantities
derived from them are also given (see text).

Nucleus 296118 292Lv 288Fl Avg.

Qα(WS3+) 11.62 11.05 9.73
Qα(WS4+) 11.73 11.10 9.62
Qα(HN) 12.06 11.06 10.32
Qα(expt) 10.78 10.07
δQα(WS3+) 0.27 −0.34 0.30
δQα(WS4+) 0.32 −0.45 0.38
δQα(HN) 0.28 0.25 0.26
Tα(WS3+) 4.8 ms 27 ms 19 s
Tα(WS4+) 2.7 ms 20 ms 41 s
Tα(HN) 0.50 ms 25 ms 0.45 s 16
f(WS3+) 2.1 29 32
f(WS4+) 1.5 62 1.7
f(HN) 1.9 1.5
T expt

α 13 ms 0.66 s
T th

sf 1.3×104 s 1.4×105 s 2.1×103 s
T

expt
sf 0.30 s

even for an artificially elongated α-decay chain (seven decays),
which reflects the fact that the models are rather similar to each
other.

Figures 3 and 4, plotted in [6] for the decay properties of the
nucleus 294118, are shown for comparison. One can see that
the corresponding pictures for 296118 and 294118 are similar.
This is not specially strange, as the nuclei are close to each
other. An impressive result in Fig. 4 is the closeness of the
predictions by all three models to the experimental result for
Tα of 294118. This is a good prognostic for using the same
models to predict Tα of still heavier nuclei.

Discussion. To extend the illustration of the sensitivity of
Qα and Tα to a change of the mass model, let us take six

FIG. 1. α-decay energy Qα calculated within the models WS3+,
WS4+, and HN, as compared with the experimental values available
for the nuclei 292Lv and 288Fl.

FIG. 2. Logarithm of the α-decay half-lives Tα (given in seconds)
calculated with the use of WS3+, WS4+, and HN masses, as
compared with the experimental values available for the nuclei 292Lv
and 288Fl.

FIG. 3. Same as in Fig. 1, but for the nucleus 294118 [6].

FIG. 4. Same as in Fig. 2, but for the nucleus 294118 [6].
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even for an artificially elongated α-decay chain (seven decays),
which reflects the fact that the models are rather similar to each
other.

Figures 3 and 4, plotted in [6] for the decay properties of the
nucleus 294118, are shown for comparison. One can see that
the corresponding pictures for 296118 and 294118 are similar.
This is not specially strange, as the nuclei are close to each
other. An impressive result in Fig. 4 is the closeness of the
predictions by all three models to the experimental result for
Tα of 294118. This is a good prognostic for using the same
models to predict Tα of still heavier nuclei.

Discussion. To extend the illustration of the sensitivity of
Qα and Tα to a change of the mass model, let us take six

FIG. 1. α-decay energy Qα calculated within the models WS3+,
WS4+, and HN, as compared with the experimental values available
for the nuclei 292Lv and 288Fl.

FIG. 2. Logarithm of the α-decay half-lives Tα (given in seconds)
calculated with the use of WS3+, WS4+, and HN masses, as
compared with the experimental values available for the nuclei 292Lv
and 288Fl.

FIG. 3. Same as in Fig. 1, but for the nucleus 294118 [6].

FIG. 4. Same as in Fig. 2, but for the nucleus 294118 [6].
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TABLE I. Rms (in keV) of the discrepancies between measured
and calculated masses. The latter are obtained with the use of the
indicated models for the regions of global (Z,N ! 8), heavy (Z ! 82,
N ! 126) and very heavy (Z ! 100) nuclei. The year of publication
of each model, as well as the number of nuclei with measured masses
in each region, Nnucl, are also specified.

Model FRDM DZ INM WS3+ WS4+ HN Nnucl

Year 1995 1995 2012 2010 2014 2001

Z,N ! 8 654 394 362 248 170 2353
Z ! 82, N ! 126 484 398 258 136 115 355 312
Z ! 100 676 828 471 126 130 118 36

mathematical method of extrapolation of known data of some
quantity to predict unknown values for it.

One can see in Table I that the rms for the FRDM, DZ, and
INM models are significantly larger than for the WS3+ and
WS4+ approaches in all the considered regions. Especially
interesting are the results for the heaviest nuclei (Z ! 100) as
all SHN are contained in it. It is clear from Table I that the three
models WS3+, WS4+, and HN should be used in predictions
for the nucleus 296118. Simultaneously, the sensitivity of the
results to the differences between them will be instructive.

One could ask the question, does a good description of
masses by a given model result in a good description of the
decay energy Qα? It seems the answer is yes, at least for even-
even nuclei, for which Qα is directly the difference between
the masses of nuclei differing in Z and N by 2. Let us test this
in the case of SHN.

Table II shows the discrepancies between calculated and
measured masses, δM , and the respective discrepancies, δQα ,
for the four heaviest nuclei, for which both these quantities are
known experimentally. The discrepancies are calculated for all
six models considered in Table I.

It is seen in Table II that a small δM (WS3+ and WS4+)
has as a consequence small δQα . Accidentally, a relatively
large δM may be accompanied by small δQα (e.g., the case of
FRDM for 264Hs and 262Sg).

One should mention that the result showing the good
accuracy of the description of Qα for SHN by the model WS4+
agrees with the results of Ref. [37], which gives a very wide
and detailed review of the accuracy of the description of SHN
by various approaches. Similar analyses are also performed in
Refs. [30,38].

The calculations of the α-decay half-lives are based on
the phenomenological model of α decay worked out in

Ref. [8]. For even-even nuclei, as considered in this Rapid
Communication, the formula for the logarithm of the α half-life
T th

α has the form

log10T
th
α (Z,N ) = aZ[Qα(Z,N )]−1/2 + bZ + c, (1)

where Qα is the α-decay energy (the ground-state to ground-
state transition). The parameters a,b,c, adjusted to experimen-
tal data for even-even nuclei [51–53], have the values

a = 1.5372, b = −0.1607, c = −36.573. (2)

Results. The results are collected in Table III. These are
mainly the α-decay energies Qα and the half-lives Tα . Both
experimental and theoretical values are given. The latter are
calculated in three variants using three nuclear-mass models:
two recent global models WS3+ [7] and WS4+ [48] and one
older, the Warsaw local model HN [49] (see also Ref. [50]). As
already mentioned earlier, the experimental values are based
on measurements described in Refs. [9–16] and reviewed in
Refs. [17,18]. The nucleus 288Fl decays by both α emission
and spontaneous fission, while the next nuclide, 284Cn, decays
only by spontaneous fission, ending the chain. The respective
experimental half-lives of spontaneous fission T

expt
sf are 0.30 s

and 38 ms, as compared with the theoretical ones, T th
sf , 2.1 ×

103 and 4.0 s, taken from Refs. [54,55].
One can see in Table III that the description of Qα(expt)

by the three variants of the calculations are of similar quality
and are quite good. The absolute values of the discrepancies,
| δQα |, between theory and experiment are smaller than
0.45 MeV for the two α decays in all three variants of the
calculations. The average (Avg.) of these values in the chain
are given in the last column of the table.

The quality of the description of the experimental Tα , noted
as Tα(expt), by theory is characterized in the table by the
factor f, which is the ratio of the larger value of T th

α and
T

expt
α to the smaller one. The average values of f for the chain

are given in the last column. It is seen that they are related
with the average values of the discrepancies | δQα |. Thus, the
experimental half-lives Tα are reproduced on the average by
the theory within a factor smaller than 33 in all three variants
of the calculations, i.e., with a reasonable accuracy. The best
description is obtained by the HN model: with the average
of | δQα | equal to 260 keV and the half-lives Tα reproduced
within an average factor equal to 1.7, i.e., with a very good
accuracy.

Figures 1 and 2 illustrate the results in graphical form. It is
seen that the α-decay energies Qα obtained within the recent
nuclear mass models WS3+ and WS4+ are close to each other

TABLE II. Discrepancies between calculated and measured masses, δM , and decay energies, δQα , both in MeV, obtained for four heaviest
nuclei, for which experimental values of both these quantities exist. Theoretical values are calculated for all six models considered in Table I.

Model FRDM FRDM DZ DZ NS NS WS3+ WS3+ WS4+ WS4+ HN HN
Nucleus δM δQα δM δQα δM δQα δM δQα δM δQα δM δQα

270Ds −2.00 −0.80 −3.06 −1.37 0.62 −0.27 0.06 −0.03 −0.06 0.08 −0.09 0.25
266Hs −1.20 −0.66 −1.69 −1.39 0.89 −0.04 0.09 0 −0.14 −0.01 −0.34 −0.30
264Hs −0.83 −0.01 −0.79 −1.41 1.18 0.36 0.08 0.05 −0.02 0.07 0.13 0
262Sg −0.54 0.01 −0.30 −0.49 0.33 0.76 0.09 0.07 −0.13 0.05 −0.04 −0.10
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The half-life Tα of the nucleus 296118 is predicted to be larger than needed (around 1 µs) for its observation. 
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]

MC
ij = !2

2q̇i q̇j

∑

αβ

F i∗
αβF

j
αβ + F i

αβF
j∗
αβ

Eα + Eβ

, (8)

where

F i

q̇i

= U † ∂ρ

∂qi

V ∗ + U † ∂κ

∂qi

U ∗ − V † ∂ρ
∗

∂qi

U ∗ − V † ∂κ∗

∂qi

V ∗ .

(9)

U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
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2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]

MC
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where
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U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
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√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
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where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]

MC
ij = !2

2q̇i q̇j

∑

αβ

F i∗
αβF

j
αβ + F i

αβF
j∗
αβ

Eα + Eβ

, (8)

where

F i

q̇i

= U † ∂ρ

∂qi

V ∗ + U † ∂κ

∂qi

U ∗ − V † ∂ρ
∗

∂qi

U ∗ − V † ∂κ∗

∂qi

V ∗ .

(9)

U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
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2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]
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∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]

MC
ij = !2

2q̇i q̇j

∑

αβ

F i∗
αβF

j
αβ + F i

αβF
j∗
αβ

Eα + Eβ

, (8)

where

F i

q̇i

= U † ∂ρ

∂qi

V ∗ + U † ∂κ

∂qi

U ∗ − V † ∂ρ
∗

∂qi

U ∗ − V † ∂κ∗

∂qi

V ∗ .

(9)

U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]
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∂qi

U ∗ − V † ∂ρ
∗

∂qi

U ∗ − V † ∂κ∗

∂qi

V ∗ .
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U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.
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PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
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2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj
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, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]
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U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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In recent studies dynamic fission paths determined with
the least-action principle have been investigated using the
Hartree-Fock-Bogoliubov (HFB) framework based on the
Barcelona-Catania-Paris-Madrid [20], Gogny D1M [20], and
Skyrme SkM∗ [21,22] energy density functionals. The pairing
gap parameter has been included as a dynamical variable in
the collective space. As a result, an enhancement of pairing
correlations along fission paths and the speedup of SF have
been predicted. It has also been noted that pairing fluctuations
can restore axial symmetry in the fissioning system [21,22],
although the triaxial quadrupole degree of freedom is known
to play an important role around the inner and even outer
barriers both along the static fission path for actinide nuclei
(Ref. [23] and references therein), and in the dynamic case
when the influence of pairing fluctuations is not taken into
account [9,10].

In Ref. [10] we have used the multidimensionally-
constrained relativistic Hartree-Bogoliubov (MDC-RHB) to
analyze effects of triaxial and octupole deformations, as well
as approximations to the collective inertia, on the symmetric
and asymmetric spontaneous fission dynamics. Based on the
framework of relativistic energy density functionals, and using
as examples 264Fm and 250Fm, our analysis has shown that
the action integrals and, consequently, the half-lives crucially
depend on the approximation used to calculate the effective
collective inertia along the fission path. While the perturbative
cranking approach underestimates the effects of structural
changes at the level crossings, the nonperturbative collective
mass is characterized by the occurrence of sharp peaks on
the surface of collective coordinates, which can be related to
single-particle level crossings near the Fermi surface, and this
enhances the effective inertia.

In this work we continue to explore the dynamics of SF of
264Fm and 250Fm but, in addition to shape deformation degrees
of freedom, pairing correlations are included in the space
of collective coordinates. The dynamic (least-action) fission
paths are determined in three-dimensional (3D) collective
spaces, and the corresponding SF half-lives are computed.
Since calculations in the 3D collective space with the MDC-
RHB model are computationally very demanding, here we em-
ploy the MDC-RMF model in which the pairing correlations
are treated in the BCS approximation. The collective inertia
tensor is calculated using the self-consistent relativistic mean-
field (RMF) solutions and applying the ATDHFB expressions
in the nonperturbative cranking approximation. The article
is organized as follows: the method for calculating dynamic
fission paths is described in Sec. II; numerical details of the
calculation, results for the deformation energy landscapes,
collective inertias, minimum-action fission paths, and the
corresponding half-lives are discussed in Sec. III; and Sec. IV
contains a short summary of the main results.

II. METHOD FOR CALCULATING DYNAMIC
FISSION PATHS

RMF-based models present a particular implementation
of the relativistic nuclear energy density functional (EDF)
framework, which has become a standard method for studies of
the structure of medium-heavy and heavy nuclei [24–29]. As in

our previous study of spontaneous fission [10], here we employ
the point-coupling relativistic EDF DD-PC1 [30]. Starting
from microscopic nucleon self-energies in nuclear matter, and
empirical global properties of the nuclear matter equation of
state, the coupling parameters of DD-PC1 were fine-tuned
to the experimental masses of a set of 64 deformed nuclei
in the mass regions A ≈ 150–180 and A ≈ 230–250. The
functional has been further tested in a number of mean-field
and beyond-mean-field calculations in different mass regions.

For a quantitative description of open-shell nuclei it is nec-
essary to consider also pairing correlations. In the MDC-RMF
model, pairing is taken into account in the BCS approximation
and here, as in Ref. [10], we use a separable pairing force of
finite range:

V (r1,r2,r′
1,r

′
2) = G0δ(R − R′)P (r)P (r′) 1

2 (1 − P σ ), (1)

where R = (r1 + r2)/2 and r = r1 − r2 denote the center-of-
mass and the relative coordinates, respectively, and P (r) reads

P (r) = 1
(4πa2)3/2

e−r2/4a2
. (2)

The two parameters G0 = −738 MeV fm−3 and a = 0.644
fm [31] have been adjusted to reproduce the density de-
pendence of the pairing gap in nuclear matter at the Fermi
surface calculated with the D1S parametrization of the Gogny
force [32].

The energy landscape is obtained in a self-consistent
mean-field calculation with constraints on mass multipole
moments Qλµ = rλYλµ, and the particle-number dispersion
operator %N̂2 = N̂2 − ⟨N̂⟩2 [33]. In the present analysis the
Routhian is therefore defined as

E′ = ERMF +
∑

λµ

1
2
CλµQλµ + λ2%N̂2 , (3)

where ERMF denotes the total RMF energy including static
BCS pairing correlations. The amount of dynamic pairing
correlations can be controlled by the Lagrange multipliers
λ2τ (τ = n,p) [21,34,35]. As it has recently been shown in
a similar study of Ref. [21], the isovector pairing degree of
freedom appears to play a far less important role in spontaneous
fission as compared to isoscalar dynamic pairing. Therefore,
the computational task can be greatly reduced by considering
only dynamic pairing with λ2n = λ2p ≡ λ2 as a collective
coordinate.

The nuclear shape is parametrized by the deformation
parameters

βλµ = 4π

3ARλ
⟨Qλµ⟩. (4)

The shape is assumed to be invariant under the exchange
of the x and y axes and all deformations βλµ with even
µ can be included simultaneously. The deformed RMF
equations are solved by an expansion in the axially deformed
harmonic oscillator (ADHO) basis [36]. In the present study
of transactinide nuclei, calculations have been performed in an
ADHO basis truncated to Nf = 16 oscillator shells. For details
of the MDC-RMF model we refer the reader to Ref. [23].
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FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
minimum-action paths connect the inner turning point and the fission
isomer.

The projections of the 3D dynamic path determined in the
(β20,β22,λ2) collective space are shown in Fig. 6 (solid curves).
The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
minimum-action paths connect the inner turning point and the fission
isomer.

The projections of the 3D dynamic path determined in the
(β20,β22,λ2) collective space are shown in Fig. 6 (solid curves).
The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)

044315-6



The effective inertia and collective 
potential depend on the strength of 
pairing correlations: 

M ⇠ ��2 V ⇠ (���0)
2

To reduce the collective inertia, the fissioning nucleus favors an increase in pairing over the static self-consistent 
solution, at the expense of a larger potential energy. Because of pairing fluctuations, the corresponding fission 
action integral is reduced and, consequently, the half-life is orders of magnitude shorter than in the case 
without the dynamic pairing degree of freedom. 

Dynamical coupling between shape and pairing degrees of freedom 
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FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
minimum-action paths connect the inner turning point and the fission
isomer.

The projections of the 3D dynamic path determined in the
(β20,β22,λ2) collective space are shown in Fig. 6 (solid curves).
The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
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The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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FIG. 3. Projections of the 3D dynamic path (solid curves) for the
spontaneous fission of 264Fm on the (β20,β22) plane for λ2 = 0 (a),
and the (β20,λ2) plane for β22 = 0 (b), calculated using the dynamic
programming method. The dash-dot-dot curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations.

because of the enhancement of pairing, the effective collective
inertia is reduced ∝ #−2. These two effects determine the
minimum-action path in Eq. (5). The projections of the 3D
spontaneous fission path of 264Fm on the (β20,β22) plane and on
the (β20,λ2) plane are shown in Figs. 3(a) and 3(b), respectively
(solid curves). The two-dimensional (2D) path calculated
without pairing fluctuations (λ2 = 0) is also included for
comparison (dash-dot curve). It is very interesting to note that
while the 2D dynamic path detours the axial barrier through
the triaxial region, the extension of the collective space by the
pairing degree of freedom fully restores the axial symmetry
of the fissioning system. The evolution of the pairing strength
along the axially symmetric fission path is shown in Fig. 3(b).
One notices how, in order to reduce the collective inertia, the
fissioning nucleus favors an increase in pairing over the static
self-consistent solution, at the expense of a larger potential
energy. Because of pairing fluctuations, the corresponding
fission action integral is reduced by about 5 units with respect
to the 2D path and, consequently, the predicted half-life is
almost five orders of magnitude shorter than the 2D case
without the dynamic pairing degree of freedom (see Table I).
This result can directly be compared to the one obtained
using the the Skyrme energy density functional SkM* and a
density-dependent pairing interaction (see Fig. 3 of Ref. [21]).
In the latter case triaxiality is reduced along the 3D fission

TABLE I. Action integrals and SF half-lives of 264Fm and 250Fm
that correspond to the fission paths displayed in Figs. 3 and 8.

Nucleus Path S(L) log10(T1/2/yr)

264Fm 2D 19.58 − 11.03
3D 14.15 − 15.75

250Fm 2D 32.09 − 0.16
3D 22.33 − 8.64

path because of dynamic pairing fluctuations, but the full axial
symmetry is not restored. This is probably because in the 2D
calculation with the Skyrme functional the triaxial coordinate
reduces the fission barrier height by more than 4 MeV (less
than 3 MeV in the present calculation with DD-PC1). A
combination of a higher axially symmetric fission barrier
and/or possibly weaker pairing, prevents the full restoration of
axial symmetry along the 3D fission path of 264Fm. In the case
of 240Pu, on the other hand, for which the Skyrme functional
SkM* predicts an energy gain on the first barrier resulting from
triaxiality of only 2 MeV, the inclusion of pairing fluctuations
leads to a full restoration of axial symmetry along the 3D
fission path between the equilibrium ground state and the
superdeformed fission isomer (see Fig. 5 of Ref. [21]).

B. Asymmetric fission of 250Fm

In the second example we explore the interplay between
reflection-asymmetric shapes and pairing degrees of freedom,
and analyze the asymmetric spontaneous fission of 250Fm [48].
Since the triaxial degree of freedom is particularly important
around the inner fission barrier, and the complete calculation
in the four-dimensional collective space (β20, β22, β30, λ2) is
computationally too demanding, we first analyze the path that
connects the mean-field equilibrium (ground) state and the
isomeric fission state calculated in the (β20,β22,λ2) collective
space. The collective potential energy surfaces of 250Fm in the
(β20,β22) plane for λ2 = 0 and in the (β20,λ2) plane for β22 = 0
are plotted in Figs. 4(a) and 4(b), respectively. The inclusion of
the triaxial degree of freedom reduces the inner fission barrier
height by ≈2 MeV, and this effect is similar in magnitude to
the case of 264Fm considered in the previous section. The lower
panel displays the projection of the potential energy calculated
in the 3D collective space on the (β20,λ2) plane and we notice
that for β22 = 0, the energy increases monotonically with λ2
at each value of the axial deformation parameter β20, with a
pronounced fission barrier around β20 ≈ 0.55.

The deformation dependence of the nonperturbative collec-
tive inertia tensor is displayed in Fig. 5, where we plot the cubic
root determinants |MC |1/3 in the (β20,β22) and (β20,λ2) planes.
The global deformation dependence of |MC |1/3 is similar to
the one calculated for 264Fm and shown in Fig. 2, that is,
|MC |1/3 displays strong variations in the (β20,β22) plane for
λ2 = 0, and pronounced peaks generated by single-particle
level crossings near the Fermi surface appear in the region of
the fission barrier. By including the dynamic pairing degree of
freedom, one finds that |MC |1/3 decreases as λ2 increases at
each deformation β20.
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The predicted SF path strongly depends on the choice of the collective inertia!

➠calculation of the full ATDHFB inertia tensor! 

➠dynamical effects caused by the competition between triaxial and reflection asymmetric 

degrees of freedom, and pairing correlations.
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FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
minimum-action paths connect the inner turning point and the fission
isomer.

The projections of the 3D dynamic path determined in the
(β20,β22,λ2) collective space are shown in Fig. 6 (solid curves).
The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
minimum-action paths connect the inner turning point and the fission
isomer.

The projections of the 3D dynamic path determined in the
(β20,β22,λ2) collective space are shown in Fig. 6 (solid curves).
The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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✔ unified microscopic description of the structure of stable and nuclei far from stability, and 
extrapolations toward the region of superheavy nuclei.

Nuclear Energy Density Functionals

✔ when extended to take into account collective correlations, EDFs describe deformations, 
shape-coexistence and shape transition phenomena associated with shell evolution. 
Separation energies, Qα-values, excitation energies of band-heads in odd-A nuclei, excitation 
energies of high-K isomers, and rotational spectra can be directly compared to data.

✔ Time-dependent NDFT ➠ large amplitude collective motion, spontaneous fission dynamics


