Description of neutron-rich light nuclei

J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

${ }^{4} \mathrm{n}$ experiment

As searching for Bigfoot (Hibagon): even though nobody have proved its existence, it does not prove contrary.

Wewscientist|

${ }^{14} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+{ }^{4} \mathrm{n}: 6$ events consistent with bound or resonant
F.M. Marqués et al: Phys. Rev. C 65 (2002) 044006 et arxív:nucl-ex 0504009

As in most experiments of this sort, however, a negative result cannot be regarded as conclusive and further experiments are needed to give additional weight to our result.
P. Schiffer and R. vandenbosch, "'search for a Particle-Stable TetraNeutron," Phys. Lett. 5292 (1963)

- ${ }^{4} \mathrm{He}\left(\gamma, 2 \pi^{+}\right)^{4} n$
- ${ }^{4} \mathrm{He}\left(\pi^{-}, \pi^{+}\right)^{4} n$
T. P. Gorrínge et al., Phys. Rev. C 40,239
- $\mathrm{Fli}^{-}\left(\pi^{3}{ }^{3}+\mathrm{He}\right)^{4} n$
Y.A.Batusov et al., Sov...Nucl.Phys. 26, 129 (1977)
- Flílí

PRL 116, 052501 (2016)

 $1111111 \mid 11111$ ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right)^{4} \mathrm{n}:$
K. Kisamorí et al., Phys. Rev. Lett. 116 (2016) 052501
J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

- 2n is allready resonant in ${ }^{1} S_{0}$ state

$n-n$	AV18	INOY	Reídg3	Exp
$a_{n n}(f m)$	-18.49	-18.60	-17.54	$-18.5(4)$
$r_{0}(f m)$	2.84	2.82	2.84	$2.80(11)$
$r\left(V_{\text {min }}\right)$	0.874		0.930	-
γ_{s}	1.080	1.102	1.087	-

- Enhancement factor $\gamma_{s} \sim 1.09\left(\nabla_{\gamma}=\gamma \nabla_{n n}\right)$ is enough to bind $2 n \cdots 1$ - -inn.
- Pauli príncíple pre from binding! Att

$$
a_{f f} \rightarrow+\infty: a .
$$

D. S. Petrov, C. Salomon, ar Lett. 93,090404 G.V. Skorniakov and K.A. Teor. Phys. 31, 775 (1956)

Theory

\checkmark Not-bound (almost in unison)

S. Píeper, PRL go(200 3):252501
C. Bertulani \& V. Zelevinsky, J. Phys. G 29 2431, (2003)
N.K. Timofeyuk, arxiv:nucl-th/0203003
R.L., PhD thesis Universíté Joseph Fourrier (2003)
\checkmark is Resonant ???
What is resonance?
In physics, resonance is a phenomenon in which a vibrating system or external force drives another system to oscillate with greater amplitude at a specific preferential frequency.
some are spectacular...n+241 Am at nTOF (CERN)

Others get Nobel prize... CMS

- Simplistic NN interactions
- Realistic NN interactions

Theory

\checkmark Not-bound (almost in unison)
S. Pieper, PRL go (200 3):252501
C. Bertulani \& V. Zelevinsky,J. Phys. G 29 2431, (2003)
N.K. Timofeyuk, arxiv:nucl-th/0203003
R.L., PhD thesis université joseph Fourrier (2003)
\checkmark is Resonant ???
What is resonance?
In physics, resonance is a phenomenon in which a vibrating system or external force greater amplitude at a s
a. S-matrix pole.. One ch physical poles, non-pl

Controversial models

\checkmark Not-bound (almostin unison)
S. Pieper, PRL go (200 3):252501
c. Bertulani \& V. Zelevinsky, J. Phys. G 29 2431, (2003)
N.K. Timofeyuk, arxiv:nucl-th/0203003
R.L., PhD thesis université joseph Fourrier (2003)
\checkmark is Resonant???
What is resonance?
a. S-matrix pole.. One can always find some s-matrix poles. physical poles, non-physical little shaky, but we are used to it..
S. Pieper, Phys. Rev. Lett. go (2003):252501
s. Gandolfi et al., arxiv:1612.01502-realistic interaction
M. Shírokov et al., Phys. Rev. Lett. 117, 182502 (2016) questionable models and stability of the rsults!!!

"This suggests that there might be a ${ }^{4} n$ resonance near 2 MeV , but since th GFMC calculation with no external well shows no indication of stabilizing at that energy, the resonance, if it exists at all, must be very broad."

* ACCC: Analytic continuation in the coupling constant V.1. Kukulín, V. M. Krasnopol'sky, J. Horačele: "Theory of Resonances_ Princíples and Applícations"
- Simplistic NN interactions
- Realistic NN interactions

J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

Theory

\checkmark Not-bound (almostin unison)
S. Píeper, PRL go (25 Pt 1):252501
C. Bertulani \& V. Zelevinstey.J. Phys. G 29 2431, (2003)
N.K. Timofeyuk, arxiv:nucl-th/0203003
R.L., PhD thesis université joseph Fourrier (2003)
\checkmark is Resonant???
What is resonance?
a. S-matrix pole.. One can always find some s-matrix poles. physical poles, non-physical little shaky, but we are used to it..
No observable ${ }^{3} n$ resonances:
A. Csótó et al., Phys. Rev. C 53, 1589 (1996)
H. Witala et al., Phys. Rev. c 60, 024002 (1999)
A. Hemmdan et al., Phys. Rev. C 66, 054001 (2002)
R.Let al., Phys. Rev. C71, 044004 (2005)

No observable ${ }^{4} n$ resonances:
S. A. Sofianos et al., J. Phys. 4 23, 1619 (1997).

Araí. K, Phys. ReV. C 68 (2003):034303
R.Let al., Phys. Rev. c 93, 044004 (2016), Phys.

ReV.C72, 034003 (2005)

- Simplistic NN interactions
- Realistic NN interactions

Theoretical tools

R.L. E Jaume carbonell

Emiko Hiyama \& Masayasu Kamimura
Faddeev-Yakubovsley equations in configuration space

Solution technique

```
\checkmark ~ F Y ~ e q u a t i o n s i n c o n f i g u r a t i o n ~ s p a c e ~ \ ~ s c h r o d i n g e r ~ e q u a t i o n ~
    \checkmark ~ P a r t i a l - w a v e ~ e x p a n s i o n ~ i n ~ a n g u l a r ~
    momentum, spin, isospin
\checkmark \text { Expansioninlagrange-meshbasis } \checkmark \text { Expansion in Gaussians with ranges in}
    D. Baye, Physics Reports }565\mathrm{ (2015)1
    geometric progression
    M. Kamimura, Phys. Rev. A 38, 621 (1988); E. Hiyama et al.,
    Progress in Particle and Nuclear Physics 51 (2003)}22
    \checkmark CSmethod for resonances
    J. Nuttal and H.L. Cohen, Phys. Rev. }188\mathrm{ (1969)1542
    T. Myo, Y. Kikuchi et al.: Prog. Part. Nucl. Phys. 79 (2014)1
```

() Well-adapted for the scattering process
(:) Non-variational, slow convergence
\checkmark Iterative linear algebra methods \checkmark Full matrix diagonalisation,
Matrix size ~107
J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

CS method

E. H. and M.K. technique due to diagonalisation of full matrix allows to identify also resonances in a vicinity of real-E axis, which does not necessarily evolve from b.s.
But we have not observed such!

Within cS method and according Balslev and combes thorem. The energy pole is stable with respect to θ. Re(E) corresponds to energy with respect to $4 n$ breakup threshold. $1 m(E)$ corresponds to $\Gamma / 2$.
E. Balslev and J. M. Combes, Commun. Math. Phys 22, 1971, 280

How to favorize ${ }^{\text {An}}$, maybe something missing?

NN interactions are not derfect. in darticular un dart!

- uns-wave (results at un
- un P-waves

1. If one boos
2. If one boos boost factor to $\gamma_{p} \sim$

TABLE III. Enhancement factor values $\left(\gamma_{c}^{\prime}\right)$ at which dineutron resonances become subthreshold $\left(\varepsilon_{\text {res }}=0\right)$, and imaginary energy values $\operatorname{Im}(E)\left(\gamma_{c}^{\prime}\right)$ at this point (MeV). Resonance energy $E_{\text {res }}$ for physical $n n$ interaction (i.e., at $\left.\gamma=1\right)$ obtained using ACCC method.

	${ }^{3} P_{0}$				${ }^{3} \mathrm{PF} \mathrm{F}_{2}$			
	Nijm II	Reid 93	AV14	AV18	Nijm II	Reid 93	AV14	AV18
γ_{c}^{\prime}	2.27	2.26	2.08	2.24	1.64	1.71	1.46	1.73
$\operatorname{Im}(E)\left(\gamma_{c}^{\prime}\right)$	-10.2	-10.3	-10.6	-10.2	-45.6	-36.9	-56.2	-40.3
$E_{\text {res }}(\gamma=1)$	-14.1-17.2i	-14.2-18.5i	-10.3-18.1i	-12.1-18.0i	-20.5-64.8i	-15.9-39.9i	-17.9-80.1i	-34.1-45.4i

How to favorize ${ }^{3} n$, maybe something missing?

NN interactí

the nuclear data.
, ant (bound)
"n. However
attering.

FIG. 6. (Color online) $J^{\pi}=3 / 2^{-}$three-neutron state resonance
$\gamma_{c}\left({ }^{3} n\right)$
$E\left({ }^{2} n\right) \mathrm{MeV}$ trajectory obtained when reducing the strength W of phenomenological Yukawa-type force (open circles for CS and solid line+star points for ACCC methods). The trajectory depicted by full circles represents one obtained using CS, when reducing enhancement factor γ for ${ }^{3} P_{2}-{ }^{3} F_{2} n n$ interaction. The trajectory depicted by full squares is the dineutron resonance path in the ${ }^{3} P_{2}-{ }^{3} F_{2}$ channel, obtained by enhancing $n n$ interaction in these waves. Presented results are based on the Reid 93 model.

How to favorize ${ }^{4} \mathrm{n}$, maybe something missing?

NN interactions are not perfect, in particular un part!

- un s-waves can not render dineutron pairs attractive
(results at unitarity limit!!). Moreover they are the most constrained by the nuclear data.
- nn P-waves: (${ }^{3} P F_{2}$ attractive, ${ }^{3} P_{0}$ is moderate, ${ }^{3} P_{1}$ is very repulsive)

1. If one boost all the P-waves 'democratically'. Dinentron becomes resonant (bound)
2. If one boost only attractive P-waves, one may get bound or resonant ${ }^{4} n$. However boost factor to have roacninalinlis vocninnint 4 in cinnisin ho no ~ 211

$$
\gamma_{P} \sim 1.1 \mathrm{is}
$$

Table 3.5: Critical en

How to favorize ${ }^{4} \mathrm{n}$, maybe something missing?

NN interactions are not perfect, in particular un part!

- un s-waves can not render dineutron pairs attractive (results at unitarity limit!!). Moreover they are the most constrained by the nuclear data.
- nn P-waves: (${ }^{3} P F_{2}$ attractive, ${ }^{3} P_{0}$ is moderate, ${ }^{3} P_{1}$ is very repulsive)

1. If one boost all the P-waves 'democratically'. Binfferkerbet bétbỏ̉ede redsonatiteqbeeund)
2. If one boost only attractive P-waves, one may get bound or resonant ${ }^{4} n$. However boost factor to have reasonably resonant ${ }^{4} n$ should be $\gamma_{p} \sim 3!!!$

Dencies in nuclear scatterina.

Theory

R.L, Jaume Carbonell; Physical Review C72 (2005) 034003

- $V_{n n}$ interaction Reíd 93
- No $V_{n n}$

Not answered:

1) If there is a s-matrix pole, which does not evolve from b.s.
2) Effect of uncertainty in un interaction, presence of 3 NF
3) If resonance is not related to S-matrix pole

- collective interaction is added and then gradualy removed:

$$
V_{4 n}=\mathrm{W} e^{-\rho / \rho_{0}} ; \rho=\sqrt{2\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}\right)}
$$

$$
\rho_{0}=2.5 \mathrm{fm}
$$

J^{π}	0^{-}	1^{-}	2^{-}	0^{+}	1^{+}	2^{+}
W_{0}	38.70	38.67	38.68	22.90	22.92	40.38
W^{\prime}	3.0	3.2	3.9	3.5	3.6	4.1
$E_{\text {res }}(W=0)$	$-1.0-9.9 \mathrm{i}$	$-1.1-9.8 \mathrm{i}$	$-1.4-9.7 \mathrm{i}$	$-1.1-6.3 \mathrm{i}$	$-1.1-6.5 \mathrm{i}$	$-1.4-10.9 \mathrm{i}$

How to favorize ${ }^{4} n$, maybe something is missing?

NN interactions are not perfect, in particular un part!

- un S-waves can not render dineutron pairs attractive
(results at unitarity limit). Moreover they are the most constrained with nuclear data, most accurate.
- nn P-waves: (${ }^{3} P F_{2}$ attractive, ${ }^{3} P_{0}$ is moderate, ${ }^{1} P_{1} \mathcal{S}^{3} P_{1}$ very repulsive)

1. If one boost all the P-waves 'democratically'. Dineutron becomes resonant (bound)
2. If one boost only attractive P-waves, one may get bound or resonant ${ }^{4} n$. However boost factor to have reasonably resonant ${ }^{4} n$ should be $\gamma_{p} \sim 3!!!$
$\gamma_{p} \sim 1.1$ is enough to account for the dis

- But ${ }^{4} n$ system still has the last Trump card:

3nF: the last Joker

sisyphe effect of the traditional 3NF's in neutron rich systems:

Explore an effect of 3nF

AV8' + coulomb force

```
B.E.(3H):-7.76 MeV
B.E. (3He): -7.02 MeV
B.E (4 He)=-25.1 MeV
```

$A V 8^{\prime}+$ coulomb force +

```
B.E.(}\mp@subsup{}{}{3}H):-8.42 MeV
B.E.(3}+\textrm{He}):-7.74\textrm{MeV
B.E (4}+\textrm{He})=-28.44\textrm{MeV
rms}(\mp@subsup{}{}{4}\textrm{He})=1.658 f
```

$$
\begin{gathered}
V_{i j k}^{3 N}=\sum_{T=1 / 2}^{3 / 2} \sum_{n=1}^{2} W_{n}(T) e^{-\left(r_{i j}^{2}+r_{j k}^{2}+r_{k i}^{2}\right) / b_{n}^{2} \mathcal{P}_{i j k}(T)} \\
W_{1}(T=1 / 2)=-2.04 \mathrm{MeV} \quad b_{1}=4.0 \mathrm{fm} \\
W_{2}=+35 \mathrm{MeV} \\
b_{2}=0.75 \mathrm{fm}
\end{gathered}
$$

Experiment:

```
B.E.(3H):-8.48 MeV
B.E.(3}+\mp@subsup{}{}{(}+):-7.77 MeV
B.E(4
    rms(4}\mp@subsup{}{}{4}\textrm{He})=1.671\pm0.014 fm (EXP
```

AV8 ${ }^{\prime}+$ coulomb force +

$$
\begin{gathered}
V_{i j k}^{3 N}=\sum_{T=1 / 2}^{3 / 2} \sum_{n=1}^{2} W_{n}(T) e^{-\left(r_{i j}^{2}+r_{j k}^{2}+r_{k i}^{2}\right) / b_{n}^{2}} \mathcal{P}_{i j k}(T) \\
\\
W_{1}(T=1 / 2)=-2.04 \mathrm{MeV} \\
\\
W_{2}=+35 \mathrm{MeV}
\end{gathered} \begin{aligned}
& b_{1}=4.0 \mathrm{fm} \\
& b_{2}=0.75 \mathrm{fm}
\end{aligned}
$$

2) : FF of inelastic e scatt.

J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

Explore effect of 3 nF

Explore effect of 3nF

$$
\begin{gathered}
V_{i j k}^{3 N}=\sum_{T=1 / 2}^{3 / 2} \sum_{n=1}^{2} W_{n}(T) e^{-\left(r_{i j}^{2}+r_{j k}^{2}+r_{k i}^{2}\right) / b_{n}^{2}} \mathcal{P}_{i j k}(T) \\
W_{1}(T=3 / 2)=\text { free } \\
W_{2}=+35 \mathrm{MeV}
\end{gathered} \quad b_{1}=4.0 \mathrm{fm} .
$$

energy trajectories for $\jmath=2^{-}$\& $J=2^{+}$states, qualitatively the same, but even larger W_{1} are involved

Little dependence on NN interaction

J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

Approximation of the experimental observable

```
b. And if rapid variation of observables without presence of
    s-matrix poles in the vicinity?
```

caluccí G., Ghírardíl C, Phys. Rev. 169 (1968) 1339

J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

5H system

TABLE II. Summary of some theoretical results for ${ }^{5} \mathrm{H}$. Resonance energies are given relative to ${ }^{3} \mathrm{H}+2 n$.

Reference	Method	$E_{R}(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$
$[7]$	Cluster, model with source	$2-3$	$4-6$
$[23]$	Three-body cluster	$2.5-3$	$3-4$
$[31,35]$	Cluster, J-matrix, resonating group model	1.39	1.60
$[36]$	Cluster, complex scaling adiabatic expansion	1.57	1.53
$[32]$	Cluster, generator coordinate method	≈ 3	$\approx 1-4$
$[33]$	Cluster, complex scaling	1.59	2.48
$[34]$	Cluster, analytic coupling in continuum constant	1.9 ± 0.2	0.6 ± 0.2

5H system

${ }^{3}$ PF $_{2}$ wave enhancement factor needed to bind

${ }^{2} \mathrm{n}$	${ }^{3} \mathrm{n}$	${ }^{4} \mathrm{n}$	${ }^{4} \mathrm{H}$	${ }^{5} \mathrm{H}$	Pot.
4.39	3.99	3.55	2.50	~ 2.40	AV18
4.42	3.98	3.53	2.35		INOY
5.38	4.80	4.20	2.76	2.68	N3LO

J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

Conclusion

- Existence of the bound ${ }^{4} \mathrm{n}$ system is not consistent with the modern nuclear interaction models
- Presence of the observable resonant ${ }^{4} \mathrm{n}$ states also seems to be inconsistent with our current understanding of nuclear interaction
- If this resonance reconfirmed experimentaly there remain three posibilities with increasing theoretical challenge to unveil the underlaying phenomena:
\checkmark The observed resonant behavior is not artifact of resonant ${ }^{4} n$, but some complex reaction mechanism involving 12-nucleons
\checkmark We have non-standard resonance in ${ }^{4} \mathrm{n}$, which appears without presence of S-matrix pole in vicinity of real energy axis
\checkmark We fail to understand nuclear dynamics based on nucleon degrees of freedom

Acknowledgements: The numerical calculations have been performed at IDRIS (CNRS, France). We thank the staff members of the IDRIS computer center for their constant help.

J. Carbonell (IPNO), E. Hiyama \& M. Kamimura (Riken), R. L.

