Shapes and a-decay of superheavy nuclei

Dario Vretenar

University of Zagreb

Structure models for superheavy nuclei

Macro-micro models
The microscopic part (single-particle potential) is adjusted to empirical low-energy single-particle nuclear spectra, and a macroscopic energy formula is constructed separately to reproduce exp. masses.

Self-consistent models based on Energy Density Functionals
\Rightarrow adjusted to selected bulk nuclear properties, e.g. masses, charge radii, and empirical properties of homogeneous nuclear matter.
\boldsymbol{m} universal theory framework that can be applied to nuclei over the entire mass table.
$\boldsymbol{\epsilon}$ important for extrapolations to mass regions where only few data are available.

Extrapolation to SHE

EDFs and the corresponding structure models are applied to a region far from those in which their parameters are determined by data large uncertainty in model predictions?

Much higher density of single-particle states close to the Fermi energy deformed shells with nucleon number will have a more pronounced effect on energy gaps, separation energies, Qa-values, band-heads in odd-A nuclei, K-isomers ...

Much stronger competition between the attractive short-range nuclear interaction and the long-range electrostatic repulsion impact on the Coulomb, surface and isovector energies! Shape transitions! Exotic shapes!

Equilibrium quadrupole deformation parameters $\beta 20$ of even-even SH nuclei

Evolution of shapes

Equilibrium quadrupole deformation parameters β_{20} for the $Z=114,120$ and 126 isotopic chains: macro-micro and mean-field models.

Importance of collective correlations that arise from restoration of broken symmetries and fluctuations of collective variables!

Deformation energy curves (SLy4 EDF): projection on particle numbers only (black), and projection on angular momentum I = 0 (blue). Collective wave function, energy and mean deformation of the three lowest 0^{+}states.

Collective Hamiltonian

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom:

$$
\begin{gathered}
H_{\text {coll }}=\mathcal{T}_{\text {vib }}(\beta, \gamma)+\mathcal{T}_{\text {rot }}(\beta, \gamma, \Omega)+\mathcal{V}_{\text {coll }}(\beta, \gamma) \\
\mathcal{T}_{\text {vib }}=\frac{1}{2} B_{\beta \beta} \dot{\beta}^{2}+\beta B_{\beta \gamma} \dot{\beta} \dot{\gamma}+\frac{1}{2} \beta^{2} B_{\gamma \gamma} \dot{\gamma}^{2} \\
\mathcal{T}_{\text {rot }}=\frac{1}{2} \sum_{k=1}^{3} \mathcal{I}_{k} \omega_{k}^{2}
\end{gathered}
$$

The dynamics of the collective Hamiltonian is determined by: the self-consistent collective potential, the three mass parameters: $B_{\beta \beta}, B_{\beta \gamma}, B_{y y}$, and the three moments of inertia l_{k}, functions of the intrinsic deformations β and γ.
... collective eigenfunction:

$$
\Psi_{\alpha}^{I M}(\beta, \gamma, \Omega)=\sum_{K \in \Delta I} \psi_{\alpha K}^{I}(\beta, \gamma) \Phi_{M K}^{I}(\Omega)
$$

Self-consistent RHB triaxial energy maps of 254 No and 256 Rf isotopes in the $\beta-\gamma$ plane ($0 \leq \gamma \leq 60^{\circ}$). DD-PCl energy density functional and a separable pairing force of finite range.

Transactinides

Transactinides

$2 n$ separation energies

Energy gaps are small! Shape stabilization depends on how fast the shell structures vary with deformation!

Neutron and proton shell gaps

Triaxial deformation energy maps

The ratio R4/2 of excitation energies of the yrast states 4^{+}, and 2^{+}, as a function of the neutron number.

The ratio $\mathrm{B}\left(\mathrm{E} 2 ; 4^{+}{ }_{1} \rightarrow 2^{+} 1\right.$)/B(E2; $2^{+}{ }_{1} \rightarrow 0^{+} 1$) as a function of the neutron number.

Shape-phase transitions and critical-point phenomena in the region of superheavy nuclei

The ratio $R 4 / 2$ of excitation energies of the levels $4^{+} 1$ and $2^{+} 1$ (a), the ratio of reduced transition probabilities $R=B\left(E 2 ; 4^{+}{ }_{1} \rightarrow 2^{+} 1\right) /$ $\mathrm{B}\left(\mathrm{E} 2 ; 2^{+}{ }_{1} \rightarrow \mathrm{O}^{+} 1\right.$) (b), and the excitation energy of the level $\mathrm{O}^{+} 2$ (c), in No isotopes as functions of the number of neutrons.

Two-quasiparticle isomers

Axially deformed nuclei two-quasiparticle K-isomers

K-forbidden transitions information on the single-nucleon states, pairing gaps, and residual interactions.

PHYSICAL REVIEW C 91, 034324 (2015)

High-excitation energy of K-isomers evidence for an axially deformed shell-closure at N=162
PHYSICAL REVIEW C 91, 034324 (2015)

α-decay

...principal decay channel of the heaviest nuclei:

$$
\begin{aligned}
Q_{\alpha}(Z, N) & =M(Z, N)-M(Z-2, N-2)-M(2,2) \\
& =B(Z-2, N-2)-B(Z, N)+B(2,2),
\end{aligned}
$$

Macro-micro Woods-Saxon (WS)

140144148152156160164168172176180184188 Neutron Number N
$\log _{10}$ Ta values calculated for even-even SH nuclei from the HFB SkM* Qa values

$$
\log _{10} T_{\alpha}^{\mathrm{th}}(Z, N)=a Z\left[Q_{\alpha}(Z, N)\right]^{-1 / 2}+b Z+c
$$

$$
a=1.5372, \quad b=-0.1607, \quad c=-36.573
$$

Theoretical predictions for the nucleus ${ }^{296}$ I 18

A. SOBICZEWSKI

PHYSICAL REVIEW C 94, 051302(R) (2016)
TABLE I. Rms (in keV) of the discrepancies between measured and calculated masses. The latter are obtained with the use of the indicated models for the regions of global ($Z, N \geqslant 8$), heavy ($Z \geqslant 82$, $N \geqslant 126)$ and very heavy $(Z \geqslant 100)$ nuclei. The year of publication of each model, as well as the number of nuclei with measured masses in each region, $N_{\text {nucl }}$, are also specified.

Model	FRDM	DZ	INM	WS3+	WS4+	HN	$N_{\text {nucl }}$
Year	1995	1995	2012	2010	2014	2001	
$Z, N \geqslant 8$	654	394	362	248	170		2353
$Z \geqslant 82, N \geqslant 126$	484	398	258	136	115	355	312
$Z \geqslant 100$	676	828	471	126	130	118	36

TABLE III. Calculated and measured values of the α-decay energies Q_{α} (in MeV), α-decay and spontaneous-fission half-lives, T_{α} and T_{sf}, for the decay chain of the nucleus ${ }^{296} 118$. Some quantities derived from them are also given (see text).

Nucleus	${ }^{296} 118$	${ }^{292} \mathrm{Lv}$	${ }^{288} \mathrm{Fl}$	Avg.
$Q_{\alpha}(\mathrm{WS} 3+)$	11.62	11.05	9.73	
$Q_{\alpha}(\mathrm{WS} 4+)$	11.73	11.10	9.62	
$Q_{\alpha}(\mathrm{HN})$	12.06	11.06	10.32	
$Q_{\alpha}(\mathrm{expt})$		10.78	10.07	
$\delta Q_{\alpha}(\mathrm{WS} 3+)$		0.27	-0.34	0.30
$\delta Q_{\alpha}(\mathrm{WS} 4+)$		0.32	-0.45	0.38
$\delta Q_{\alpha}(\mathrm{HN})$		0.28	0.25	0.26
$T_{\alpha}(\mathrm{WS} 3+)$	4.8 ms	27 ms	19 s	
$T_{\alpha}(\mathrm{WS} 4+)$	2.7 ms	20 ms	41 s	
$T_{\alpha}(\mathrm{HN})$	0.50 ms	25 ms	0.45 s	16
$f(\mathrm{WS}+)$		2.1	29	32
$f(\mathrm{WS} 4+)$		1.5	62	1.7
$f(\mathrm{HN})$		1.9	1.5	
$T_{\alpha}^{\text {expt }}$		13 ms	0.66 s	
$T_{\text {sf }}^{\text {th }}$			$2.1 \times 10^{3} \mathrm{~s}$	
$T_{\mathrm{sf}}^{\text {expt }}$	$1.3 \times 10^{4} \mathrm{~s}$	$1.4 \times 10^{5} \mathrm{~s}$	0.30 s	

The half-life Ta of the nucleus ${ }^{296} 118$ is predicted to be larger than needed (around $1 \mu \mathrm{~S}$) for its observation.

Spontaneous fission

... penetration probability:

$$
P=\frac{1}{1+\exp [2 S(L)]} \quad T_{1 / 2}=\ln 2 /(n P)
$$

\Rightarrow fission action integral:

$$
S(L)=\int_{s_{\text {in }}}^{s_{\mathrm{out}}} \frac{1}{\hbar} \sqrt{2 \mathcal{M}_{\mathrm{eff}}(s)\left[V_{\mathrm{eff}}(s)-E_{0}\right]} d s
$$

The effective inertia and collective potential calculated in a SCMF approach based on EDFs.

$$
\mathcal{M}_{\mathrm{eff}}(s)=\sum_{i j} \mathcal{M}_{i j} \frac{d q_{i}}{d s} \frac{d q_{j}}{d s} \text { colective coordinates }
$$

The inertia tensor is computed using the ATDHFB method in the nonperturbative cranking approximation:

$$
\begin{gathered}
\mathcal{M}_{i j}^{C}=\frac{\hbar^{2}}{2 \dot{q}_{i} \dot{q}_{j}} \sum_{\alpha \beta} \frac{F_{\alpha \beta}^{i *} F_{\alpha \beta}^{j}+F_{\alpha \beta}^{i} F_{\alpha \beta}^{j *}}{E_{\alpha}+E_{\beta}} \\
\frac{F^{i}}{\dot{q}_{i}}=U^{\dagger} \frac{\partial \rho}{\partial q_{i}} V^{*}+U^{\dagger} \frac{\partial \kappa}{\partial q_{i}} U^{*}-V^{\dagger} \frac{\partial \rho^{*}}{\partial q_{i}} U^{*}-V^{\dagger} \frac{\partial \kappa^{*}}{\partial q_{i}} V^{*}
\end{gathered}
$$

Asymmetric fission of ${ }^{250} \mathrm{Fm}$

ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU PHYSICAL REVIEW C 93, 044315 (2016)
... the Routhian: $\quad E^{\prime}=E_{\text {RMF }}+\sum_{\lambda \mu} \frac{1}{2} C_{\lambda \mu} Q_{\lambda \mu}+\lambda_{2} \Delta \hat{N}^{2}$
total SCMF energy including static pairing correlations
$\Rightarrow 3$-dim. collective spaces of shape and pairing coordinates $\left(\beta_{20}, \beta_{22}, \lambda_{2}\right)$ and $\left(\beta_{20}, \beta_{30}, \lambda_{2}\right)$

Dynamical coupling between shape and pairing degrees of freedom

The effective inertia and collective potential depend on the strength of pairing correlations:

$$
\mathcal{M} \sim \Delta^{-2} \quad V \sim\left(\Delta-\Delta_{0}\right)^{2}
$$

To reduce the collective inertia, the fissioning nucleus favors an increase in pairing over the static self-consistent solution, at the expense of a larger potential energy. Because of pairing fluctuations, the corresponding fission action integral is reduced and, consequently, the half-life is orders of magnitude shorter than in the case without the dynamic pairing degree of freedom.

Action integrals and SF half-lives of ${ }^{264} \mathrm{Fm}$ and ${ }^{250} \mathrm{Fm}$

Nucleus	Path	$S(L)$	$\log _{10}\left(T_{1 / 2} / \mathrm{yr}\right)$
${ }^{264} \mathrm{Fm}$	2D	19.58	-11.03
	3D	14.15	-15.75
${ }^{250} \mathrm{Fm}$	2D	32.09	-0.16
	3D	22.33	-8.64

ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU PHYSICAL REVIEW C 93, 044315 (2016)

The predicted SF path strongly depends on the choice of the collective inertia!

IIII Calculation of the full ATDHFB inertia tensor!
IIIIII dynamical effects caused by the competition between triaxial and reflection asymmetric degrees of freedom, and pairing correlations.

Nuclear Energy Density Functionals

$\boldsymbol{\checkmark}$ unified microscopic description of the structure of stable and nuclei far from stability, and extrapolations toward the region of superheavy nuclei.
\checkmark when extended to take into account collective correlations, EDFs describe deformations, shape-coexistence and shape transition phenomena associated with shell evolution. Separation energies, Qa-values, excitation energies of band-heads in odd-A nuclei, excitation energies of high-K isomers, and rotational spectra can be directly compared to data.
$\boldsymbol{\checkmark}$ Time-dependent NDFT large amplitude collective motion, spontaneous fission dynamics

