

Description of neutron-rich light nuclei

⁴n experiment

As searching for Bigfoot (Hibagon): even though nobody have proved its existence, it does not prove contrary.

¹⁺Be→¹⁰Be+⁺n: 6 events consistent with bound or resonant F.M. Marqués et al: Phys. Rev. C 65 (2002) 044006 et arxív:nucl-ex/0504009

K. Kísamorí et al., Phys. Rev. Lett. 116 (2016) 052501

2

⁴n to be or not to be?

²n is allready resonant in ¹S₀ state

N-N	AV18	ινογ	Reíd9З	Exp
ann (fm)	-18.49	-18.60	-17.54	-18.5(4)
r_{o} (fm)	2.84	2.82	2.84	2.80(11)
$r(V_{min})$	0.874		0.930	-
γ_{s}	1.080	1.102	1.087	-

- Enhancement factor $\gamma_s \sim 1.09 (v_{\gamma} = \gamma v_{nn})$ is enough to bind 2n in 10 shows
- Pauli principle pri-from binding! Att $a_{ff} \rightarrow +\infty: a$ $(a_{ff} \rightarrow +\infty: a)$ D. S. Petrov, C. Salomon, av Lett. 93, 090404 $a_{ff} \rightarrow +\infty: a$ $(a_{ff} \rightarrow +\infty: a)$ $a_{ff} \rightarrow +\infty: a$ $(a_{ff} \rightarrow +\infty: a)$ $a_{ff} \rightarrow +\infty: a$ $(a_{ff} \rightarrow +\infty: a)$ $(a_{ff} \rightarrow +\infty: a)$ $(a_{ff} \rightarrow$

Azíz

9

³He-³He

R. Guardíola, J. Navarro, Phys. Rev. Lett. 84 (2001) 1144

Theory

✓ Not-bound (almost in unison)

S. Pieper, PRL 90 (2003):252501

C. Bertulaní & V. Zelevínsky, J. Phys. G 29 2431, (2003) N.K. Tímofeyuk, <u>arXív:nucl-th/0203003</u> R.L., PhD thesís Uníversíté Joseph Fourrier (2003)

✓ Is Resonant ???

What is resonance?

In physics, **resonance** is a phenomenon in which a vibrating system or external force drives another system to oscillate with greater amplitude at a specific preferential frequency.

Some are spectacular... n+241 Am at nTOF (CERN)

Others get Nobel prize ... CMS

- Simplistic NN interactions
- Realistic NN interactions

J. Carbonell (IPNC

Theory

✓ Not-bound (almost in unison)

S. Pieper, PRL 90 (200 3):252501

C. Bertulaní § V. Zelevinsky, J. Phys. G 29 2431, (2003) N.K. Tímofeyuk, <u>arXív:nucl-th/0203003</u>

R.L., PhD thesis Université Joseph Fourrier (2003)

✓ Is Resonant ???

What is resonance?

Controversial models

✓ Not-bound (almost in unison)

S. Pieper, PRL 90 (200 3):252501

C. Bertulaní & V. Zelevínsky, J. Phys. G 29 2431, (2003) N.K. Tímofeyuk, <u>arXív:nucl-th/0203003</u> R.L., PhD thesís Uníversíté Joseph Fourrier (2003)

✓ Is Resonant ???

What is resonance?

- a. S-matrix pole.. One can always find some S-matrix poles. Physical poles, non-physical little shaky, but we are used to it..
- S. Píeper, Phys. Rev. Lett. 90 (2003):252501
- S. Gandolfi et al., <u>arXiv:1612.01502</u> -realistic interaction
- M. Shírokov et al., Phys. Rev. Lett. 117, 182502 (2016) questionable models and stability of the rsults!!!

"This suggests that there might be a ⁴n resonance near 2 MeV, but since the GFMC calculation with no external well shows no indication of stabilizing at that energy, the resonance, if it exists at all, must be very broad."

*ACCC: Analytic Continuation in the coupling constant V. I. Kukulin, V. M. Krasnopol'sky, J. Horáček : "Theory of Resonances_ Principles and Applications"

- Símplístic NN ínteractions
- Realístic NN interactions

Theory

7

✓ Not-bound (almost in unison)

S. Pieper, PRL 90 (25 Pt 1): 252501

C. Bertulaní & V. Zelevinsky, J. Phys. G 29 2431, (2003) N.K. Tímofeyuk, <u>arXív:nucl-th/0203003</u>

R.L., PhD thesis Université Joseph Fourrier (2003)

✓ Is Resonant ???

What is resonance?

a. S-matrix pole.. One can always find some S-matrix poles. Physical poles, non-physical little shaky, but we are used to it..

No observable ³n resonances:

A. Csótó et al., Phys. Rev. C 53, 1589 (1996) H. Wítala et al., Phys. Rev. C 60, 024002 (1999) A. Hemmdan et al., Phys. Rev. C 66, 054001 (2002) R.L et al., Phys. Rev. C 71, 044004 (2005)

No observable ⁴n resonances:

S. A. Sofianos et al., J. Phys. G 23, 1619 (1997).

Araí. K, Phys. Rev. C 68 (2003): 034303

R.L et al., Phys. Rev. C 93, 044004 (2016), Phys. Rev. C 72, 034003 (2005)

- Símplístic NN interactions
- Realístic NN interactions

Theoretical tools

R. L. & Jaume Carbonell

- ✓ Faddeev-Yakubovsky equations in configuration space
 - ✓ FY equations in configuration space
 - Partíal-wave expansion in angular momentum, spin, isospin
 - ✓ Expansion in Lagrange-mesh basis
 - D. Baye, Physics Reports 565 (2015) 1

Emíko Híyama & Masayasu Kamímura

 \checkmark Gaussian expansion method

Solution technique

- ✓ Schrodinger equation
- Expansion in Gaussians with ranges in geometric progression

M. Kamímura, Phys. Rev. A 38, 621 (1988); E. Híyama et al., Progress ín Partícle and Nuclear Physics 51 (2003) 223

✓ C.S method for resonances

J. Nuttal and H. L. Cohen, Phys. Rev. **188** *(1969) 1542* T. Myo, Y. Kíkuchí et al.: Prog. Part. Nucl. Phys. 79 (2014) 1

- Well-adapted for the scattering process
- 😕 Non-variational, slow convergence
- ✓ Iteratíve línear algebra methods

Matrix síze ~107

✓ Full matrix diagonalisation,

Matríx síze ~10 000

CS method

E. H. and M.K. technique due to diagonalisation of full matrix allows to identify also resonances in a vicinity of real-E axis, which does not necessarily evolve from b.s. But we have not observed such!

Within CS method and according Balslev and Combes thorem. The energy pole is stable with respect to θ . Re(E) corresponds to energy with respect to 4n breakup threshold. Im(E) corresponds to $\Gamma/2$.

E. Balslev and J. M. Combes, Commun. Math. Phys 22, 1971, 280

How to favorize ^An, maybe something missing?

NN interactions are not perfect. in particular nn part!

TABLE III. Enhancement factor values (γ'_c) at which dineutron resonances become subthreshold ($\varepsilon_{res} = 0$), and imaginary energy values Im (E)(γ'_c) at this point (MeV). Resonance energy E_{res} for physical *nn* interaction (i.e., at $\gamma = 1$) obtained using ACCC method.

	${}^{3}P_{0}$			$^{3}PF_{2}$				
	Nijm II	Reid 93	AV14	AV18	Nijm II	Reid 93	AV14	AV18
γ_c'	2.27	2.26	2.08	2.24	1.64	1.71	1.46	1.73
$\operatorname{Im}(E)(\gamma_c')$	-10.2	-10.3	-10.6	-10.2	-45.6	-36.9	-56.2	-40.3
$E_{\rm res}(\gamma=1)$	-14.1 - 17.2i	-14.2 - 18.5i	-10.3 - 18.1i	-12.1 - 18.0i	-20.5-64.8i	-15.9-39.9 <i>i</i>	-17.9-80.1 <i>i</i>	-34.1 - 45.4i

How to favorize ³n, maybe something missing?

5

W=27

- ACCC

CS

0

Re(E) (MeV)

=2.8

10

 $\gamma = 3.7$

W=420

-3

-6

-12

m(*E*) (MeV)

NN interacti

• nn S-waves (results at unit

• nn **P-waves:** 1. If one boost i 2. If one boost i boost factor to h $\gamma_P \sim 1$.:

> TABLE IV. *nn* channel to $J^{\pi} = 2^{-}$ dinet

 $\gamma_c(^3n)$ $E(^2n)$ MeV

J. Carbonell

FIG. 6. (Color online) $J^{\pi} = 3/2^{-}$ three-neutron state resonance trajectory obtained when reducing the strength W of phenomenological Yukawa-type force (open circles for CS and solid line+star points for ACCC methods). The trajectory depicted by full circles represents one obtained using CS, when reducing enhancement factor γ for ${}^{3}P_{2}-{}^{3}F_{2}$ nn interaction. The trajectory depicted by full squares is the dineutron resonance path in the ${}^{3}P_{2}-{}^{3}F_{2}$ channel, obtained by enhancing nn interaction in these waves. Presented results are based on the Reid 93 model. the nuclear data.

.ant(bound) ⁺n. However

attering.

), **R. L.** ¹¹

How to favorize ⁴n, maybe something missing?

NN interactions are not perfect, in particular nn part!

- nn S-waves can not render dineutron pairs attractive (results at unitarity limit!!). Moreover they are the most constrained by the nuclear data.
- nn P-waves: (³PF₂ attractive, ³P₀ is moderate, ³P₁ is very repulsive)
- If one boost all the P-waves 'democratically'. Dineutron becomes resonant (bound)
 If one boost only attractive P-waves, one may get bound or resonant ⁴n. However
 boost factor to have reasonable resonant ⁴n should be *x* ~2111

How to favorize ⁴n, maybe something missing?

NN interactions are not perfect, in particular nn part!

- nn S-waves can not render dineutron pairs attractive (results at unitarity limit!!). Moreover they are the most constrained by the nuclear data.
- nn P-waves: (³PF₂ attractive, ³P₀ is moderate, ³P₁ is very repulsive)
- If one boost all the P-waves 'democratically'. Béffettenet bétéhiteteresonant40065 und)
 If one boost only attractive P-waves, one may get bound or resonant 4n. However

boost factor to have reasonably resonant ${}^{4}n$ should be $\gamma_{P} \sim 3!!!$

pencies in nuclear scatterina.

Theory

R.L., Jaume Carbonell; Physical Review C 72 (2005) 034003

• V_{nn} interaction Reid 93

 $\rho_0 = 2.5 \, fm$

- No *V*_{nnn}
- Collective interaction is added and then gradualy removed:

$$V_{4n} = We^{-\rho/\rho_0}; \ \rho = \sqrt{2(r_1^2 + r_2^2 + r_3^2 + r_4^2)}$$

 0^{+} J^{π} 0^{-} 1- 2^{-} 1^{+} 2^+ W_0 38.7022.9022.9238.6738.6840.38W'3.53.03.23.93.64.1 $E_{res}(W=0)$ -1.0-9.9i -1.1-9.8i -1.4-9.7i -1.1-6.3i -1.1 -6.5i -1.4-10.9i

If there is a S-matrix pole, which does not evolve from b.s.

Effect of uncertainty in nn interaction, presence of 3NF

If resonance is not related to S-matrix pole

Not answered:

1)

2)

3)

How to favorize ⁴n, maybe something is missing?

NN interactions are not perfect, in particular nn part!

- nn S-waves can not render dineutron pairs attractive (results at unitarity limit). Moreover they are the most constrained with nuclear data, most accurate.
- nn P-waves: (³PF₂ attractive, ³P₀ is moderate, ¹P₁ ξ ³P₁ very repulsive)

1. If one boost all the P-waves 'democratically'. Dineutron becomes resonant (bound) 2. If one boost only attractive P-waves, one may get bound or resonant 4n. However boost factor to have reasonably resonant 4n should be $\gamma_P \sim 3!!!$

 $\gamma_{\rm P}$ ~1.1 is enough to account for the dis \sim

• But ⁴n system still has the last Trump card:

ear scattering.

3nF: the last Joker

Sísyphe effect of the traditional 3NF's in neutron rich systems:

Explore an effect of 3nF

AV8' + Coulomb force

B.E. (³H): -7.76 MeV B.E. (³He): -7.02 MeV B.E (⁴He) =-25.1 MeV

AV8' + Coulomb force +

B.E. $({}^{3}H)$: -8.42 MeV B.E. $({}^{3}He)$: -7.74 MeV B.E $({}^{4}He)$ =-28.44 MeV rms $({}^{4}He)$ =1.658 fm

Experiment:

B.E. $({}^{3}H)$: -8.48 MeV B.E. $({}^{3}He)$: -7.77 MeV B.E $({}^{4}He)$ = -28.30 MeV rms $({}^{4}He)$ = **1.671** ± 0.014 fm (EXP)

$$V_{ijk}^{3N} = \sum_{T=1/2}^{3/2} \sum_{n=1}^{2} W_n(T) e^{-(r_{ij}^2 + r_{jk}^2 + r_{ki}^2)/b_n^2} \mathcal{P}_{ijk}(T)$$

 $W_1(T=1/2) = -2.04 \text{ MeV}$ $b_1 = 4.0 \text{ fm}$ $W_2 = +35 \text{ MeV}$ $b_2 = 0.75 \text{ fm}$

Explore an effect of 3nF

Explore effect of 3nF

Explore effect of 3nF

AV8' + Coulomb force +

 $V_{ijk}^{3N} = \sum_{T=1/2}^{3/2} \sum_{n=1}^{2} W_n(T) e^{-(r_{ij}^2 + r_{jk}^2 + r_{ki}^2)/b_n^2} \mathcal{P}_{ijk}(T)$

 $W_1(T=3/2) = free$ $W_2 = +35 MeV$

energy trajectories for **J** =2⁻ § **J** =2⁺ states, qualitatively the same, but even larger W₁ are involved

Little dependence on NN interaction

J. Carbonell (IPNO), E. Hiyama & M. Kamimura (Riken), R. L.

Reality of strongly attractive 3nF: n-³H scattering

Approximation of the experimental observable

b. And if rapid variation of observables without presence of S-matrix poles in the vicinity?

Caluccí G., Ghírardíl C, Phys. Rev. 169 (1968) 1339

J. Carbonell (IPNO), E. Hiyama & M. Kamimura (Riken), R. L.

5H system

Reference	Method	E_R (MeV)	Г (MeV) 4-6	
[7]	Cluster, model with source	2–3		
[23]	Three-body cluster	2.5-3	3–4	
[31,35]	Cluster, J-matrix, resonating group model	1.39	1.60	
[36]	Cluster, complex scaling adiabatic expansion	1.57	1.53	
[32]	Cluster, generator coordinate method	≈ 3	\approx 1–4	
[33]	Cluster, complex scaling	1.59	2.48	
[34]	Cluster, analytic coupling in continuum constant	1.9 ± 0.2	0.6 ± 0.2	

TABLE II. Summary of some theoretical results for ⁵H. Resonance energies are given relative to ${}^{3}H + 2n$.

5H system

$^{3}PF_{2}$ wave enhancement factor needed to bind

² n	³ n	⁴ n	⁴ H	⁵ H	Pot.
4.39	3.99	3.55	2.50	~2.40	AV18
4.42	3.98	3.53	2.35		INOY
5.38	4.80	4.20	2.76	2.68	N3LO

25

Conclusion

- Existence of the bound ⁴n system is not consistent with the modern nuclear interaction models
- Presence of the observable resonant ⁴n states also seems to be inconsistent with our current understanding of nuclear interaction
- If this resonance reconfirmed experimentaly there remain three posibilities with increasing theoretical challenge to unveil the underlaying phenomena:
 - The observed resonant behavior is not artifact of resonant ⁴n, but some complex reaction mechanism involving 12-nucleons
 - ✓ We have non-standard resonance in ⁴n, which appears without presence of S-matrix pole in vicinity of real energy axis
 - We fail to understand nuclear dynamics based on nucleon degrees of freedom

<u>Acknowledgements:</u> The numerical calculations have been performed at IDRIS (CNRS, France). We thank the staff members of the IDRIS computer center for their constant help.