

Heavy hydrogens studied by transfer

D. Beaumel, IPN Orsay

ESNT, Saclay Jan 30 – Feb 3, 2017

Transfer studies with light exotic nuclei

Extensive studies could be performed during the last 15 years by our collaboration (IPN Orsay, CEA/Saclay, GANIL)

Recently : make use of ab initio overlaps in cross-section calculations

Landscape of Si detectors for DR studies

Light Beams

Fission fragments

Particle spectrocopy

E_x resolution: ~500keV

Particle-Gamma Spectroscopy

E_x resol.: ~5keV (AGATA case)

The (d,⁶Li) reaction

- Well-established as alpha-transfer reaction
- Simple α-transfer process DWBA suitable for e.g. clustering studies
- > Peripheral
- ⁶Li overlaps well with α+d (low E_{sep}, e⁻ scattering)
 Sizeable cross-sections
- ➤ Mainly GS and 3⁺ of ⁶Li are populated

Search for tetraneutron via α transfer @ GANIL: ⁸He(d,⁶Li)

$${}^{6}\text{Li}_{gs} = \alpha + d$$

$${}^{8}\text{He}_{gs} = \alpha + 4 n$$

$$= \alpha + {}^{4}n + \dots$$

M.V. Zhukov et al, PRC 50 (1994)

for bound tetraneutron

Some DWBA predictions...

study of the ⁸He+d system

Results for ¹²C(d,⁶Li_{gs})

Results for ¹²C(d,⁶Li^{*})

⁸He(d,⁶Li)4n spectrum

⁸He(d,³He)⁷H

Identification of ³He

Spectra for ⁷H

Resonance parameters still ambiguous

⁵H and ${}^{6}_{\Lambda}$ H

Experiment FINUDA ⁶Li(K⁻,π⁺)⁶_ΛH

Theory

Results on ⁵H from previous studies

- ✓ 2n transfer on triton
- ✓ 1p removal from ⁶He
- \checkmark pion absorption

Reaction	Detected	E_R (MeV)	Γ (MeV)	$E_{\text{beam}} (A \text{ MeV})$
${}^{3}\mathrm{H}(t,p){}^{5}\mathrm{H}$	р	≈ 1.8	≈ 1.5	7.42
${}^{6}\text{He}(p,2p){}^{5}\text{H}$	2p	1.7 ± 0.3	1.9 ± 0.4	36
${}^{3}\mathrm{H}(t,p){}^{5}\mathrm{H}$	t, p, n	1.8 ± 0.1	< 0.5	19.2
${}^{3}\mathrm{H}(t,p){}^{5}\mathrm{H}$	t, p, n	pprox 2	-	19.2
${}^{3}\mathrm{H}(t,p){}^{5}\mathrm{H}$	t, p, n	≈ 2	≈ 1.3	19.2
${}^{6}\text{He}({}^{12}\text{C}, X + 2n){}^{5}\text{H}$	t,2n	≈ 3	pprox 6	240
${}^{6}\text{He}(d, {}^{3}\text{He}){}^{5}\text{H}$	³ He, <i>t</i>	1.8 ± 0.1	< 0.6	22
${}^{6}\text{He}(d, {}^{3}\text{He}){}^{5}\text{H}$	3 He,t	1.8 ± 0.2	1.3 ± 0.5	22
${}^{6}\text{He}(d, {}^{3}\text{He}){}^{5}\text{H}$	³ He, <i>t</i>	1.7 ± 0.3	pprox 2.5	22
${}^{9}\text{Be}(\pi^{-}, pt)^{5}\text{H}$	p,t	5.2 ± 0.3	5.5 ± 0.5	$E_{\pi} < 30 \text{ MeV}$
$^{9}\mathrm{Be}(\pi^{-},dd)^{5}\mathrm{H}$	p,t	6.1 ± 0.4	4.5±1.2	$E_{\pi} < 30 \text{ MeV}$

Latest results on ⁶He(d,³He)

⁶He(d,³He)⁵H 55 A.MeV, MSU-HiRA

Wuosmaa et al., PRC 95 (2017)

Very negative Q-values Poorly momentum matched

"intrinsic" lineshape (R-Matrix presciption) $\sigma(E) \propto \frac{\Gamma}{(E - E_R)^2 + \Gamma^2/4},$ $\Gamma = 2P_L(E)\gamma^2, \qquad \gamma^2 = S\gamma_{\rm s.p.}^2.$

- Distorted by Q-value dependence of cross-section
- Simulation of exp setup (decay mode of ⁵H, etc...)
- Assume no excited states (small overlap with ⁶He GS for both SM and GFMC calc)

Latest results on ⁶He(d,³He)

Discussion:

- "Possibly compatible with some previous data" when taken into account suppression of high energy tail at low bombarding energy
- Only 2.4 MeV above threshold attainable ٠ in t(t,p) of Young et al.
- Interferences of states in t(t,p) ?
- Compatible with p-removal at GSI

If confirmed, would plead for an unbound ⁶_AH

Investigation of ¹⁰He through ¹¹Li(d,³He) reaction

<u>Collaboration</u>: IPN Orsay – RIKEN – GANIL - CEA/Saclay - LPC Caen -JINR Dubna – Kurtchatov Institute - Kyushu Univ. – IPNS KEK – Univ. of Tokyo –Tokyo Inst. of Tech., Univ. Huelva, MSU/NSCL, INP Hanoi

Study of : > ${}^{9}Li(d,{}^{3}He) \rightarrow ({}^{9}Li | {}^{8}He)$ > ${}^{11}Li(d,{}^{3}He) \rightarrow ({}^{11}Li | {}^{10}He)$ "critical" overlap

Study of ^{9,11}Li(d,³He) @ 50 MeV/u at RIKEN/RIPS

- Spectroscopy of populated states
- > Decay pattern (branching ratios)
- Cross-sections

Detector's setup

- Beam tracking detectors (PPAC) upstream of CD2 target
- > 8 MUST2 telescopes around the CD2 target + thin (20 μ m) Si layer (fwd)
- Plastic telescope at zero degrees

Differential cross-sections

- > Full finite range calculations using DWUCK5 (and FRESCO)
- (d|³He) overlap from GFMC (Brida, Pieper, Wiringa, PRC84 (2011))
- Entrance potential : From fit of elastic scattering
- > Exit potential : from Global formula
- > Overlaps:
 - 1. Standard (s.p wave function) ($S^{th} = S^{SM} = 0.93$)
 - 2. Inhomogenous equation ($S^{th} = 0.391$)
 - 3. VMC ($S^{th} = 0.5727$)

Shape well-reproduced by DWBA calculations (I=1 transfer)

A.Matta et al., PRC 92, 041302(R)(2015)

Spectrum for ⁹Li(d,³He) @ 50 MeV/u

⁸He^{GS} energy and width in agreement will full simulation

Spectrum for ⁹Li(d,⁶Li)⁵H @ 50 MeV/u

PID of particles in forward MUST2 telescopes

- Statistics seems low (high beam energy)
- Need consider and add-up :
 - Events with residue out of plastic telescope
 - (d,⁶Li) to ⁶Li(3⁺) $\rightarrow \alpha + d$ channel
 - → Optimized experiment proposal
 - (beam, target, residue detection...)

Multineutrons with A > 4 ?

Some predictions for 6n system

(Phenomenological) Isomorphic Shell Model

G.S. Anagnostatos, Intern. Journ. of Mod. Phys. E (2008)

Reproduce well the binding energies of states in ^{3,5}H, ^{4,5}He, ^{5,6}Li, ⁶Be, ¹¹Be

	Nucleon										
	average	ge		Potential of		Potential of					
	positions	State	Ref. 24			Ref. 32				_	
Nuclei	Nos.	configurations	ΣV	$\langle T \rangle$	E_B	ΣV	$\langle T \rangle$	$E_{\rm so}$	E_B	Com.	Radii
^{2}n	1 - 2	$(1s1/2)^2$	6.9	-10.9	-4.0	7.3	-10.9	0.0	-3.6	inst.	1.33
^{4}n	1-2, 7-8	$(1s1/2)^2(1p3/2)^2$	22.4	-20.0	2.4	23.2	-20.0	0.2	2.2	st.	2.11
⁶ n	1-2, 5-8	$(1s1/2)^2(1p3/2)^4$	38.9	-36.6	2.3	40.6	-36.6	0.4	3.7	st.	2.31

- > ²n definitely unstable
- ➢ ⁴n and ⁶n could be stable or exhibit a L.E. resonance
- ➢ ⁶n more bound than ⁴n

Study of the 6 neutron system

Study of cluster quasifree scattering (p,p α), (p,p⁶He) reactions on neutron-rich Be isotopes @ RIKEN/RIBF

Collaboration: IPNO, RIKEN, Peking U., Hong-Kong U., LPC Caen, Titech, CEA Saclay RCNP Osaka, Tohoku U., CNS Tokyo U., Kyoto U.

¹⁴Be(p,pα) ¹⁰He* └───→ α + 6n

- ➢ High ^{10,12, 14}Be rate at RIBF
- Use SAMURAI for detection of residue

