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1. Emergent versus Spontaneous Symmetry
Breaking.

Spontaneous symmetry breaking:

Ground state of an infinite nonrelativistic guantum system may spontaneously break
symmetry of the Hamiltonian. Example: Ferromagnet. Hamiltonian is rotationally
invariant but ground state is not. (All spins point in same direction.) Hilbert spaces
built on ground states with different spin orientations are not unitarily equivalent
(no unitary transformation connects ground states with different spin orientations).
Infinite ferromagnet cannot be rotated because the overlap of two differently
oriented ground states is zero (infinitely many spins involved).

Effective Field Theory: Spontaneously broken symmetry causes Nambu-Goldstone
modes. These describe low-lying excited states. Except for multiplicative constants,
dynamics of the system is determined entirely by the broken symmetry. No
additional dynamical information required. In the ferromagnet: long-wavelength
spin WaVES. H. Leutwyler, Phys. Rev. D 49 (1994) 3033; J. M. Roman and J. Soto, Int. J. Mod. Phys. B 13 (1999) 755.



Emergent Sym mEtry bl‘eakl ng: C. Yannouleas and U. Landmann, Rep. Prog. Phys. 70 (2007) 2067.

Precursor of spontaneous symmetry breaking in a finite system. A ferromagnet
of finite size may rotate and, thus, realize different spin orientations. With
Increasing size the moment of inertia grows. Rotational modes become ever
more degenerate. In the infinite-size limit, rotation is no longer possible.
Rotational modes are truly degenerate. Their superpositions define different
(localized) direction of spins in ferromagnet.

Symmetry breaking emerges because low-energy spectrum is governed by
combination of Nambu-Goldstone modes and rotations (provided the system is
sufficiently large). Then rotational energy small compared to energy of Nambu-
Goldstone excitations.

Our approach to deformed atomic nuclei:

T. Papenbrock and H. A. Weidenmiiller, Phys. Rev. C 89 (2014) 014334; J. Phys. G: Nucl. Part. Phys. 42 (2015) 105103; Phys. Scr. 91 (2016) 053004.

We work close to the infinite-size limit and consider rotations as the leading
correction to that limit. Nuclear vibrations as Nambu-Goldstone modes.
These survive the infinite-size limit. In the finite-size nucleus, combine these
with rotational degrees of freedom.
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2 . “EffCCtiVe TheOI'y” T. Papenbrock, Nucl. Phys. A 852 (2011) 36;

J. Zhang and T. Papenbrock, Phys. Rev. C 87 (2013) 034323; E. A. Coello Perez and T. Papenbrock, Phys. Rev. C 92 (2015) 014323.
Considers only physics of rotations, and adds vibrations as new degrees of freedom. (In the EFT
vibrations are Nambu-Goldstone modes.)

A precursor to effective field theory: Construct low-energy Hamiltonian from an
effective theory (only time derivatives) with axial symmetry. 5 real quadrupole degrees
of freedom ¢, (time-reversal invariance) . ¢+1 define Euler angles of rotational
motion, remainder defines vibrational modes. ¢o has nonzero expectation value and
defines deformed ground state. Use methods of effective field theory to construct
rotationally invariant Lagrangean. Power counting: £ ~ 100 keV is scale of rotational
motion, 2 ~ 500 keV is scale of vibrational motion, A ~ 1 — 2 MeV is breakdown
scale. With § < Q2 < A effective Lagrangean can be arranged into leading-order,
next-to-leading order, ... terms. Form of terms is fixed, only dimensionless constants
as parameters. Leading order: Vibrational states that are bandheads of rotational
spectra (Bohr model). All moments of inertia are equal. Higher-order terms used to
predict inverse moments of inertia A. J. zhang and T. Papenbrock, Phys. Rev. C 87 (2013) 034323,
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E2 Transitions:

Bohr model has problems. For instance, overprediction by factors 2 to 10 of E2
transitions between the rotational band on top of the O3 vibrational bandhead
and ground-state band in Bohr model. Can effective theory do better? Use gauge
Invariance to construct interaction terms. That generates both minimal and
non-minimal coupling terms (presence of composite objects). Use power counting
to group these into leading order terms, next to leading order terms, etc. Scheme
allows prediction of theoretical uncertainties.

Example: Transitional nuclei (non-rigid rotors with £+ /Ey1 ~ 3 ).
E. A. Coello Perez and T. Papenbrock, Phys. Rev. C 92 (2015) 014323.
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FIG. 6. (Color online) Experimental data (black data points with error bars) for decays within the ground band of '**Os (top left) [81].
54Ga (top right) [17]. 1328 m (bottom left) [14]. and """Nd (bottom right) [16] are compared against LO (red line and corresponding uncertainty
band) and NLO (blue dashed line with corresponding uncertainty band) calculations of the effective theory. At NLO, the quadratic deviation
(in spin f;) from the LO rigid-rotor result is described well by the effective theory.



3. Effective Field Theory.

Symmetry of Hamiltonian is SO(3), deformed ground state is invariant under SO(2).
Coset space SO(3) / SO(2) parametrized by space-dependent fieldsy'z (%, t), 1y (%, t)
and by purely time-dependent angles¢(t), 6(t) . Consider

U — g(¢79)u(¢ma¢y) ’
g(¢7 9) — eXp{_Zngz} eXP{_ZHJy} )
U(%,wy) = exp{—i.J, — '“py*]y} .

Here J,,Jy,J, are components of usual angular momentum.

S. Weinberg, Phys. Rev. 166 (1968) 1568; S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177 (1969) 2239; C. G. Callan, S. Coleman,
J. Wess, and B. Zumino, Phys. Rev. 177 (1969) 2247.

Physical picture: Choose z-axis to coincide with nuclear symmetry axis. Apply

U = g u. Since ¥z, %, depend on space, operator u(v4, ¥, ) distorts every volume
element. Followed by g which generates rotation of distorted nucleus. Identify fields
Yz, ¥y with Nambu-Goldstone modes (these survive the infinite-volume limit,
rotations do not). Small-amplitude approximation for ¥z, %y (harmonic
approximation). Rotations are fully taken into account. Disregard of pairing and
shell structure defines breakdown scale A . Invariants of the theory constructed
from UTA,U and from UTVU. The Infinitely many invariants are ordered using
power counting.



Construction of invariants: With y = ¢, z, y, z write

U‘liaﬂU =ayJ: +ayJy +a;J,

z

Coefficients a,,,a;,, a;, are worked out from U and are building blocks of
(rotational) invariants.

Power counting: o o
Expand in powers of 1., %, ~e << 1. Use 0~ O(1) ¢,0 ~ & by, 10y ~ Qe .
Establish transformation properties of resulting terms under rotations. Construct
low-order invariants. Each is part of effective Lagrangean.

Kinetic terms (time derivatives):
L1, = 6%+ ¢*sin?0,
L1y = 2402+ 2(Upthy — yts)dcost
Lio = (Yathy — hyts)?
Lia = (F+9)Lw .

These are multiplied by constants and added to yield kinetic part of effective
classical Lagrangean. Analogously for potential part (spatial derivatives). Use
power counting to determine order of multiplicative constants.



Classical Lagrangean defines classical field theory. Expand ¥z, %y in spherical
harmonics. Use Legendre transformation to define classical Hamiltonian.
Quantization yields guantum Hamiltonian. Not trivial because of curvilinear
coordinates. Terms of leading order are

H o= e (@K 2[ (07,074 02,02) + W+ 03D DL+ 1)+ D)

That justifies effective theory as a low-energy approximation. Computation of
terms of higher order is possible.

Nambu-Goldstone modes are (infinitely many) quantized vibrations. In terms
of higher order, these interact. In addition, two degrees of freedom to describe
rotations coupled to vibrations.

Small parameters: ratio £/ of energies of rotational motion and of vibrational
motion; ratio /A where A is breakdown parameter; parameter € that measures
anharmonicity.



4. Summary

Spontaneous symmetry breaking in infinite nonrelativistic guantum systems:
Described in terms of Nambu-Goldstone modes.

Emergent symmetry breaking in finite system as precursor of spontaneous
symmetry breaking in infinite system. Additional degrees of freedom required.

In atomic nuclei with deformed ground states: In the infinite-size limit,
Nambu-Goldstone modes are vibrations. Rotational degrees of freedom
provide first-order correction to infinite-size limit. Hence{ < Q2 < A .

Systematic construction of effective Lagrangen and quantized Hamiltonian
using methods of quantum field theory. Power counting leads to identification
of terms of leading order, next to leading order, etc. Construction of
higher-order terms has no ambiguities.

Justification of results obtained in effective theory. Terms of higher order
provide corrections to phenomenological models (Bohr-Mottelson, IBM).
Good agreement with data. Estimates of uncertainties.



