Shapes and a-decay of superheavy nuclei

Dario Vretenar University of Zagreb

Structure models for superheavy nuclei

Macro-micro models

The microscopic part (single-particle potential) is adjusted to empirical low-energy single-particle nuclear spectra, and a macroscopic energy formula is constructed separately to reproduce exp. masses.

Self-consistent models based on Energy Density Functionals

- adjusted to selected bulk nuclear properties, e.g. masses, charge radii, and empirical properties of homogeneous nuclear matter.
- ➡ universal theory framework that can be applied to nuclei over the entire mass table.
- ➡ important for extrapolations to mass regions where only few data are available.

Extrapolation to SHE

EDFs and the corresponding structure models are applied to a region far from those in which their parameters are determined by data in large uncertainty in model predictions?

Much higher density of single-particle states close to the Fermi energy the evolution of deformed shells with nucleon number will have a more pronounced effect on energy gaps, separation energies, Qa-values, band-heads in odd-A nuclei, K-isomers ...

Much stronger competition between the attractive short-range nuclear interaction and the long-range electrostatic repulsion impact on the Coulomb, surface and isovector energies! Shape transitions! Exotic shapes!

Equilibrium quadrupole deformation parameters β20 of even–even SH nuclei

Evolution of shapes

Equilibrium quadrupole deformation parameters β_{20} for the Z = 114, 120 and 126 isotopic chains: macro-micro and mean-field models.

Importance of collective correlations that arise from restoration of broken symmetries and fluctuations of collective variables!

P.-H. Heenen et al. / Nuclear Physics A 2015

Deformation energy curves (SLy4 EDF): projection on particle numbers only (black), and projection on angular momentum I = 0 (blue). Collective wave function, energy and mean deformation of the three lowest 0⁺ states.

Collective Hamiltonian

Prog. Part. Nucl. Phys. **66**, 519 (2011). Phys. Rev. C **79**, 034303 (2009).

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom:

$$\begin{split} H_{\rm coll} &= \mathcal{T}_{\rm vib}(\beta,\gamma) + \mathcal{T}_{\rm rot}(\beta,\gamma,\Omega) + \mathcal{V}_{\rm coll}(\beta,\gamma) \\ \mathcal{T}_{\rm vib} &= \frac{1}{2} B_{\beta\beta} \dot{\beta}^2 + \beta B_{\beta\gamma} \dot{\beta} \dot{\gamma} + \frac{1}{2} \beta^2 B_{\gamma\gamma} \dot{\gamma}^2 \\ \mathcal{T}_{\rm rot} &= \frac{1}{2} \sum_{k=1}^3 \mathcal{I}_k \omega_k^2 \end{split}$$

The dynamics of the collective Hamiltonian is determined by: the self-consistent collective potential, the three mass parameters: $B_{\beta\beta}$, $B_{\beta\gamma}$, $B_{\gamma\gamma}$, and the three moments of inertia I_k , functions of the intrinsic deformations β and γ .

... collective eigenfunction:

$$\Psi^{IM}_{\alpha}(\beta,\gamma,\Omega) = \sum_{K \in \Delta I} \psi^{I}_{\alpha K}(\beta,\gamma) \Phi^{I}_{MK}(\Omega)$$

Self-consistent RHB triaxial energy maps of 254 No and 256 Rf isotopes in the $\beta-\gamma$ plane ($0 \le \gamma \le 60^{\circ}$). DD-PC1 energy density functional and a separable pairing force of finite range.

Transactinides

Transactinides

Energy gaps are small! Shape stabilization depends on how fast the shell structures vary with deformation!

Neutron and proton shell gaps

²⁷⁰Hs → deformed "doubly magic" nucleus

Triaxial deformation energy maps

Triaxial deformation energy maps

The ratio R4/2 of excitation energies of the yrast states 4_{1}^{+} and 2_{1}^{+} as a function of the neutron number.

Shape-phase transitions and critical-point phenomena in the region of superheavy nuclei

Two-quasiparticle isomers

Axially deformed nuclei 💮 two-quasiparticle K-isomers

K-forbidden transitions information on the single-nucleon states, pairing gaps, and residual interactions.

High-excitation energy of K-isomers 🖛 evidence for an axially deformed shell-closure at N=162

PHYSICAL REVIEW C 91, 034324 (2015)

α-decay

...principal decay channel of the heaviest nuclei:

 $Q_{\alpha}(Z, N) = M(Z, N) - M(Z - 2, N - 2) - M(2, 2)$ = B(Z - 2, N - 2) - B(Z, N) + B(2, 2),

log₁₀ Ta values calculated for even-even SH nuclei from the HFB SkM* Qa values

$$\log_{10} T_{\alpha}^{\text{th}}(Z, N) = a Z [Q_{\alpha}(Z, N)]^{-1/2} + b Z + c,$$

$$a = 1.5372, \quad b = -0.1607, \quad c = -36.573$$

Theoretical predictions for the nucleus ²⁹⁶118

A. SOBICZEWSKI

PHYSICAL REVIEW C 94, 051302(R) (2016)

TABLE I. Rms (in keV) of the discrepancies between measured and calculated masses. The latter are obtained with the use of the indicated models for the regions of global $(Z, N \ge 8)$, heavy $(Z \ge 82, N \ge 126)$ and very heavy $(Z \ge 100)$ nuclei. The year of publication of each model, as well as the number of nuclei with measured masses in each region, N_{nucl} , are also specified.

Model Year	FRDM 1995	DZ 1995	INM 2012	WS3+ 2010	WS4+ 2014	HN 2001	N _{nucl}
$\overline{Z,N \geqslant 8}$	654	394	362	248	170		2353
$Z \ge 82, N \ge 126$	484	398	258	136	115	355	312
$Z \ge 100$	676	828	471	126	130	118	36

TABLE III. Calculated and measured values of the α -decay energies Q_{α} (in MeV), α -decay and spontaneous-fission half-lives, T_{α} and $T_{\rm sf}$, for the decay chain of the nucleus ²⁹⁶118. Some quantities derived from them are also given (see text).

Nucleus	²⁹⁶ 118	²⁹² Lv	²⁸⁸ Fl	Avg.
$Q_{\alpha}(WS3+)$	11.62	11.05	9.73	
$Q_{\alpha}(WS4+)$	11.73	11.10	9.62	
$Q_{\alpha}(\text{HN})$	12.06	11.06	10.32	
$Q_{\alpha}(\text{expt})$		10.78	10.07	
$\delta Q_{\alpha}(WS3+)$		0.27	-0.34	0.30
δQ_{α} (WS4+)		0.32	-0.45	0.38
$\delta Q_{\alpha}(\text{HN})$		0.28	0.25	0.26
$T_{\alpha}(WS3+)$	4.8 ms	27 ms	19 s	
$T_{\alpha}(WS4+)$	2.7 ms	20 ms	41 s	
$T_{\alpha}(\text{HN})$	0.50 ms	25 ms	0.45 s	16
<i>f</i> (WS3+)		2.1	29	32
<i>f</i> (WS4+)		1.5	62	1.7
f(HN)		1.9	1.5	
T_{α}^{expt}		13 ms	0.66 s	
$T_{\rm sf}^{\rm th}$	1.3×10^4 s	1.4×10^5 s	2.1×10^3 s	
$T_{\rm sf}^{\rm expt}$			0.30 s	

The half-life Ta of the nucleus ²⁹⁶118 is predicted to be larger than needed (around 1 µs) for its observation.

Spontaneous fission

... penetration probability:

$$P = \frac{1}{1 + \exp[2S(L)]} \qquad T_{1/2} = \ln 2/(nP)$$

 $S(L) = \int_{s_{\rm in}}^{s_{\rm out}} \frac{1}{\hbar} \sqrt{2\mathcal{M}_{\rm eff}(s)[V_{\rm eff}(s) - E_0]} \, ds$

 \Rightarrow fission action integral:

The effective inertia and collective potential calculated in a SCMF approach based on EDFs.

$$\mathcal{M}_{\rm eff}(s) = \sum_{ij} \mathcal{M}_{ij} \frac{dq_i}{ds} \frac{dq_j}{ds}$$
 colective coordinates

The inertia tensor is computed using the ATDHFB method in the nonperturbative cranking approximation:

$$\mathcal{M}_{ij}^{C} = \frac{\hbar^2}{2\dot{q}_i \dot{q}_j} \sum_{\alpha\beta} \frac{F_{\alpha\beta}^{i*} F_{\alpha\beta}^{j} + F_{\alpha\beta}^{i} F_{\alpha\beta}^{j*}}{E_{\alpha} + E_{\beta}}$$

$$\frac{F^{i}}{\dot{q}_{i}} = U^{\dagger} \frac{\partial \rho}{\partial q_{i}} V^{*} + U^{\dagger} \frac{\partial \kappa}{\partial q_{i}} U^{*} - V^{\dagger} \frac{\partial \rho^{*}}{\partial q_{i}} U^{*} - V^{\dagger} \frac{\partial \kappa^{*}}{\partial q_{i}} V^{*}$$

Asymmetric fission of ²⁵⁰Fm

ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU PHYSICAL REVIEW C **93**, 044315 (2016)

Dynamical coupling between shape and pairing degrees of freedom

The effective inertia and collective potential depend on the strength of pairing correlations:

$$\mathcal{M} \sim \Delta^{-2} \qquad V \sim (\Delta - \Delta_0)^2$$

To reduce the collective inertia, the fissioning nucleus solution, at the expense of a larger potential energy action integral is reduced and, consequently, the how without the dynamic pairing degree of freedom. airing ove uations, t ude short

|--|

Nucleus	Path	S(L)	$\log_{10}(T_{1/2}/{\rm yr})$
²⁶⁴ Fm	2D	19.58	- 11.03
	3D	14.15	- 15.75
²⁵⁰ Fm	2D	32.09	-0.16
	3D	22.33	- 8.64

ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU

PHYSICAL REVIEW C 93, 044315 (2016)

Nuclear Energy Density Functionals

✓ unified microscopic description of the structure of stable and nuclei far from stability, and extrapolations toward the region of superheavy nuclei.

✓ when extended to take into account collective correlations, EDFs describe deformations, shape-coexistence and shape transition phenomena associated with shell evolution.
Separation energies, Q_a-values, excitation energies of band-heads in odd-A nuclei, excitation energies of high-K isomers, and rotational spectra can be directly compared to data.

✓ Time-dependent NDFT → large amplitude collective motion, spontaneous fission dynamics