January 31, 2017

Workshop on Espace de Structure et de réactions Nucléaires Théorique

Revisiting 3n System and Possible New Measurements

H. Sakai RIKEN Nishina Center

Aim

Ν

N

Brief history of ³n search

Short list of 3n search

Author(1 st) Article		Reaction	Energy (E/A MeV)	Angle	3n	Comment
Fujikawa NP A115(68)1		7Li(n,3n)	~40	integrated	No	Activation method
Koral NP A175(71)156		7Li(n,3n)	19	38°>θ>4°	No	
Heavy-ion						
Cerny	RL 53B(74)247	7Li(7Li,11C)3n	11	10°	No	
Belozyorov	NP A477(88)131	7Li(11B,15O)3n	7	8°	No	
Pion DCX						
Sperinde	PL 32B(70)185	$3\text{He}(\pi-,\pi+)3\text{n}$	140	θ>15°	Yes	Er=13 MeV, Γ=12 MeV
Stetz NPA457(86)669		$3\text{He}(\pi-,\pi+)3\text{n}$	120	θ>20°	No	
Yuly PR C55(97)1848		$3\text{He}(\pi-,\pi+)3\text{n}$	240	θ>25°	No	
Graeter	EPJ A4(99)5	$3\text{He}(\pi-,\pi+)3\text{n}$	120	Integrated	No	
3p search						
Williams	PRL 23(69)156	3He(p,n)3p	50	θ>20°	Yes	Er=9 MeV, Γ=11 MeV

History of bound ³n search by activation

Nuclear Physics A115 (1968) 1-13; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

$^{7}\text{Li}(p,xn)^{7}\text{Be} \rightarrow ^{7}\text{Li}(n,^{3}n)^{5}\text{Li} \rightarrow ^{138}\text{Ba}(^{3}n,n)^{140}\text{Ba}$

SEARCH FOR TRI-NEUTRONS

K. FUJIKAWA[†] and H. MORINAGA

Department of Physics, University of Tokyo Bunkyo-ku, Tokyo, Japan

Received 26 July 1967

Abstract: A search for bound tri-neutrons in the reaction ${}^{7}Li(n, {}^{3}n){}^{5}Li$ has been made with neutrons produced by a 55 MeV proton beam incident on a thick metallic lithium target. The detection of the tri-neutron was attempted with the reaction ${}^{138}Ba({}^{3}n, n){}^{140}Ba$, whose yield of ${}^{140}La$, the β -decay product of ${}^{140}Ba$, was measured with a low-background counting apparatus. No evidence for the existence of the bound tri-neutron was found within the limits of experimental error. The upper limit was determined at 1 mb for the total cross section of the reaction ${}^{7}Li$ $(n, {}^{3}n){}^{5}Li$ at the neutron energies $E_{n} \approx 14-19$ MeV, where its values were expected to become the highest.

History of bound ³n search by ⁷Li(n,³n)

1.B: 2.A.1 Nuclear Physics A175 (1971) 156-166; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

A SEARCH FOR THE BOUND TRINEUTRON FROM ⁷Li+n REACTIONS

KENNETH F. KORAL[†], E. A. SILVERSTEIN^{††} and P. R. BEVINGTON Case Western Reserve University, Cleveland, Ohio^{†††}

Received 18 May 1971

Abstract: A search was made for bound trineutrons produced by bombardment of a lithium target with 19 MeV neutrons. Direct detection of the trineutrons at forward reaction angles was attempted with a helium-recoil scintillator. Trineutrons could be partially separated from a background of neutrons by correlating the time of flight between target and detector with the pulse height produced by the recoiling ⁴He ion. No evidence for the existence of a trineutron was found over a binding-energy range of ≈ 0 to 7 MeV. The upper limits for the differential and total cross sections are 0.1 mb/sr and 1 mb respectively for the reaction ⁷Li(n, ³n)⁵Li and 0.8 mb/sr \cdot MeV and 10 mb respectively for the reaction ⁷Li(n, p)⁷He. ⁷He \rightarrow ³n+⁴He.

⁷Li+n
$$\rightarrow$$
 ³n+⁵Li $Q = -12.9$ M
⁷Li+n \rightarrow ⁷He+p $Q = -10.4$ M
 $|_{\rightarrow 3n+^4}$ He $Q = -0.53$ M

Fig. 7. Hypothetical results with minimum number of trineutrons that produces a discernible difference between the carbon and lithium data for the one-step reaction.

History of ³n resonance search by ⁷Li(¹¹B, ¹⁵O)

NP A477(88)131

SEARCH FOR THE TRI- AND TETRA-NEUTRON IN REACTIONS INDUCED BY ¹¹B AND ⁹Be IONS ON ⁷Li

A. V. BELOZYOROV, C. BORCEA, Z. DLOUHÝ, A. M. KALININ, NGUYEN HOAI CHAU,

Fig. 3. The ¹⁵O energy spectrum for the ⁷Li(¹¹B, ¹⁵O)³n reaction. The full curve is a phase-space calculation that takes into account the following exit channels: ¹⁵O + n + n + n and ¹⁵O* ($E_x = 5.183$ MeV) + n + n + n.

History of ³n resonance search by ³He(π -, π +)

PL 32B(70)185

EVIDENCE FOR A LOW-ENERGY RESONANCE IN THE THREE-NEUTRON SYSTEM *

J. SPERINDE, D. FREDRICKSON, R. HINKINS, V. PEREZ-MENDEZ and B. SMITH Lawrence Radiation Laboratory, University of California, Berkeley, California, USA

Fig. 1. Differential cross section for the reaction π^- + ³He $\rightarrow \pi^+$ + 3n as a function of the kinetic energy of the three-neutron system. The solid line represents fourbody phase space normalized to the data in the energy range of 50 to 85 MeV.

LRL, Barkeley
> 3He(π-,π+)3n
E(π-)=140 MeV
$> \theta > 15^{\circ}$
Evidence Yes
Er=13 MeV, Γ=12 MeV

History of ³n resonance search by ³He(π -, π +)

³He (π⁻, π⁺) 140 MeV

q~180 MeV/c

1.2 (a)

1.0

0.8

0.6

(μb/MeV·sr)

NP A457(1986)669

PION DOUBLE CHARGE EXCHANGE ON ³He AND ⁴He

A. STETZ and L.W. SWENSON

Oregon State University, Corvallis, OR 97331, USA

Abstract: We have measured the differential cross section $d^2\sigma/d\Omega dT$ for the double charge exchange reactions ${}^{4}\text{He}(\pi^+, \pi^-)4p$ and ${}^{3}\text{He}(\pi^-, \pi^+)3n$ at 140, 200 and 295 MeV. By fitting this data with a simple phase-space model we have estimated the integrated cross section $d\sigma/d\Omega$ and the total cross section. The ${}^{4}\text{He}$ data agree qualitatively with the predictions of a meson exchange calculation and with one version of the successive single charge exchange model. The ${}^{3}\text{He}$ cross sections are considerably larger than those of ${}^{4}\text{He}$ and in some cases the missing mass plot shows a strong enhancement, which resembles a broad three-nucleon resonance.

rig. 6. Infectody (two nucleons and a pion) and four-body (three nucleons and pion) phase space distributions for $d^2\sigma/d\Omega_{c.m.} dT$. The two dashed curves are calculated for an incident energy of 140 MeV and normalized to the same total area. The solid curve is the quotient of the two phase space distributions scaled down by 10^{-1} .

History of ³n resonance search by ³He(π -, π +)

PHYSICAL REVIEW C

VOLUME 55, NUMBER 4

APRIL 1997

Pion double charge exchange and inelastic scattering on ³He

M. Yuly,* W. Fong,[†] E. R. Kinney,[‡] C. J. Maher,[§] J. L. Matthews, T. Soos,^{II} J. Vail,[¶] M. Y. Wang,^{**} and S. A. Wood^{††}

FIG. 9. A comparison of doubly differential cross sections for ${}^{3}\text{He}(\pi^{-},\pi^{+})$ with the prediction of three-body (dashed line) and four-body (solid line) phase space at 180 MeV for laboratory angles 25° and 130°. The phase space predictions have been normalized to have the same singly differential cross section as the data. The uncertainty indicated includes the statistical uncertainty and the systematic uncertainties which depend on the outgoing pion energy.

History of bound ³n search ³He(π -, π +)

Short note

Graeter et al., EPJ A4(99)5

Search for a bound trineutron with the ³He(π^-,π^+)nnn reaction

TRIUMF E(π)<120 MeV **CHAOS spect. Angle integrated** No evidence found

Fig. 1. Invariant mass of the threeneutron system. Left: Experimental data points. The dashed line indicates the kinematical limit of three unbound neutrons. The solid lines are cubic spline fits that are used to approximate the contribution from unbound neutrons in the kinematically forbidden region. The dotted curve represents a 4body phase space distribution. See text for details. Right: Difference of experimental data and the fitted contribution of unbound neutrons

History of unbound ³Li(3p) search by ³He(p,n)³Li

VOLUME 23, NUMBER 20

PHYSICAL REVIEW LETTERS

17 NOVEMBER 1969

EVIDENCE FOR BROAD RESONANCES IN THE THREE-NUCLEON SYSTEM

L. E. Williams,* C. J. Batty, B. E. Bonner, and C. Tschalär Rutherford High Energy Laboratory, Chilton, Didcot, England

FIG. 1. Neutron spectra observed for the reaction ${}^{3}\text{He}(p,n)3p$. The incident energy was 48.8 MeV and the neutron angles were (a) 60°, (b) 20°. The dashed curve is the calculated four-body phase-space distribution normalized to the spectrum measured in (a). The dash-dot curve gives the results of a three-body phase-space calculation

Rutherford HEL
> N-TOF
> E=50 MeV (low)
Large θ
Evidence Yes
Е _г =9 MeV, Г=11 MeV

Review on ³n/³Li(3p) studies

- 1. Works done mostly in the last century
- 2. No bound state found
- **3.** Unbound (contradicting results)
- 4. No clear evidence of resonance
- **5. Experiments suffer from:**
 - Small bombarding-energy
 →complex reaction mechanism
 - Large scattering angle

 →large momentum transfer
 q>180 MeV/c for (π-,π+)

Recent new development

1. Tetra-neutron observed

- 2. Suggestion of ³Li(3p) resonance
- **3.** Theoretical prediction

Observation of Tetraneutron

K. Kisamori, Shimoura, et al., Phys. Rev. Lett. 116, 052501 (2016).

Why ⁴n was successfully observed ? or
What is different from preceding researches ?

 \Rightarrow Exothermic charge-exchange reaction at θ =0.

Observation of Tri-proton ³Li(3p) resonance

Energy transfer ω_{lab} (MeV)

PHYSICAL REVIEW C 77, 054611 (2008)

Complete set of polarization transfer coefficients for the ${}^{3}\text{He}(p, n)$ reaction at 346 MeV and 0 degrees

Hiyama-san's prediction

- Solve 4 body eq. (Faddeev-Yakubovski eq.)
- > 2NF ; reproduce various data of stable nuclei
- > 3NF ; T=1/2, -2.04 MeV
 - T=3/2, free parameter

Require unrealistically strong T=3/2 3NF to reproduce experimental result.
 W(T=3/2) ~17 ×W(T=1/2) !!

 For 3n resonance: with W(T=3/2) ~17 ×W(T=1/2) E_R~4 MeV, Γ~4 MeV J^π=1/2⁻ and/or 3/2⁻

FIG. 8. Trineutron ³n resonance trajectories for $J = 3/2^{-}, 1/2^{-}$, and $1/2^{+}$ states. The circles correspond to resonance positions for $W_1(T = 3/2)$ from -75 to -40 MeV for $J = 3/2^{-}$, from -90 to -50 MeV for $J = 1/2^{-}$, and from -180 to -85 MeV for $J = 1/2^{+}$ in steps of 5 MeV.

Gandolfi, Schwenk et al.'s prediction

arXiv 1612.01502

Is a trineutron resonance lower in energy than a tetraneutron resonance?

S. Gandolfi,^{1,*} H.-W. Hammer,^{2,3,†} P. Klos,^{2,3,‡} J. E. Lynn,^{2,3,§} and A. Schwenk^{2,3,4,¶}

FIG. 1. The energy of three (squares) and four (circles) neutrons in external Woods-Saxon potentials for varying radius $R_{\rm WS}$ as a function of the well depth V_0 . The blue/upper lines correspond to $R_{\rm WS} = 4.5$ fm, the green/middle lines to $R_{\rm WS} = 6$ fm, and the red/lower lines to $R_{\rm WS} = 7.5$ fm. In each case, a quadratic fit to the AFDMC results was obtained and used to extrapolate to the zero-well-depth limit.

Revisit of theoretical wisdom

Steven Pieper's prediction

- S.C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)
 - > A bound ⁴n is incompatible with our understanding of nuclear forces.
 - > V_{NN} acts pairwise; pairs typically very far apart. rms radius = 8.9 fm
 - > ⁴n looks like two well separated ²n (dimer-dimer coupling)
 - V_{NNN} requires triples to be close together. rms radius = 1.9 fm
 - > Then $V_{NNN}(T = 3/2)$ should work

How to create the 'close together' condition?

It may be worthwhile to attack trineutron search again by the Exothermic Charge-Exchange reaction

My very biased view (1)

For success of tri-neutron state observation (same as the tetra-neutron search)

Realize 'close together (CT)' condition
 ⇒utilize the charge-exchange (CE) reaction

My very biased view (2)

 Create 'at rest (AR)' ='Recoilless' condition in lab. to help 3NF to operate ⇒utilize the exothermic CE reaction to achieve q=0

My choice : (⁹Li,⁹Be) reaction $\triangle m = +13.6$ MeV

q: momentum transfer in lab. system
ω: excitation energy of ³n

Particle mass	Spin-parity	M-A (MeV)	Excited state
p	$p = 1/2^+$		No
n	$1/2^{+}$	8.07	No
3n	$(1/2^{-})?$	24.21	
$^{3}\mathrm{H}$	$1/2^{+}$	14.95	No
$^{3}\mathrm{He}$	$1/2^{+}$	14.93	No
³ Li	$1/2^{-}$	21.84	
⁶ He	0^{+}	17.60	No
⁶ Li	1+	14.09	Few
⁷ Li	$3/2^{-}$	14.91	Few
⁷ Be	$3/2^{-}$	15.58	Few
⁸ He	0+	31.61	No
⁸ Li	2^{+}	20.9	Few
⁸ Be	0^{+}	4.9	'No' $\rightarrow 2\alpha$
⁸ B	2^{+}	22.92	Few
$^{9}\mathrm{Li}$	$3/2^{-}$	24.95	Few
⁹ Be	$3/2^{-}$	11.35	No
⁹ B	$3/2^{-}$	12.41	Not stable
⁹ C	3/2-	28.91	No
$^{10}\mathrm{Be}$	0^{+}	12.61	Few
$^{10}\mathrm{B}$	3^{+}	12.05	Few
$^{10}\mathrm{C}$	0+	15.70	Few
¹¹ Li	$3/2^{-}$	40.80	No
$^{11}\mathrm{Be}$	$1/2^{+}$	20.17	$1/2^{-}(0.32 \text{ MeV})$
$^{11}\mathrm{B}$	$3/2^{-}$	8.67	Many
$^{11}\mathrm{C}$	$3/2^{-}$	10.65	Many

Candidate of Exothermic CE reaction to satisfy CT & AR conditions:

³H(⁹Li,⁹Be)3n reaction $\triangle m(m_{9Li}-m_{9Be}) = +13.6 \text{ MeV}$ Q = + 4.4 MeV $\theta = 0^{\circ} (q \sim 0)$

Requires unstable ⁹Li beam & tritium target

Transition and structure of ³n

 $J^{\pi}(^{3}n): 3/2^{-} \text{ or } 1/2^{-} \text{ or } ...$

• Transition: ${}^{3}H(1/2+) \rightarrow {}^{3}n(1/2- \text{ or } 3/2-)$ \Rightarrow spin-dipole type $\Delta L=1$ Wakasa assigned as 1/2⁻

Angular momentum transfer

Max at around $qR \sim 2 \rightarrow q=$ finite !

$q \ (\mathrm{fm}^{-1})$ realization		$<\phi(^{3}n(q)) \Phi(3n)>$	^{3}n obs. possibility	
~ 0	recoil-less	large?	small but finite ?	
~ 0.5	$\ell_{\rm tr} = 1$	small?	broken up ?	

NOT compatible !

My biased choice is the recoil-less condition. I need a distortion by an imaginary OP.

Largest issue is BG yield around ³n resonance region.

3n "resonance" and QFS background

- Hiyama-san's prediction \rightarrow Peak $\omega \sim 4$ MeV, $\Gamma \sim \pm 4$ MeV
- QFS background: Shimoura-Ichimura analytic expression

Two-body decay

$$\frac{d\sigma}{d\Omega}(\omega) \propto \left|F^{proj}(q_{cm})\right|^2 \cdot \left|\mathbf{v}(q_{cm})\right|^2 \cdot P(\omega, q_{cm})_{3\text{body/2body}}$$

$$P(\omega, q_{cm})_{2\text{body}} = \frac{2}{\sqrt{\pi}} \frac{1}{\varepsilon_a} (q_{cm}a)^2 \left(\frac{\omega - \omega_{\text{bnd}}}{\varepsilon_a}\right)^{\frac{3}{2}} \exp\left(-\frac{\omega - \omega_{\text{bnd}}}{\varepsilon_a}\right)$$

Finite-body decay

$$P(\omega, q_{cm})_{3body} = \frac{1}{36} \frac{1}{\varepsilon_a} (q_{cm}a)^2 \left(\frac{\omega}{\varepsilon_a}\right)^3 \exp\left(-\frac{\omega}{\varepsilon_a}\right)$$

$$\left[\rho_{3n}(r) \propto \exp\left[-3\left(\frac{r}{a}\right)^2\right] \qquad \varepsilon_a = \frac{\hbar^2}{m_N a^2}$$

 $a(^{3}\text{H}) = 2.21 \text{ fm}$

3n "resonance" and QFS background

Comparison to ³Li (3p) data

PHYSICAL REVIEW C 77, 054611 (2008)

Complete set of polarization transfer coefficients for the ${}^{3}\text{He}(p, n)$ reaction at 346 MeV and 0 degrees

T. Wakasa,^{1,*} E. Ihara,¹ M. Dozono,¹ K. Hatanaka,² T. Imamura,¹ M. Kato,² S. Kuroita,¹ H. Matsubara,² T. Noro,¹ H. Okamura,² K. Sagara,¹ Y. Sakemi,³ K. Sekiguchi,⁴ K. Suda,² T. Sueta,¹ Y. Tameshige,² A. Tamii,² H. Tanabe,¹ and Y. Yamada¹

Isobaric analog relation

 \rightarrow Comparable to Hiyama-san's prediction.

QFS background (dubious discussion)

NÎSĤÎÑA

 \rightarrow Backbround can be understood by the models. But 2-body or 3-body or both?

Feasibility of experiment

Tritium target
 Yield of ³H(⁹Li, ⁹Be)³n
 Setup at SHARAQ
 Cocktail beam exp.

Tritium Target for Muon Catalyzed Fusion (μ CF)

387

Muon Catalyzed Fusion 5/6(1990/91)387-394

Constructed for μCF

800 Ci (24 TBq)

1 cm³ liquid

Used at KEK

DOUBLY-SEALED D-T TARGET SYSTEM FOR μ CF EXPERIMENT AT UT-MSL/KEK

T. MATSUZAKI^{1,2)}, K. ISHIDA²⁾, K. NAGAMINE^{1,2)}, S. SAKAMOTO¹⁾, E. TORIKAI³⁾, H. KUDO⁴⁾, M. TANASE⁴⁾, M. KATO⁴⁾ and H. UMEZAWA⁴⁾

 Difficulty to acquire a permission of 24 TBq tritium in RIKEN

3n "resonance" yield of ³H(⁹Li, ⁹Be)³n

- $d\sigma/d\Omega = 4$ mb/sr (T(⁹Li)=200 MeV/A assumed)
- N=2.5×10²¹ atoms/cm² (liq. ³H :1mm thick)
- I=10⁷ (max of RIBF regulation)
- $\Delta\Omega$ =0.04 msr (θ <0.2° assumed)
- $\epsilon=1$ (assumed)

$$Y = \frac{d\sigma}{d\Omega} \cdot \mathbf{N} \cdot \mathbf{I} \cdot \Delta\Omega \cdot \varepsilon$$

= 4×10⁻²⁷ · 2.5×10²¹ · 10⁷ · 0.04×10⁻³ · 1
= 0.4×10⁻². (c/s)

 \rightarrow ~350 counts / days. Feasible! And challenging

Experimental setup for ³H(⁹Li, ⁹Be)³n

NISHINA

- Similar to tetraneutron (⁴n) measurement
 →Dispersion matching BT & SHARAQ spectrometer
- Possibility of cocktail beam measurement (⁹Li and ³H)

Cocktail beam measurement with SHARAQ

- ⁹Li beam is always contaminated with ³H. (same A/Z value) →always annoying.
- Simultaneous measurement possible !
 - ➢ ³H(⁹Li,⁹Be)³n at S2
 - ➢ ³H(³H,³He)³n at S1

Conclusion

- Key to success to observe tri-neutron resonance (my biased view)
 - ✓ Achieve 3n to be close together (<2 fm), 3NF to work
 - \rightarrow charge exchange reaction, keep initial target size
 - ✓ Achieve c.m. of 3n at rest in lab-system, minimize disturbance
 →exothermic reaction
- The best exothermic CE reaction may be ³H(⁹Li,⁹Be)³n
 - ✓ 350 counts / days
 - ✓ if tritium target becomes available. Challenging !
- Cocktail beam measurement could be possible with SHARAQ

 ³H(t,³He)³n @S1 and ³H(⁹Li,⁹Be)³n@S2
- Home work to theorists:
 - ✓ Construct dynamical (time-dependent) reaction model incorporated with initial condition (3n size, rms=2 fm) with realistic T=3/2 3NF.
 ⇒Time evolution of wave-packet (not necessarily energy eigen state).
 ✓ Realistic estimate of tri-neutron resonance cross section vs. BG

 HI double CH-EX reaction
 →⁴⁸Ca(¹²C,¹²Be(0₂⁺)) ⁴⁸Ti Reaction
 → proposed by Motonobu Takaki

- DIAS (+DGT) ?
 DGT J=0 ? or 2?
- IAS⊗GT ?

How to extract absolute strength is a big challenge.

(⁹C, ⁹Be) is the best DCE reaction probe !

Cross section of 3n

Let me try to use Wakasa-san's result to guess the production cross section of ${}^{3}n$. In terms of DWBA the cross section may be estimated

$$\frac{d\sigma}{d\Omega} = \left(\frac{\mu}{2\pi\hbar^2}\right)^2 |\mathbf{T}|^2,$$

where μ is the reduced mass and T is the T-matrix.

The $\mu = \frac{m_1 m_2}{m_1 + m_2}$ value for the ³H(⁹Li,⁹Be)³n reaction is quite different from that of the ³He(p, n)³Li reaction.

$$\left(\frac{\mu(\text{LiBe})}{\mu(\text{pn})}\right)^2 = \left(\frac{\frac{9}{4}}{\frac{3}{4}}\right)^2 = 9 \quad (\sim \mathcal{O}(10^1)).$$

It is an order of magnitude larger.

Now the T-matrix in very crude approximation might be

$$\begin{aligned} \mathrm{T}_{\mathrm{LiBe}}(\vec{q}) &\propto \int dq' d^3 \vec{R} \; \mathrm{D}_{\mathrm{LiBe}}(q', \vec{q} \cdot \vec{R}) \cdot V(q') \cdot \rho_{\mathrm{Li} \to \mathrm{Be}}(q') \cdot \rho_{^3\mathrm{H} \to ^3n}(q') \\ \mathrm{T}_{\mathrm{pn}}(\vec{q}) &\propto \int dq' d^3 \vec{R} \; \mathrm{D}_{\mathrm{pn}}(q', \vec{q} \cdot \vec{R}) \cdot V(q') \cdot \rho_{\mathrm{p} \to \mathrm{n}}(q') \cdot \rho_{^3\mathrm{He} \to ^3p}(q') \\ &\left(\frac{\mathrm{D}_{\mathrm{LiBe}}}{\mathrm{D}_{\mathrm{pn}}}\right)^2 = ? \quad (\sim \mathcal{O}'(10^{-1})). \end{aligned}$$

Here, without any scientific ground, I assumed the reduction by distortion of the LiBe system is an order of magnitude smaller $\sim \mathcal{O}(10^{-1})$ (maybe much more reduced).

Thus the cross section ratio might be approximated as

$$\frac{d\sigma(\text{LiBe})}{d\sigma(\text{pn})} \sim \mathcal{O}(10^1) \times \mathcal{O}'(10^{-1}) \sim 1.$$

