

Synthesis of super-heavy-elements: what can we predict?

David BOILLEY,

Hongliang LÜ (吕宏亮) and Bartholomé CAUCHOIS

GANIL and Normandie Université

Yasuhisa ABE (阿部恭久)

RCNP, Osaka (大阪大学核物理研究センター)

Comp Donner

(湖州师范学院)

Caiwan SHEN (沈彩万)

Huzhou University

Anthony MARCHIX
CEA/DRF/IRFU Saclay

Guy Royer

Subatech and Univ. De Nantes

Hindered fusion reaction

- What is the size of the inner barrier?
- How large is the dissipation?
- Correct dynamical description?
- No reliable data

Let's look at this more carefully

Naik, Loveland et al, Phys. Rev. C **76**, 054604

Despite correctly predicting σ_{EVR} correctly, the values of P_{CN} (and W_{sur})differ significantly

One – two orders of magnitude!

What's the problem?

The best known part has the same discrepancies as the less known part!

What's the problem?

- The best known part has the same discrepancies as the less known part!
- Is it due to uncertainties?

$$\sigma_{1n} = \sigma_{cap} \times P_{CN} \times P_{sur}$$

$$P_{CN} = \frac{\sigma_{1n}}{\sigma_{cap} \times P_{sur}}$$
 Experiments Models

Experimental uncertainties

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

KEWPIE2: A cascade code for the study of dynamical decay of excited puclei*

Ho

JCGM 100:2008

GUM 1995 with minor corrections

Evaluation of measurement data — Guide to the expression of uncertainty in measurement

Évaluation des données de mesure — Guide pour l'expression de l'incertitude de mesure

ر ر

Survival probability

$$P_{sur} = \frac{\Gamma_n}{\Gamma_n + \Gamma_f}$$

- B_f < B_n => Fission dominates:
 - Parameters entering the fission width have a great influence
 - Fission barrier is most sensitive parameter
 - Nuisance parameters:
 - Damping energy: 11 < Ed < 19 MeV
 - Friction coefficient: $1 < \beta < 5 \text{ zs}^{-1}$

Nuisance parameters

Fission barriers

In the past:

$$Bf \approx B_{LDM} - \Delta E_{shell}$$

- Nowadays:
 - Tables: Moller et al, M. Kowal et al...

Various models

Various models (2)

Summary

Lü et al, PRC94 (2016) 034616

Partial conclusions

 Fusion hindrance and fission barriers are both unknown

Can we assess them separately?

Need for specific experimental programme:

And fission barriers?

Fusion hindrance and fission barrier dominate

 Fission barriers are difficult to calculate and to measure

• Focus on ΔE_{shell}

Experimental masses

$$^{291}_{116} Lv \rightarrow ^{287}_{114} Fl \rightarrow ^{283}_{112} Cn \rightarrow ... \rightarrow ^{267}_{104} Rf$$

• Can be obtained from Q_{α}

Nuclei	(Q_{lpha}		$arDelta m^{Exp}$			
$\overline{271}$	able 2.	Experi	imental	mass	excess o	correlat	ion matrix
$^{106}_{275}$ I	1.00	0.99	0.99	0.98	0.97	0.97	0.96
$^{1081}_{279}_{110}I$	0.99	1.00	0.99	0.99	0.98	0.98	0.97
¹¹⁰¹ ²⁸³ ₁₁₂ (0.99	0.99	1.00	0.99	0.99	0.98	0.98
287_{1}	0.98	0.99	0.99	1.00	0.99	0.99	0.98
$114^{ floor} 291$ T	0.97	0.98	0.99	0.99	1.00	0.99	0.99
1161	0.97	0.98	0.98	0.99	0.99	1.00	0.99
	0.96	0.97	0.98	0.98	0.99	0.99	1.00
					0. 55		

Mass fit and uncertainties

• We fit:
$$M_{\rm exp} - \Delta E_{shell}$$

- -> LDM coefficients are obtained by simple linear regression
- -> Uncertainty evaluation assumes that errors are Gaussian

$$LDM = (M_{\text{exp}} - \Delta E_{shell}) + e$$

$$B_n(A, Z) = \left(a_v A + a_{vt} \left(\frac{A - 2Z}{A}\right)^2\right) A + \left(a_s + a_{st} \left(\frac{A - 2Z}{A}\right)^2\right) A^{2/3}$$

$$+ a_C \frac{Z^2}{A^{1/3}} + a_{Cd} \frac{Z^2}{A} + a_W \frac{|A - 2Z|}{A} + a_p \frac{\delta_{np}(A, Z)}{A^{1/3}}$$

G. Royer, NPA917 (2013) 1

	Estimate	Std. Error		
a_{v}	15.63700	0.02364		
a_{vt}	-29.53200	0.26727		
a_s	-18.55500	0.12740		
a_{st}	46.97700	1.67080		
a_C	-0.71636	0.00211		
a_{Cd}	1.40110	0.09989		
a_W	-42.77700	3.56280		
a_p	6.92040	0.38306		

Correlation matrix

Results

Nuclei		Q_{lpha}	2	Δm^{Exp}		Δm^{LD}		SCE
$\frac{^{267}_{104}Rf}{^{271}_{106}Sg}$		Table 4. SCE correlation matrix						
$^{275}_{108}\mathrm{Hs}$	•	1.00	0.99	0.98	0.98	0.97	0.97	0.96
$^{279}_{110} \mathrm{Ds}$ $^{283}_{112} \mathrm{Cn}$	•	0.99	1.00	0.99	0.99	0.98	0.98	0.97
$^{287}_{114}\mathrm{Fl}$	1	0.98	0.99	1.00	0.99	0.99	0.98	0.98
$^{291}_{116}{ m Lv}$	1	0.98	0.99	0.99	1.00	0.99	0.99	0.98
		0.97	0.98	0.99	0.99	1.00	0.99	0.99
		0.97	0.98	0.98	0.99	0.99	1.00	0.99
		0.96	0.97	0.98	0.98	0.99	0.99	1.00
	-							

Results with no uncertainty on the last nucleus of the chain

With uncertainty

SCE

- -3.687 ± 0.578
- -3.576 ± 0.584
- -3.307 ± 0.588
- -3.243 ± 0.591
- -3.947 ± 0.595
- -4.751 ± 0.599
- -5.409 ± 0.605

Without

SCE

- -3.687 ± 0.058
- -3.576 ± 0.101
- -3.307 ± 0.121
- -3.243 ± 0.138
- -3.947 ± 0.154
- -4.751 ± 0.169
- -5.409 ± 0.188

Conclusions and perspective

- Limited predictive power of the models
- Hindrance and fission barriers dominates uncertainties

- One should assess them separately
- Necessity of dedicated experiments to improve the prediction of dynamical models

"In this world nothing can be said to be certain, except death and taxes"

Benjamin Franklin (1789)

Thank you for your attention!

Fusion hindrance threshold

Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion

Caiwan Shen, David Boilley, Qingfeng Li, Junjie Shen, 4 and Yasuhisa Abe5

