Three-body exotic atoms

Jean-Marc Richard

Institut de Physique Nucléaire de Lyon
Université Claude Bernard (Lyon 1)-IN2P3-CNRS
Villeurbanne, France

Saclay, 2017

Table of contents

(1) Two-body exotic atoms

- Exotic atoms in 3D
- Exotic atoms in 1D
- Exotic atoms in 2D
(2) 3-body exotic atoms
- Motivation
- Model
- Case of a single exponential
- Case of two exponentials, LR + SR
- Generalisation of Trueman-Deser?
(3) Summary

Collaboration with Claude Fayard (IPNL, Lyon)
Preliminary version: eprint arXiv:1609.09350

Exotic

Two-body exotic atoms

Exotic atoms: Plateaux and rearrangement

- History: Coulomb + short-range, Zel'dovich, Shapiro, etc.

$$
-1 / r+\lambda V(r)
$$

- Where $V(r)$ is very strong but with very short-range
- Energy shift δE small but non perturbative,
- Rearrangement if $V(r)$ attractive, when $\lambda \rightarrow$ coupling threshold for binding,
- Pattern explained by the Trueman-Deser formula

$$
\delta E \propto a|\phi(o)|^{2}
$$

- Holds beyond the case of a Coulomb interaction

Exotic atoms in 3D

Coulomb + Square well

Exotic

Results 3D

Sum of two square wells

Exotic

Theory 3D

- Pattern recovered with a point interaction
- See Albeverio et al., Combescure et al.
- But only one "nuclear" bound state in this model

Theory 3D

- Pattern recovered with a point interaction
- See Albeverio et al., Combescure et al.
- But only one "nuclear" bound state in this model

Theory 3D

Trueman-Deser

$$
\delta E \propto a|\phi(o)|^{2}
$$

- improves ordinary perturbation
- works for small a,
- indicates the trend for large a,
- works again when a becomes small (but positive)
- many corrections and generalisations
- Coulomb-corrected scattering length
- Effective range terms
- P-wave analogues (Partensky + Ericson)

Exotic atoms in 1D

Symmetric case

- Odd sector: analogue to 3D
- Even sector: evolves to the odd one.
- Trueman-Deser formula now

$$
\delta E \propto \frac{|\phi(0)|^{2}}{a}
$$

- as $\lambda=V_{2}-V_{1} \nearrow$, the ground-state drops immediately

Exotic

Exotic atoms in 1D

Asymmetric case

- as $\lambda=V_{2}-V_{1} \nearrow$, the ground-state drops immediately
- The spectrum evolves from one square well
- to two square wells
- and then can get rearranged

Exotic atoms in 2D

Comparison 1D-2D-3D

$d=2$ last dimension for which a potential with $\int V(r) \mathrm{d}^{d} \vec{r}<0$, however weak, binds

Exotic atoms in 2D

Patterns in 2D

Left: Trueman-Deser, Exact, Simple perturbation

Exotic atoms in 2D

3D

$$
\delta E \propto|\phi(0)|^{2} a+\cdots
$$

from, e.g., a Fermi effective contact interaction. n dependence. a defined as zero of the $E=0$ asymptotic wave function

$$
k \cot \delta(k)=-\frac{1}{a}+\frac{1}{2} r_{0}^{2} k^{2}+\cdots
$$

1D

$$
\delta E \propto \frac{|\phi(0)|^{2}}{a}+\cdots
$$

2D

$$
\delta E \simeq-\frac{|\phi(0)|^{2}}{\ln \left(a / \tilde{A}_{0}\right)}
$$

where \tilde{A}_{0} deriv. / E of \sqrt{r} coeff. in the ext. pot.
Exotic

Exotic atoms in 2D

Trueman-Deser in 2D

2D

$$
\phi(r)=\frac{1}{\sqrt{2 \pi}} \frac{u(r)}{\sqrt{r}}, \quad-u^{\prime \prime}(r)-\frac{u(r)}{4 r^{2}}+V(r) u(r)=E u(r),
$$

at large r

$$
\begin{gathered}
u_{\mathrm{as}}=\sqrt{r} \ln (r / a), \text { at } E=0 \\
\cot \delta(k)=\frac{2}{\pi}[\ln (a k / 2)+\gamma]+\frac{1}{2} r_{0} k^{2}+\cdots
\end{gathered}
$$

where r_{0} is given by an integral similar the the 3D formula.
at small r

$$
\begin{gathered}
h(E, r)=B(E) \sqrt{r} \ln r+A(E) \sqrt{r}+\cdots, \\
\tilde{A}_{0}=A^{\prime}\left(E_{0}\right)
\end{gathered}
$$

Example

Exponential well supplemented by another exponential of shorter range. Thick line: exact, dashed line: DT formula, thin line: perturbation theory. We use here
$V=-g_{1} \exp (-r / r 1)-\lambda \exp \left(-r / r_{2}\right)$ with $r_{1}=2, g_{1}=1$ and $r_{2}=0.02$.

3-body exotic atoms

Motivations

- Many stable atomic ions: $(p, p, \bar{p}),\left(p, p, K^{-}\right)$, etc.
- With interesting hadronic dynamics
- Is there in the atomic spectrum any signature of the hadronic interaction?
- Is there an analogue of level rearrangement?
- How many bound states below the $2+1$ breaking threshold?
- Preliminary investigation for 3 bosons with LR + SR

Model

$$
m=1, \quad V=\sum_{i<j} v\left(r_{i j}\right)
$$

with
$v(r)=g_{1} v_{e}\left(\mu_{1}, r\right)+g_{2} v_{e}\left(\mu_{2}, r\right), \quad v_{e}(\mu, r)=-1.4458 \mu^{2} \exp (-\mu r)$,
The normalisation is such that v_{e} at the edge of binding for $g=1$.
$m u_{1}=1$ fixes the scale in r.
We will adopt typically $\mu_{2}=20$ and study the spectrum as a function of g_{2}.
Before, we show the spectrum is the external potential alone.

Case of a single potential

- Borromean bound state starts near $g=0.8$ for monotonic potentials
- First excited: Efimov-like, as it starts just below $g=1$, but Efimov-unlike, as it often never joins the $2+1$ threshold.
- For larger g, more stable states show up.

Remark on the large coupling limit

- Much attention is paid to the upper part of the spectrum, i.e., the Efimov sector

Exotic

Remark on the large coupling limit

- At large coupling, more and more stable states (but not Borromean)
- Solvable model: $g V$, where $V=\mathrm{HO}$ shifted downwards, and damped at very large r
- Exponential pot. (right)

Results for two exponential pot.

$\mu_{1}=1$ and $\mu_{2}=20$

$$
V=2 v_{e}(1, r)+g v_{e}(20, r)
$$

Exotic

Generalisation of Trueman-Deser?

- At small g

$$
\delta E \simeq 3 A a
$$

where

- a is the 2-body scattering length
- $A=\left\langle\delta^{(3)}\left(\vec{r}_{12}\right)\right\rangle$
- But this does not account for δE blowing up near $g=0.8$ instead of $g=1$
- We thus need a three-body term

Exotic

Generalisation of Trueman-Deser?

- The pattern looks like

$$
\delta E=A_{\mathrm{LR}} B_{\mathrm{SR}}+A_{\mathrm{LR}}^{\prime} B_{\mathrm{SR}}^{\prime}+\cdots
$$

where

- $A_{\mathrm{LR}}=\left\langle\delta^{(3)}\left(\vec{r}_{12}\right)\right\rangle$
- $B_{\mathrm{SR}}=2$-body scat. length
- $A_{\mathrm{LR}}^{\prime} \propto\left|\Phi_{123}(0,0)\right|^{2}$ or some derivative
- B_{SR}^{\prime} some (connected) three-body "scattering length" that becomes infinite for $g \rightarrow g_{3}^{\text {cr }} \simeq 0.8$

Summary

- $V(r)=V_{\text {ext }}+V_{\text {int }}$
- 2-body
- 2-body energy shift understood in terms of scattering length of the inner potential
- rearrangement $=$ sudden change when the inner potential develops its own spectrum
- 3-body
- restricted to three bosons with simple potentials
- calculations delicate with a superposition of LR and SR
- the onset of Borromean 3-body binding in SR is seen in the "atomic" spectrum
- aim: calculate $K^{-} p p$ to "see" the hadronic molecule
- many open questions remaining

