Exotic hadrons from lattice QCD

<u>Yoichi IKEDA (RCNP, Osaka Univ.)</u>

HAL QCD (Hadrons to Atomic nuclei from Lattice QCD)

S. Aoki, D. Kawai, T. Miyamoto, K. Sasaki (YITP, Kyoto Univ.)

- T. Doi, T. Hatsuda, T. Iritani (RIKEN)
- T. Inoue (Nihon Univ.)
- Y. Ikeda, N. Ishii, K. Murano (RCNP, Osaka Univ.)
- S. Gongyo (Tours Univ.)

Hadrons to Atomic nuclei

Dynamics of highly unstable exotic light nuclei and few-body systems @Saclay, France (Jan. 30 -- Feb. 3, 2017)

Dynamics of strong interaction

underlying theory = QCD (quantum chromodynamics)

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \bar{q} \gamma^\mu (i\partial_\mu - \mathbf{g} t^a A^a_\mu) q - \mathbf{m} \bar{q} q$$

basic parameters : coupling g + quark masses m (u, d, s, c, b)

dynamics non-Abelian gauge theory

non-Abelian & non-perturbative dynamics

non-trivial vacuum in low-energy regime

color confinement

 \checkmark strong coupling $\alpha_s = g^2/4\pi \sim 1$

- mass gap
- condensate, ...

1st principle calculation = Lattice QCD

Lattice $QCD = 1^{st}$ principle calculation of QCD

• path integral formulation

$$egin{aligned} Z &= \int [dU] [dar q dq] \; \exp\left(-\int d au d^3 x \left(\mathcal{L}_g + \mathcal{L}_q
ight)
ight) \ &= \int [dU] \; det \left[D(U,m_q)
ight] \exp\left(-\int d au d^3 x \mathcal{L}_g
ight) \end{aligned}$$

dynamical quark-antiquark loop

typically $(30-100)^4 \sim 10^{6-8}$ sites employed

Monte Carlo Simulations

ensemble average of O

observables <0>

input parameters

on the links

on the sites

- hopping parameter $\kappa_q \rightarrow m_q$
- ▶ gauge coupling g --> a

gluons $U_{\mu} = exp(iaA_{\mu})$

 $egin{aligned} &\langle \mathcal{O}
angle &= \langle 0 | \mathcal{O} | 0
angle \ &= \int [dU] det \left[D(U,m_q)
ight] e^{-\int d au d^3 x \mathcal{L}_g} \mathcal{O}(U,m_q) \end{aligned}$

How to extract observable from lattice QCD

Conventional approach: temporal correlations

4) obtain masses from plateau (large τ region for ground state)

excited states are extracted using diagonalization of correlation functions

Single hadron spectroscopy from LQCD

★ Low-lying hadrons on physical point (physical m_q)

a few % accuracy already achieved for single hadrons LQCD now can predict undiscovered charm hadrons (Ξ^*_{cc} , Ω_{ccc} ,...)

Next challenge in spectroscopy : hadron resonances

Hadrons (baryons & mesons)

Why exotic hadrons?

★ Exotic hadrons are "colorful" --> hint for color confinement

$$\mathbf{3}\otimes\mathbf{3}=\mathbf{ar{3}}\oplus\mathbf{6}$$

$$\mathbf{3}\otimes ar{\mathbf{3}} = \mathbf{1}\oplus \mathbf{8}$$

Color non-singlet (qq)₆, (qq)₈ configurations are allowed only in multi-quarks

★ Color non-singlet interactions play important role for dense matter

through condensates

hadron phase (confinement) $\langle q ar q
angle
eq 0$

quark phase (deconfinement) $\langle qq \rangle_{\rho} \neq 0$

Baryon density (ρ)

Where exotic hadrons expected?

• Tetra-quark candidate Zc(3900)

- peak observed in $\pi^{\pm}J/\psi$ invariant mass
- tetra-quark candidate (c^{bar}c u^{bar}d)
- $J^P=1^+$, M ~ 3900, Γ ~ 60 MeV (Breit-Wigner fit) --> just above open charm $D^{bar}D^*$ threshold

Where exotic hadrons expected?

H-dibaryon (flavor singlet uuddss configuration)

- attractive color magnetic int. (quark model)
 - "Perhaps a Stable Dihyperon"

by R. Jaffe (1977)

m_{ΣΣ}=2380 MeV

Constraint from NAGARA event (2001)

$$\Xi^- + {}^{12}C
ightarrow {}^6_{\Lambda\Lambda}He + {}^4He + t$$

 $m_{\Xi N}$ =2260 MeV

Observation of double-Λ hypernuclear excludes possibility of deeply bound H-dibaryon

★ fate of H-dibaryon from lattice QCD

- Is H-dibaryon shallow bound state, resonance, or ...?
- What is structure of H-dibaryon?

(hexa-quark? molecule?)

Contents

Introduction to exotic hadrons

- \checkmark How to study exotic hadrons on the lattice?
- ✓ HAL QCD method
- \checkmark Nature of exotic candidates from lattice QCD
 - tetra-quark candidate : Z_c(3900)
 - hexa-quark candidate : H-dibaryon

✓ Summary

How to study exotics on the lattice?

How to study resonance from lattice QCD?

T-matrix in formal scattering theory (N/D method)

$$T^{-1}(\sqrt{s}) = V^{-1} + \frac{1}{2\pi} \int_{s_+}^{\infty} ds' \frac{\rho(s')}{s' - s}$$

Interaction part is not determined within scattering theory

interactions faithful to S-matrix in QCD

Analyticity of T-matrix is uniquely determined

Bound states (physical sheet, 1st)

- binding energy --> T-matrix pole position
- coupling --> residue of pole

Resonance/virtual states (unphysical sheet, 2nd)

- Analytic continuation of T-matrix
- resonance energy --> T-matrix pole position
- coupling --> complex residue of pole

HAL QCD strategy (interactions faithful to S-matrix)

lattice QCD + scattering theory

K-computer

hadron interactions

- ▶ resonance pole & residue
- ▶ ab initio many-body calc.
- hadronic EoS

Hadron scattering in LQCD

Problem in coupled-channel scattering

inelastic region: W --> $\delta^1(W)$, $\delta^2(W)$, $\eta(W)$ --> find W(L₁)=W(L₂)=W(L₃)

assumptions about interactions or K-matrices necessary...

★ indicate more information mandatory to solve coupled-channel scatterings

What can we measure in addition to temporal correlations?

HAL QCD approach "potential" as representation of S-matrix

HAL QCD approach: extract energy-independent interaction kernel
measure spatial correlation as well as temporal correlation

Ambu-Bethe-Salpeter wave functions: ψ_n(r)

NBS wave functions outside interactions --> free Klein-Gordon equation

$$\left(
abla^2 + ec{k}_n^2
ight) \psi_n(ec{r}) = 0 \ \left(|ec{r}| > R
ight)
ight)$$
 $ightarrow$ S-matrix

HAL QCD approach "potential" as representation of S-matrix

HAL QCD approach: extract energy-independent interaction kernel
 measure spatial correlation as well as temporal correlation

$$\langle 0|\phi_1(ec x+ec r, au)\phi_2(ec x, au)\Phi^\dagger(0)|0
angle=\sqrt{Z_1Z_2}\sum_n A_n\psi_n(ec r)e^{-W_n au}$$

Ishii, Aoki, Hatsuda, PRL99, 02201 (2007). Aoki, Hatsuda, Ishii, PTP123, 89 (2010). Ishii et al,(HAL QCD), PLB712, 437(2012).

NBS wave functions inside interactions: half-offshell T-matrix

$$\Big(
abla^2+ec k_n^2\Big)\psi_n(ec r)=2\mu\int dec r' U(ec r,ec r')\psi_n(ec r')$$

- U(r,r') is faithful to S-matrix in elastic region
- U(r,r') is energy-independent (until new threshold opens)
- U(r,r') contains all 2PI contributions
- U(r,r') is not an observable (applied to ab initio calc.)

Coupled-channel HAL QCD approach

HAL QCD approach: extract energy-independent interaction kernel
measure spatial correlation as well as temporal correlation

$$\langle 0|\phi_1^a(ec{x}+ec{r}, au)\phi_2^a(ec{x}, au)\Phi^\dagger(0)|0
angle = \sqrt{Z_1^aZ_2^a}\sum_n A_n\psi_n^a(ec{r})e^{-W_n au}
ight)$$

Ishii, Aoki, Hatsuda, PRL99, 02201 (2007). Aoki, Hatsuda, Ishii, PTP123, 89 (2010). Ishii et al,(HAL QCD), PLB712, 437(2012).

channel wave functions defined in asymptotic region: \u00c6^an(r)

$$igg(
abla^2 + (ec{k}_n^a)^2 igg) \psi_n^a(ec{r}) = 2 \mu^a \sum_b \int dec{r}' U^{ab}(ec{r},ec{r}') \psi_n^b(ec{r}')$$

★coupled-channel potential Uab(r,r'):

- U^{ab}(r,r') is faithful to S-matrix in both elastic and inelastic regions
- U^{ab}(r,r') is energy-independent (until new threshold opens)
- U^{ab}(r,r') contains all 2PI contributions

Full details, Aoki et al. [HAL QCD Coll.], PTEP 2012, 01A105 (2012); Proc. Jpn. Acad., Ser. B, 87 (2011).

$$\label{eq:starses} \begin{split} &Z_c(3900) \text{ in } I^G(J^{PC}) = 1^+(1^{+-}): \\ &\pi J/\psi - \rho \eta_c - D^{bar}D^* \text{ coupled-channel} \end{split}$$

<u>Y. Ikeda et al., [HAL QCD], PRL117, 242001 (2016).</u>

- Nf=2+1 full QCD
 - Iwasaki gauge
 - clover Wilson quark
 - 32^3 x 64 lattice

- Relativistic Heavy Quark (charm)
 - remove leading cutoff errors $O((m_c a)^n)$, $O(\Lambda_{QCD} a)$, ...
 - → We are left with O(($a\Lambda_{QCD}$)²) syst. error (~ a few %)

 $\frac{\text{light meson mass (MeV)}}{m_{\pi}=411(1), 572(1), 701(1)}$ $m_{\rho}=896(8), 1000(5), 1097(4)$

 $\label{eq:mnc} \frac{\text{charmed meson mass (MeV)}}{m_{\eta c} = 2988(1),\ 3005(1),\ 3024(1)} \\ m_{J/\psi} = 3097(1),\ 3118(1),\ 3143(1) \\ m_D = 1903(1),\ 1947(1),\ 2000(1) \\ m_{D^*} = 2056(3),\ 2101(2),\ 2159(2) \\ \end{array}$

Potential matrix (nJ/u - pnc - DbarD*)

Potential matrix ($\pi J/\psi - \rho \eta_c - D^{bar}D^*$)

Potential matrix ($\pi J/\psi - \rho \eta_c - D^{bar}D^*$)

Potential matrix ($\pi J/\psi - \rho \eta_c - D^{bar}D^*$)

Two-body scattering: structure of Z_c(3900)

- Two-body s-wave $\pi J/\psi$ $\rho\eta_c$ $D^{bar}D^*$ coupled-channel scattering
 - \Rightarrow most ideal reaction to study structure of Z_c(3900)

1. invariant mass spectrum

number of scattering particles

$$N_{
m sc} \propto ({
m flax}) \cdot \sigma(W) \propto {
m Im} f(W)$$

2. pole of amplitude

analytic continuation of amplitude onto complex energy plane

• results with $m\pi$ =410MeV are shown (weak quark mass dependence)

Invariant mass spectra of $\pi J/\psi$ & D^{bar}D*

\star 2-body scattering (ideal setting to understand Z_c(3900) structure)

Enhancement near D^{bar}D* threshold due to strong V^{πJ/ψ, DbarD*}

- peak in $\pi J/\psi$ (not Breit-Wigner line shape)
- threshold enhancement in D^{bar}D*

 \checkmark Is Z_c(3900) a conventional resonance? --> pole position

Complex pole position ($\pi J/\psi$:2nd, $\rho\eta_c$:2nd, $D^{bar}D^*$:2nd)

- "Virtual" pole on [2nd, 2nd, 2nd] sheet is found (far below D^{bar}D* threshold)
- No pole on other relevant sheets to Z_c(3900)
- $Z_c(3900)$ is not a conventional resonance but threshold cusp induced by strong $\pi J/\psi$ $D^{bar}D^*$ coupling

Comparison with expt. data : $Z_c(3900)$ production via Y(4260) decay

✓ check whether expt. data of Y(4260) decay can be reproduced with HAL QCD coupled-channel potential (m_{π} =410 MeV)

Three-body decay of Y(4260)

physical hadron masses employed to compare w/ expt. data $\sqrt{10}$ fix decay vertex by Y(4260) --> $\pi\pi J/\psi$ expt. data

✓ predict Y(4260) --> πD^{bar}D* decay spectrum

Mass spectra ($\pi J/\psi \& D^{bar}D^* w/ relativistic dispersion$)

Y. Ikeda et al., [HAL QCD], PRL117 & in preparation

- Good agreement w/ expt data
 - (2-parameter fit works well)

→ predict another decay mode (Y--> $\pi D^{bar}D^*$)

- Predicted line shape agrees very well with expt. data
- no peak structure w/o V^{πJ/ψ, DbarD*} (dashed curve)

Conclusion: Z_c(3900) is threshold cusp induced by strong V^{πJ/ψ, DbarD*}

Fate of H-dibaryon

Generalized baryon-baryon force @SU(3)_F limit

Inoue et al. (HAL QCD), PRL106 (2011), NPA881 (2012). p(uud) n(udd) p(uud) n(udd) Σ⁰(uds) Σ⁰(uds) Σ⁻(dds) Σ⁺(uus) X Σ-(dds) Σ⁺(uus) (uds) (uds) ∃⁰(uss) Ξ⁰(uss) Ξ⁻(dss) Ξ⁻(dss) $= 27 + 8 + 1 + \bar{10} + 10 + \bar{8}$ effect of Pauli blocking H-dibaryon in SU(3)_F physical point SU(3)_F limit 🦜 ΜΣΣ Fate of H-dibaryon w/ physical quark mass **M**BB \blacktriangleright $\Lambda\Lambda$ - ΞN - $\Sigma\Sigma$ coupled-channel problem in ¹S₀ channel **M**EN

 $m_{\Lambda\Lambda}$

Sasaki et al. (HAL QCD), in preperation

Generalized BB potentials in SU(3)_F limit

Full QCD in SU(3)_F limit : m_π~0.47GeV, L=3.9 fm

✓ potentials in flavor symmetric channels --> 27 + 8s + 1

bound H-dibaryon?

origin of repulsive cores <--> Pauli principle

(+ magnetic gluon coupling)

see, Oka & Yazaki, NPA464 (1987)

Structure of H-dibaryon

Fate of H-dibaryon @physical point

N_f=2+1 full QCD : m_π~0.14 GeV (physical), L~8 fm (huge volume)

Fate of H-dibaryon @physical point

Original prediction of H-dibaryon

Jaffe (1977) based on quark model, "Perhaps a Stable Dihyperon"

41.95

42

Summary

HAL QCD method for coupled-channel hadron interactions

- extraction of "potentials" from equal-time NBS wave functions
- a solution of coupled-channel problems
- Charm tetraquark candidate Z_c(3900) in J^P=1⁺ channel
 - Z_c(3900) is threshold cusp induced by strong V^{DbarD*, πJ/ψ}
 - Virtual pole far from D^{bar}D* threshold w/ large imaginary part
 - Expt. data are well reproduced using coupled-channel HAL QCD method
 - No peak structure w/o V^{DbarD*, πJ/ψ}
- 💠 Fate of H-dibaryon
 - Perhaps resonance near EN threshold
 - No Pauli blocking in flavor singlet channel
 - Small ΛΛ-ΞΝ coupling
 - Not a compact hexa-quark

Thank you for your attention !!