Multi-reference Energy Density Functional calculations for neutrinoless double-beta decay nuclear matrix elements

Tomás R. Rodríguez
ESNT Workshop "Pertinent ingredients for MR-EDF calculations"

Saclay, February, 2017

Acknowledgments

G. Martínez-Pinedo (TU-Darmstadt)
J. Menéndez (TU-Darmstadt/University of Tokyo)
N. López-Vaquero (UAM-Madrid)
J. L. Egido (UAM-Madrid)
A. Poves (UAM-Madrid)
J. Engel (UNC-Chapel Hill)
N. Hinohara (University of Tsukuba)

UA

1. Introduction
2. $0 \mathrm{v} \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

Neutrinoless double beta decay

Process mediated by the weak interaction which occurs in those even-even nuclei where the single beta decay is energetically forbidden.

Neutrinoless double beta decay

Process mediated by the weak interaction which occurs in those even-even nuclei

Neutrinoless double beta decay

$$
{ }_{Z}^{A} X_{N} \Rightarrow{ }_{Z+2}^{A} Y_{N-2}+2 e^{-}
$$

Neutrinoless double beta decay

$$
{ }_{Z}^{A} X_{N} \Rightarrow{ }_{Z+2}^{A} Y_{N-2}+2 e^{-}
$$

- Violates the leptonic number conservation

- Neutrinos are massive Majorana particles
- Mass hierarchy of neutrinos
- Experimentally not observed ($\mathrm{T}_{1 / 2}>10^{25} \mathrm{y}$)
- Beyond the Standard Model
- Most plausible mechanism: exchange of light Majorana neutrinos

Neutrinoless double beta decay

$$
{ }_{Z}^{A} X_{N} \Rightarrow{ }_{Z+2}^{A} Y_{N-2}+2 e^{-}
$$

- Violates the leptonic number conservation
- Neutrinos are massive Majorana particles
- Mass hierarchy of neutrinos
- Experimentally not observed ($\mathrm{T}_{1 / 2}>10^{25} \mathrm{y}$)
- Beyond the Standard Model
- Most plausible mechanism: exchange of light Majorana neutrinos

$$
\left(T_{1 / 2}^{0 \nu \beta \beta}\left(0^{+} \rightarrow 0^{+}\right)\right)^{-1}=G_{01}\left|M^{0 \nu \beta \beta}\right|^{2}\left(\frac{\left\langle m_{\beta \beta}\right\rangle}{m_{e}}\right)^{2}
$$

Neutrinoless double beta decay

$$
{ }_{Z}^{A} X_{N} \Rightarrow{ }_{Z+2}^{A} Y_{N-2}+2 e^{-}
$$

- Violates the leptonic number conservation
- Neutrinos are massive Majorana particles
- Mass hierarchy of neutrinos
- Experimentally not observed ($\mathrm{T}_{1 / 2}>10^{25} \mathrm{y}$)
- Beyond the Standard Model
- Most plausible mechanism: exchange of light Majorana neutrinos
$\left(T_{1 / 2}^{0 \nu \beta \beta}\left(0^{+} \rightarrow 0^{+}\right)\right)^{-1}=G_{01}\left|M^{0 \nu \beta \beta}\right|^{2}\left(\frac{\left\langle m_{\beta \beta}\right\rangle}{m_{e}}\right)^{2}$
Phys. Rev. C 85, 034316 (2012).
Phys. Rev. c 88, 037303 (2013). Phase space factor

Neutrinoless double beta decay

$$
{ }_{Z}^{A} X_{N} \Rightarrow{ }_{Z+2}^{A} Y_{N-2}+2 e^{-}
$$

- Violates the leptonic number conservation
- Neutrinos are massive Majorana particles
- Mass hierarchy of neutrinos
- Experimentally not observed ($\mathrm{T}_{1 / 2}>10^{25} \mathrm{y}$)
- Beyond the Standard Model
- Most plausible mechanism: exchange of light Majorana neutrinos

$$
\left(T_{1 / 2}^{0 \nu \beta \beta}\left(0^{+} \rightarrow 0^{+}\right)\right)^{-1}=G_{01}\left|M^{0 \nu \beta \beta}\right|^{2}\left(\frac{\left\langle m_{\beta \beta}\right\rangle}{m_{e}}\right)^{2}
$$

Experimental status

Only lower limits to the half-lives have been measured so far

Experimental status

Experiment	Decay	Present limit $T_{1 / 2}$	Forecast limit $T_{1 / 2}$	Ref.
GERDA	${ }^{76} \mathrm{Ge}$	$>2.1 \times 10^{25} \mathrm{yr}$	$\sim 2 \times 10^{26} \mathrm{yr}$	PRL. 111, 122503 (2013)
Majorana	${ }^{76} \mathrm{Ge}$	--	$\sim 4 \times 10^{27} \mathrm{yr}$	arXiv:nucl-ex/ 0311013
EXO-200	${ }^{136} \mathrm{Xe}$	$>1.1 \times 10^{25} \mathrm{yr}$	$\sim 1.3 \times 10^{28} \mathrm{yr}$	Nature 510, 229 (2014)
KamLAND-Zen	${ }^{136} \mathrm{Xe}$	$>1.9 \times 10^{25} \mathrm{yr}$	$\sim 4 \times 10^{26} \mathrm{yr}$	PRL 110, 062502 (2013)
NEXT	${ }^{136} \mathrm{Xe}$	--	$\sim 10^{26} \mathrm{yr}$	JINST 7, C11007 (2012)
(Super)NEMO3	${ }^{82} \mathrm{Se}$	$>3.6 \times 10^{23} \mathrm{yr}$	$\sim 1.2 \times 10^{26} \mathrm{yr}$	PRL 95, 182302 (2005)
CUORICINO (cuore)	${ }^{130} \mathrm{Te}$	$>3 \times 10^{24} \mathrm{yr}$	$\sim 2 \times 10^{26} \mathrm{yr}$	PRC 78, 035502 (2008)
(Super)NEMO3	${ }^{150} \mathrm{Nd}$	$>1.8 \times 10^{22} \mathrm{yr}$	$\sim 5 \times 10^{25} \mathrm{yr}$	PRC 80, 032501 (2009)
SNO+	${ }^{150} \mathrm{Nd}$	--	$>1.6 \times 10^{25} \mathrm{yr}$	J. Phys. Conf. Ser. 447,
012065 (2013)				

Neutrino mass hierarchy

2. $0 \mathrm{v} \beta \beta$ transition operator

3. Nuclear structure effects
4. Summary and outlook

Neutrino flavor eigenstates are not the same as the mass eigenstates

$$
U=\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{i \delta} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{1}} & 0 \\
0 & 0 & e^{i \alpha_{1}}
\end{array}\right)
$$

ESNT Workshop | Saclay | Feb 2017 | MR-EDF calculations for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

Neutrino mass hierarchy

2. $0 \mathrm{v} \beta \beta$ transition operator

3. Nuclear structure effects
4. Summary and outlook

Neutrino flavor eigenstates are not the same as the mass eigenstates

$$
U=\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{i \delta} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{1}} & 0 \\
0 & 0 & e^{i \alpha_{1}}
\end{array}\right)
$$

ESNT Workshop | Saclay | Feb 2017 | MR-EDF calculations for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

Neutrino mass hierarchy

2. $0 \mathrm{v} \beta \beta$ transition operator

3. Nuclear structure effects
4. Summary and outlook

Neutrino flavor eigenstates are not the same as the mass eigenstates

$$
U=\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{i \delta} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{1}} & 0 \\
0 & 0 & e^{i \alpha_{1}}
\end{array}\right)
$$

ESNT Workshop | Saclay | Feb 2017 | MR-EDF calculations for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

NME: Starting points

- Leading lepton number violating process contributing to $0 v \beta \beta$ decay
- Exchange of light Majorana neutrino.
- Exchange of heavy Majorana neutrino.
- Leptoquarks.
- Supersymmetric particles.
- ...
- Transition operator connecting initial and final states
- Relativistic/Non-relativistic.
- Nucleon size effects.
- Two-body weak currents.
- Form factors.
- Short-range correlations.
- Closure approximation.
- ...
- Nuclear structure method (fully consistent or not with the operator) for calculating these NME.
- Correlations.
- Symmetry conservation.
- Valence space.

Nuclear structure methods

Method	Recent references
Interacting Shell Model (ISM)	- Phys. Rev. Lett. 100, 052503 (2008).
- Nucl. Phys. A 818, 139 (2009).	
- Phys. Rev. C 87, 014320 (2013).	
	- Phys. Rev. Lett. 113, 262501 (2014).

Current theoretical status

Different methods give different values of NME's with a factor ~ 3 difference

J. M. Yao et al.,Phys. Rev. C 91, 024316 (2015)

J. Barea, J. Kotila and F. Iachello, Phys. Rev. C 87, 014315 (2013)

Current theoretical status

Different methods give different values of NME's with a factor ~ 3 difference

Transition operator

- Relativistic form

$$
\begin{aligned}
\mathcal{H}_{\text {weak }}(x) & =\frac{G_{F} \cos \theta_{C}}{\sqrt{2}} j^{\mu}(x) \mathcal{J}_{\mu}^{\dagger}(x)+\text { h.c. }, \\
j^{\mu}(x) & =\bar{e}(x) \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{e}(x) . \\
\mathcal{J}_{\mu}^{\dagger}(x) & =\bar{\psi}(x)\left[g_{V}\left(q^{2}\right) \gamma_{\mu}+\mathrm{i} g_{M}\left(q^{2}\right) \frac{\sigma_{\mu \nu}}{2 m_{p}} q^{\nu}\right. \\
& \left.-g_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}-g_{P}\left(q^{2}\right) q_{\mu} \gamma_{5}\right] \tau_{-} \psi(x), \\
& M^{0 \nu}\left(0_{I}^{+} \rightarrow 0_{F}^{+}\right) \equiv\left\langle 0_{F}^{+}\right| \hat{\mathcal{O}}^{0 \nu}\left|0_{I}^{+}\right\rangle,
\end{aligned}
$$

$$
\hat{\mathcal{O}}^{0 \nu}=\sum_{i} \hat{\mathcal{O}}_{i}^{0 \nu}, \quad(i=V V, A A, A P, P P, M M)
$$

$$
\hat{\mathcal{O}}_{i}^{0 \nu}=\frac{4 \pi R}{g_{A}^{2}} \int d^{3} x_{1} d^{3} x_{2} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{\mathrm{e}^{\mathrm{i} q \cdot\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)}}{q\left(q+E_{d}\right)}\left[\mathcal{J}_{\mu}^{\dagger} \mathcal{J}^{\mu \dagger}\right]_{i}
$$

$$
\begin{aligned}
& g_{V}^{2}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \gamma_{\mu} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \gamma^{\mu} \tau_{-} \psi\right)^{(2)}, \\
& g_{A}^{2}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \gamma_{\mu} \gamma_{5} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \gamma^{\mu} \gamma_{5} \tau_{-} \psi\right)^{(2)} \\
& 2 g_{A}\left(\boldsymbol{q}^{2}\right) g_{P}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \boldsymbol{\gamma} \gamma_{5} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \boldsymbol{q} \gamma_{5} \tau_{-} \psi\right)^{(2)} \\
& g_{P}^{2}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \boldsymbol{q} \gamma_{5} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \boldsymbol{q} \gamma_{5} \tau_{-} \psi\right)^{(2)} \\
& g_{M}^{2}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \frac{\sigma_{\mu i}}{2 m_{p}} q^{i} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \frac{\sigma^{\mu j}}{2 m_{p}} q_{j} \tau_{-} \psi\right)^{(2)}
\end{aligned}
$$

L. S. Song et al., Phys. Rev. C 90, 054309 (2014).

Transition operator

- Relativistic form

$$
\begin{aligned}
& \mathcal{H}_{\text {weak }}(x)=\frac{G_{F} \cos \theta_{C}}{\sqrt{2}} j^{\mu}(x) \mathcal{J}_{\mu}^{\dagger}(x)+\text { h.c. }, \\
& \hat{\mathcal{O}}^{0 \nu}=\sum \hat{\mathcal{O}}_{i}^{0 \nu}, \quad(i=V V, A A, A P, P P, M M) \\
& \text { L. S. Song et al., arXiv:1407.1368 } \\
& \begin{aligned}
\mathcal{J}_{\mu}^{\dagger}(x) & =\bar{\psi}(x)\left[g_{V}\left(q^{2}\right)\right. \\
& \left.=g_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}-g_{P}\left(q^{2}\right) q_{\mu} \gamma_{5}\right] \tau_{-} \psi(x), \quad g_{A}^{2}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \gamma_{\mu} \gamma_{5} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \gamma^{\mu} \gamma_{5} \tau_{-} \psi\right)^{(2)},
\end{aligned} \\
& 2 g_{A}\left(\boldsymbol{q}^{2}\right) g_{P}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \boldsymbol{\gamma} \gamma_{5} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \boldsymbol{q} \gamma_{5} \tau_{-} \psi\right)^{(2)}, \\
& M^{0 \nu}\left(0_{I}^{+} \rightarrow 0_{F}^{+}\right) \equiv\left\langle 0_{F}^{+}\right| \hat{\mathcal{O}}^{0 \nu}\left|0_{I}^{+}\right\rangle, \\
& g_{P}^{2}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \boldsymbol{q} \gamma_{5} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \boldsymbol{q} \gamma_{5} \tau_{-} \psi\right)^{(2)}, \\
& g_{M}^{2}\left(\boldsymbol{q}^{2}\right)\left(\bar{\psi} \frac{\sigma_{\mu i}}{2 m_{p}} q^{i} \tau_{-} \psi\right)^{(1)}\left(\bar{\psi} \frac{\sigma^{\mu j}}{2 m_{p}} q_{j} \tau_{-} \psi\right)^{(2)} .
\end{aligned}
$$

L. S. Song et al., Phys. Rev. C 90, 054309 (2014).

Transition operator

- Non-relativistic reduction

$$
\begin{gathered}
M^{0 \nu}\left(0_{I}^{+} \rightarrow 0_{F}^{+}\right) \equiv\left\langle 0_{F}^{+}\right| \hat{\mathcal{O}}^{0 \nu}\left|0_{I}^{+}\right\rangle, \\
\hat{\mathcal{O}}^{0 \nu}=\sum_{i} \hat{\mathcal{O}}_{i}^{0 \nu}, \quad(i=V V, A A, A P, P P, M M) \\
\hat{\mathcal{O}}_{i}^{0 \nu}=\frac{4 \pi R}{g_{A}^{2}} \int d^{3} x_{1} d^{3} x_{2} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{\mathrm{e}^{\mathrm{i} q \cdot\left(x_{1}-x_{2}\right)}}{q\left(q+E_{d}\right)}\left[\mathcal{J}_{\mu}^{\dagger} \mathcal{J}^{\mu \dagger}\right]_{i}
\end{gathered}
$$

The non-relativistic "two-current" operator $\left[\mathcal{J}_{\mu}^{\dagger} \mathcal{J}^{\mu \dagger}\right]_{\mathrm{NR}}$ can be decomposed, as in other non-relativistic calculations, into the Fermi, the Gamow-Teller, and the tensor parts:

$$
\begin{equation*}
\left[-h_{\mathrm{F}}\left(\boldsymbol{q}^{2}\right)+h_{\mathrm{GT}}\left(\boldsymbol{q}^{2}\right) \sigma_{12}+h_{\mathrm{T}}\left(\boldsymbol{q}^{2}\right) S_{12}^{q}\right] \tau_{-}^{(1)} \tau_{-}^{(2)} \tag{34}
\end{equation*}
$$

with the tensor operator $S_{12}^{q}=3\left(\boldsymbol{\sigma}^{(1)} \cdot \hat{\boldsymbol{q}}\right)\left(\boldsymbol{\sigma}^{(2)} \cdot \hat{\boldsymbol{q}}\right)-\sigma_{12}$ and $\sigma_{12}=\boldsymbol{\sigma}^{(1)} \cdot \boldsymbol{\sigma}^{(2)}$. Each channel $(K: F, G T, T)$ of Eq. (34) can be labeled by the terms of the hadronic current from which it originates, as

$$
h_{K}\left(\boldsymbol{q}^{2}\right)=\sum_{i} h_{K-i}\left(\boldsymbol{q}^{2}\right), \quad(i=V V, A A, A P, P P, M M)
$$

with

$$
\begin{align*}
h_{\mathrm{F}-V V}\left(\boldsymbol{q}^{2}\right) & =-g_{V}^{2}\left(\boldsymbol{q}^{2}\right), \tag{35a}\\
h_{\mathrm{GT}-A A}\left(\boldsymbol{q}^{2}\right) & =-g_{A}^{2}\left(\boldsymbol{q}^{2}\right), \tag{35b}\\
h_{\mathrm{GT}-A P}\left(\boldsymbol{q}^{2}\right) & =\frac{2}{3} g_{A}\left(\boldsymbol{q}^{2}\right) g_{P}\left(\boldsymbol{q}^{2}\right) \frac{\boldsymbol{q}^{2}}{2 m_{p}}, \tag{35c}\\
h_{\mathrm{GT}-P P}\left(\boldsymbol{q}^{2}\right) & =-\frac{1}{3} g_{P}^{2}\left(\boldsymbol{q}^{2}\right) \frac{\boldsymbol{q}^{4}}{4 m_{p}^{2}}, \tag{35~d}\\
h_{\mathrm{GT}-M M}\left(\boldsymbol{q}^{2}\right) & =-\frac{2}{3} g_{M}^{2}\left(\boldsymbol{q}^{2}\right) \frac{\boldsymbol{q}^{2}}{4 m_{p}^{2}}, \tag{35e}\\
h_{\mathrm{T}-A P}\left(\boldsymbol{q}^{2}\right) & =h_{G T-A P}\left(\boldsymbol{q}^{2}\right), \tag{35f}\\
h_{\mathrm{T}-P P}\left(\boldsymbol{q}^{2}\right) & =h_{G T-P P}\left(\boldsymbol{q}^{2}\right), \tag{35~g}\\
h_{\mathrm{T}-M M}\left(\boldsymbol{q}^{2}\right) & =-\frac{1}{2} h_{G T-M M}\left(\boldsymbol{q}^{2}\right) \tag{35~h}
\end{align*}
$$

Transition operator

- Non-relativisti

$$
M^{0 \nu}\left(0_{I}^{+} \rightarrow 0_{F}^{+}\right.
$$

$$
\hat{\mathcal{O}}^{0 \nu}=\sum_{i} \hat{\mathcal{O}}_{i}^{0 \nu}
$$

$\hat{\mathcal{O}}_{i}^{0 \nu}=\frac{4 \pi R}{g_{A}^{2}} \int d^{3} x_{1} d^{3}$

Table 1: The normalized NME $\tilde{M}^{0 v}$ for the $0 \nu \beta \beta$-decay obtained with the particle number projected spherical mean-field configuration ($\beta_{I}=\beta_{F}=0$) by the PC-PK1 force using both the relativistic and non-relativistic reduced (first-order of q / m_{p} in the one-body current) transition operators. The ratio of the $A A$ term to the total NME, $R_{A A} \equiv \tilde{M}_{A A}^{0 v} / \tilde{M}^{0 v}$, the relativistic effect $\Delta_{\text {Rel. }} \equiv\left(\tilde{M}^{0 v}-\tilde{M}_{\mathrm{NR}}^{0 v}\right) / \tilde{M}^{0 v}$ and the ratio of the tensor part to the total NME, $R_{T} \equiv \tilde{M}_{\mathrm{NR}, \mathrm{T}}^{0 v} / \tilde{M}_{\mathrm{NR}}^{0 v}$, are also presented.

Sph+PNP (PC-PK1)	$\bar{M}^{\text {0V }}$	$R_{\text {AA }}$	$\bar{M}_{\text {NR }}^{0 v}$	$\Delta_{\text {Rel }}$	R_{T}	of the hadronic
${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$	3.66	81\%	3.74	-2.1\%	-2.4\%	
${ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se}$	7.59	94\%	7.71	-1.6\%	3.5\%	${ }^{\text {A }}$, $\left., P P, M M\right)$
${ }^{82} \mathrm{Se} \rightarrow{ }^{82} \mathrm{Kr}$	7.58	93\%	7.68	-1.4\%	2.9\%	
${ }^{96} \mathrm{Zr} \rightarrow{ }^{96} \mathrm{Mo}$	5.64	95\%	5.63	0.2\%	3.6\%	
${ }^{100} \mathrm{Mo} \rightarrow{ }^{100} \mathrm{Ru}$	10.92	95\%	10.91	0.1\%	3.5\%	${ }_{\text {(35b) }}^{(35)}$
${ }^{116} \mathrm{Cd} \rightarrow{ }^{116} \mathrm{Sn}$	6.18	94\%	6.13	0.7\%	1.9\%	
${ }^{124} \mathrm{Sn} \rightarrow{ }^{124} \mathrm{Te}$	6.66	94\%	6.78	-1.8\%	4.9\%	${ }^{2} \frac{q^{2}}{2 m_{p}}$,
${ }^{130} \mathrm{Te} \rightarrow{ }^{130} \mathrm{Xe}$	9.50	94\%	9.64	-1.4\%	4.3\%	, (35d)
${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$	6.59	94\%	6.70	-1.7\%	4.1\%	
${ }^{150} \mathrm{Nd} \rightarrow{ }^{150} \mathrm{Sm}$	13.25	95\%	13.08	1.3\%	2.5\%	${ }^{(35)}$
J. M. Yao et al., Phys. Rev. C 90, 054309 (2014)						${ }^{35 \mathrm{~g}}$)

Transition operator

- Non-relativistic reduction
- Neglect the tensor term.
- Closure approximation
(10\% error at most, from QRPA and ISM calculations)

$$
M^{0 \nu \beta \beta}=-\left(\frac{g_{V}(0)}{g_{A}(0)}\right)^{2} M_{F}^{0 \nu \beta \beta}+M_{G T}^{0 \nu \beta \beta}-M_{T}^{\nu \nu \beta}
$$

$$
\begin{aligned}
M_{F}^{0 \nu \beta \beta} & =\left(\frac{g_{A}(0)}{g_{V}(0)}\right)^{2}\left\langle 0_{f}^{+}\right| \hat{V}_{F}(1,2) \hat{\tau}_{-}^{(1)} \hat{\tau}_{-}^{(2)}\left|0_{i}^{+}\right\rangle \\
M_{G T}^{0 \nu \beta \beta} & =\left\langle 0_{f}^{+}\right| \hat{V}_{G T}(1,2) \hat{\tau}_{-}^{(1)} \hat{\tau}_{-}^{(2)}\left|0_{i}^{+}\right\rangle \\
\left\langle\vec{r}_{1} \vec{r}_{2}\right| \hat{V}_{F}(1,2)\left|\vec{r}_{1}^{\prime} \vec{r}_{2}^{\prime}\right\rangle & =v_{F}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \delta\left(\vec{r}_{1}-\vec{r}_{1}^{\prime}\right) \delta\left(\vec{r}_{2}-\vec{r}_{2}^{\prime}\right) \\
\left\langle\vec{r}_{1} \vec{r}_{2}\right| \hat{V}_{G T}(1,2)\left|\vec{r}_{1}^{\prime} \vec{r}_{2}^{\prime}\right\rangle & =v_{G T}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \delta\left(\vec{r}_{1}-\vec{r}_{1}^{\prime}\right) \delta\left(\vec{r}_{2}-\vec{r}_{2}^{\prime}\right) \hat{\vec{\sigma}^{(1)}} \cdot \hat{\vec{\sigma}^{(2)}}
\end{aligned}
$$

Transition operator

- Non-relativistic reduction
- Neglect the tensor term.
- Closure approximation
(10\% error at most, from QRPA and ISM calculations)

$$
M^{0 \nu \beta \beta}=-\left(\frac{g_{V}(0)}{g_{A}(0)}\right)^{2} M_{F}^{0 \nu \beta \beta}+M_{G T}^{0 \nu \beta \beta}-M_{T}^{\nu \nu \beta}
$$

$$
\begin{aligned}
& M_{F}^{0 \nu \beta \beta}=\left(\frac{g_{A}(0)}{g_{V}(0)}\right)^{2}\left\langle 0_{f}^{+}\right| \hat{V}_{F}(1,2) \hat{\tau}_{-}^{(1)} \hat{\tau}_{-}^{(2)}\left|0_{i}^{+}\right\rangle \\
& M_{G T}^{0 \nu \beta \beta}=\left\langle 0_{f}^{+}\right| \hat{V}_{G T}(1,2) \hat{\tau}_{-}^{(1)} \hat{\tau}_{-}^{(2)}\left|0_{i}^{+}\right\rangle \\
& \begin{aligned}
\left\langle\vec{r}_{1} \vec{r}_{2}\right| \hat{V}_{F}(1,2)\left|\vec{r}_{1}^{\prime} \vec{r}_{2}^{\prime}\right\rangle & =\begin{array}{c}
v_{F}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \delta\left(\vec{r}_{1}-\vec{r}_{1}^{\prime}\right) \delta\left(\vec{r}_{2}-\vec{r}_{2}^{\prime}\right) \\
\left\langle\vec{r}_{1} \vec{r}_{2}\right| \hat{V}_{G T}(1,2)\left|\vec{r}_{1}^{\prime} \vec{r}_{2}^{\prime}\right\rangle
\end{array}=\underbrace{v_{G T}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)} \delta\left(\vec{r}_{1}-\vec{r}_{1}^{\prime}\right) \delta\left(\vec{r}_{2}-\vec{r}_{2}^{\prime}\right) \hat{\vec{\sigma}}^{(1)} \cdot \hat{\vec{\sigma}}^{(2)}
\end{aligned} \\
& \text { Neutrino potentials }
\end{aligned}
$$

Transition operator

Neutrino potentials

Starting from the weak Lagrangian that describes the process some approximations are made:

1. Non-relativistic approach in the hadronic part.
2. Closure approximation in the virtual intermediate state
3. Nucleon form factors taken in the dipolar approximation.
4. Tensor contribution is neglected.
5. High order currents are included (HOC).
6. Short range correlations are included with an UCOM correlator.

- Find the initial and final 0^{+}(and, in the no closure approximation, the intermediate) states
- Evaluate the transition operators between these states

Transition operator

1. Introduction

2. $0 v \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

- The 'bare' operator should be

 transformed into an 'effective' operator defined in the valence space

FIG. 2. (Color online) The \hat{X} box to first order in $V_{\text {low } k}$. Solid (red online) up- or down-going lines indicate neutrons and dotted (blue online) lines indicate protons. The wavy horizontal lines, as in Fig. 1, represent $V_{\text {low } k}$, and the dashed horizontal lines represent the $0 \nu \beta \beta$-decay operator in Eq. (1).
J.D. Holt, J. Engel, Phys. Rev. C 87, 064315 (2013)

Transition operator

1. Introduction

2. $0 v \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

- The 'bare' operator should be

 transformed into an 'effective' operator defined in the valence space

FIG. 2. (Color online) The \hat{X} box to first order in $V_{\text {low } k}$. Solid (red online) up- or down-going lines indicate neutrons and dotted (blue online) lines indicate protons. The wavy horizontal lines, as in Fig. 1, represent $V_{\text {low } k}$, and the dashed horizontal lines represent the $0 \nu \beta \beta$-decay operator in Eq. (1).
J.D. Holt, J. Engel, Phys. Rev. C 87, 064315 (2013)

Transition operator

1. Introduction

2. $0 v \beta \beta$ transition operator

- The 'bare' operator should be transformed into an 'effective' operator defined in the valence space

FIG. 2. (Color online) The \hat{X} box to first order in $V_{\text {low } k}$. Solid (red online) up- or down-going lines indicate neutrons and dotted (blue online) lines indicate protons. The wavy horizontal lines, as in Fig. 1, represent $V_{\text {low } k}$, and the dashed horizontal lines represent the $0 \nu \beta \beta$-decay operator in Eq. (1).

[^0]3. Nuclear structure effects
4. Summary and outlook

- Two-body weak currents could play a relevant role

FIG. 2 (color online). Nuclear matrix elements $M^{0 \nu \beta \beta}$ for $0 \nu \beta \beta$ decay. At order Q^{0}, the NMEs include only the leading $p=0$ axial and vector $1 b$ currents. At the next order, all Q^{2} $1 b$-current contributions not suppressed by parity are taken into account. At order Q^{3}, the thick bars are predicted from the longrange parts of $2 b$ currents $\left(c_{D}=0\right)$. The thin bars estimate the theoretical uncertainty from the short-range coupling c_{D} by taking an extreme range for the quenching (see text). For comparison, we show the SM results of Ref. [12] based on phenomenological $1 b$ currents only. The inset (representative for ${ }^{136} \mathrm{Xe}$) shows that the GT part, $M_{\mathrm{GT}}^{0 \nu \beta \beta}=\int d p C_{\mathrm{GT}}(p)$, is dominated by $p \sim 100 \mathrm{MeV}$.

FIG. 1. (Color online) Nuclear matrix elements $M^{10 v}$ for all the nuclei considered here. The empty circles and squares represent the results with the one-body current only, and the solid circles and squares the average of the results with two-body currents included The error bars represent the dispersion in those values (see text).
J. Engel, F. Simkovic, P. Vogel, Phys. Rev. C 89, 064308 (2014)
J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

Transition operator

1. Introduction

2. $0 \mathrm{v} \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

- The 'bare' operator should be transformed into an 'effective' operator defined in the valence space

FIG. 2. (Color online) The \hat{X} box to first order in $V_{\operatorname{low} k}$. Solid (red online) up- or down-going lines indicate neutrons and dotted (blue online) lines indicate protons. The wavy horizontal lines, as in Fig. 1, represent $V_{\text {low } k}$, and the dashed horizontal lines represent the $0 \nu \beta \beta$-decay operator in Eq. (1).

- Two-body weak currents could play a relevant role

FIG. 2 (color online). Nuclear matrix elements $M^{0 \nu \beta \beta}$ for $0 \nu \beta \beta$ decay. At order Q^{0}, the NMEs include only the leading $p=0$ axial and vector $1 b$ currents. At the next order, all Q^{2} $1 b$-current contributions not suppressed by parity are taken into account. At order Q^{3}, the thick bars are predicted from the longrange parts of $2 b$ currents $\left(c_{D}=0\right)$. The thin bars estimate the theoretical uncertainty from the short-range coupling c_{D} by taking an extreme range for the quenching (see text). For comparison, we show the SM results of Ref. [12] based on phenomenological $1 b$ currents only. The inset (representative for ${ }^{136} \mathrm{Xe}$) shows that the GT part, $M_{\mathrm{GT}}^{0 \nu \beta \beta}=\int d p C_{\mathrm{GT}}(p)$, is dominated by $p \sim 100 \mathrm{MeV}$.

FIG. 1. (Color online) Nuclear matrix elements $M^{10 v}$ for all the nuclei considered here. The empty circles and squares represent the results with the one-body current only, and the solid circles and squares the average of the results with two-body currents included. The error bars represent the dispersion in those values (see text).
J. Engel, F. Simkovic, P. Vogel, Phys. Rev. C 89, 064308 (2014)
J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

NME: Nuclear structure aspects

We want to study the role of

- Deformation and shape mixing.
- Pairing pp/nn/pn correlations.
- Shell effects.
- Isospin conservation.
- Pair breaking (seniority).
- Occupation numbers.
- Size of the valence space.
in the nuclear matrix elements using a standard prescription for the transition operator.

Particle number projection

Determination of initial and final states (I)

Particle number and angular momentum projection

1. Introduction

Determination of initial and final states (II)

Configuration (shape) mixing

Determination of initial and final states (\& III)

Transitions

1. Axial states $K=0$
2. Angular momentum $\quad I=0$
3. Quadrupole deformations $q=q_{20}$
4. Quadrupole and pairing $\mathrm{pp} / \mathrm{nn}$ correlations $q=\left(q_{20}, \delta\right)$
5. Quadrupole and pn correlations $q=\left(q_{20}, p_{0}\right)$
6. Quadrupole and octupole deformations $q=\left(q_{20}, q_{30}\right)$

Transitions

1. Axial states $K=0$
2. Angular momentum $\quad I=0$

$$
\begin{aligned}
\left|0 ; N_{i} Z_{i} ; \sigma\right\rangle & =\sum_{\Lambda_{i}} G_{\Lambda_{i}}^{0 ; N_{i} Z_{i} ; \sigma}\left|\Lambda_{i}^{0 ; N_{i} Z_{i}}\right\rangle \\
\left|0 ; N_{f} Z_{f} ; \sigma\right\rangle & =\sum_{\Lambda_{f}} G_{\Lambda_{f}}^{0 ; N_{f} Z_{f} ; \sigma}\left|\Lambda_{f}^{0 ; N_{f} Z_{f}}\right\rangle
\end{aligned}
$$

3. Quadrupole deformations $q=q_{20}$
4. Quadrupole and pairing $\mathrm{pp} / \mathrm{nn}$ correlations $q=\left(q_{20}, \delta\right)$
5. Quadrupole and pn correlations $q=\left(q_{20}, p_{0}\right)$
6. Quadrupole and octupole deformations $q=\left(q_{20}, q_{30}\right)$

TRANSITIONS:

$$
M_{\xi}^{0 \nu \beta \beta}=\left\langle 0_{f}^{+}\right| \hat{O}_{\xi}^{0 \nu \beta \beta}\left|0_{i}^{+}\right\rangle=\left\langle 0 ; N_{f} Z_{f}\right| \hat{O}_{\xi}^{0 \nu \beta \beta}\left|0 ; N_{i} Z_{i}\right\rangle=
$$

$$
\sum_{\Lambda_{f} \Lambda_{i}}\left(G_{\Lambda_{f}}^{0 ; N_{f} Z_{f}}\right)^{*}\left\langle\Lambda_{f}^{0 ; N_{f} Z_{f}}\right| \hat{O}_{\xi}^{0 \nu \beta \beta}\left|\Lambda_{i}^{0 ; N_{i} Z_{i}}\right\rangle G_{\Lambda_{i}}^{0 ; N_{i} Z_{i}}=\sum_{q_{i} q_{f} ; \Lambda_{f} \Lambda_{i}}
$$

$$
\left(\frac{u_{q_{f}, \Lambda_{f}}^{0 ; N_{f} Z_{f}}}{\sqrt{n_{\Lambda_{f}}^{0 ; N_{f} Z_{f}}}}\right)^{*}\left(G_{\Lambda_{f}}^{0 ; N_{f} Z_{f}}\right)^{*}\left\langle 0 ; N_{f} Z_{f} ; q_{f}\right| \hat{O}_{\xi}^{0 \nu \beta \beta}\left|0 ; N_{i} Z_{i} ; q_{i}\right\rangle\left(G_{\Lambda_{i}}^{0 ; N_{i} Z_{i}}\right)\left(\frac{u_{q_{i}, \Lambda_{i}}^{0 ; N_{i} Z_{i}}}{\sqrt{n_{\Lambda_{i}}^{0 ; N_{i} Z_{i}}}}\right)
$$

Transitions

1. Axial states $K=0$
2. Angular momentum $\quad I=0$

$$
\left|0 ; N_{i} Z_{i} ; \sigma\right\rangle=\sum_{\Lambda_{i}} G_{\Lambda_{i}}^{0 ; N_{i} Z_{i} ; \sigma}\left|\Lambda_{i}^{0 ; N_{i} Z_{i}}\right\rangle
$$

3. Quadrupole deformations $q=q_{20}$
4. Quadrupole and pairing $\mathrm{pp} / \mathrm{nn}$ correlations $q=\left(q_{20}, \delta\right)$

$$
\left|0 ; N_{f} Z_{f} ; \sigma\right\rangle=\sum_{\Lambda_{f}} G_{\Lambda_{f}}^{0 ; N_{f} Z_{f} ; \sigma}\left|\Lambda_{f}^{0 ; N_{f} Z_{f}}\right\rangle
$$

5. Quadrupole and pn correlations $q=\left(q_{20}, p_{0}\right)$
6. Quadrupole and octupole deformations $q=\left(q_{20}, q_{30}\right)$

TRANSITIONS:

$$
\begin{gathered}
\left.\left.\sum_{\Lambda_{f} \Lambda_{i}}\left(G_{\Lambda_{f}}^{0 ; N_{f} Z_{f}}\right)^{*}\left\langle\Lambda_{f}^{0 ; N_{f} Z_{f}}\right| \hat{O}_{\xi}^{0 \nu \beta \beta}\left|\Lambda_{i}^{0 ; N_{i} Z_{i}}\right\rangle G_{\Lambda_{i}}^{0 ; N_{i} Z_{f}}\right)^{n_{\Lambda_{f}}^{0 ; \Lambda_{f}}}\right)^{*}\left(G_{\Lambda_{f}}^{0 ; N_{f} Z_{f}}\right) \sum_{q_{i} q_{f} ; \Lambda_{f} \Lambda_{i}} \\
\left.\qquad \begin{array}{l}
\downarrow \\
\sqrt{n_{\Lambda_{i}}^{0 ; N_{i} Z_{i}}}
\end{array}\right) \\
\begin{array}{l}
\text { Matrix elements of the double beta } \\
\text { transition operators between } \\
\text { particle number and angular } \\
\text { momentum projected states }
\end{array}
\end{gathered}
$$

NME: deformation and mixing

1. Introduction

2. $0 v \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found

NME: deformation and mixing

$\left\langle 0 ; N_{f} Z_{f} ; q_{f}\right| \hat{O}_{\xi}^{0 \nu \beta \beta}\left|0 ; N_{i} Z_{i} ; q_{i}\right\rangle$
$\overline{\sqrt{\left\langle 0 ; N_{f} Z_{f} ; q_{f} \mid 0 ; N_{f} Z_{f} ; q_{f}\right\rangle\left\langle 0 ; N_{i} Z_{:} \cdot n_{i} \mid n \cdot N_{:} Z_{i:} \cdot \sigma_{i}\right\rangle}}$
$A=150$
T.R.R., Martínez-Pinedo, PRL 105, 252503 (2010)

- GT strens
- Similar de

- Maxima a
- Final result depends on the distribution of probabillty of the corresponding initial and final collective states within this plot

NME: deformation and mixing

1. Introduction

2. $0 v \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

$A=150$
T.R.R., Martínez-Pinedo, PRL 105, 252503 (2010)

- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found
- Final result depends on the distribution of probability of the corresponding initial and final collective states within this plot

NME: deformation and mixing

- GT strength greater than Fermi.
- Similar deformation between mother and granddaughter is favored by the transition operators
- Maxima are found close to sphericity although some other local maxima are found
- Final result depends on the distribution of probability of the corresponding initial and final collective states within this plot

NME: deformation and mixing

J. M. Yao and J. Engel, arXiv 1604.06297 (2016)

ESNT Workshop | Saclay | Feb 2017 | MR-EDF calculations for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

NME: deformation and mixing

FIG. 5: (Color online) The final matrix element $M^{0 \nu}$ from the GCM calculation with and without [46] octupole shape fluctuations (REDF) and those of the QRPA ("QRPA_F" [66], "QRPA_M" [45], "QRPA_T" [47]), the IMB-2 [67], and the non-relativistic GCM, based on the Gogny D1S interaction, with [68] and without [44] pairing fluctuations.

NME: deformation and mixing

$$
A=76
$$

T. R. R., J. Phys. G 44, 034002 (2017)

NME: deformation and mixing

$$
A=76
$$

T. R. R., J. Phys. G 44, 034002 (2017)

NME: deformation and mixing

HFB-PES

CEA-Bruyeres-le-Chatel data base

NME: deformation and mixing

HFB-PES

CEA-Bruyeres-le-Chatel data base

Shape and pp/nn pairing fluctuations

Angular momentum projected potential energy surfaces

Collective ground state wave functions

N. López-Vaquero, T.R.R., J.L. Egido, PRL 111, 142501 (2013)

Shape and pp/nn pairing fluctuations

N. López-Vaquero, T.R.R., J.L. Egido, PRL 111, 142501 (2013)

Shape and pp/nn pairing fluctuations

2. $0 v \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

Isotope	$\Delta Q\left(\beta_{2}\right)$	$\Delta Q\left(\beta_{2}, \delta\right)$	$M^{0 \nu}\left(\beta_{2}\right)$	$M^{0 \nu}\left(\beta_{2}, \delta\right)$	$\operatorname{Var}(\%)$	$\frac{T_{1 / 2}\left(\beta_{2}, \delta\right)}{T_{1 / 2}\left(\beta_{2}\right)}$
${ }^{48} \mathrm{Ca}$	0.265	0.131	$2.370_{0.456}^{1.914}$	$2.229_{0.431}^{1.797}$	-6	1.13
${ }^{76} \mathrm{Ge}$	0.271	0.190	$4.601_{0.715}^{3.786}$	$5.551_{1.082}^{4.470}$	21	0.69
${ }^{82} \mathrm{Se}$	-0.366	-0.246	$4.218_{0.837}^{3.381}$	$4.674_{0.931}^{3.743}$	11	0.81
${ }^{96} \mathrm{Zr}$	2.580	2.628	$5.650_{1}^{4.618}$	$6.498_{1.202}^{5.296}$	15	0.76
${ }^{100} \mathrm{Mo}$	1.879	1.757	$5.084_{0}^{4.149}$	$6.588_{1.231}^{5.362}$	30	0.60
${ }^{116} \mathrm{Cd}$	1.365	1.337	$4.795_{0.831}^{3.931}$	$5.348_{0.976}^{4.372}$	12	0.80
${ }^{124} \mathrm{Sn}$	-0.830	-0.687	$4.808_{0.916}^{3.893}$	$5.787_{1.107}^{4.680}$	20	0.69
${ }^{128} \mathrm{Te}$	-0.564	-0.594	$4.107_{1.027}^{3.079}$	$5.687_{1}^{4.255}$	38	0.52
${ }^{130} \mathrm{Te}$	-0.348	-0.628	$5.130_{0.141}^{4.989}$	$6.405_{1.161}^{5.244}$	25	0.64
${ }^{136} \mathrm{Xe}$	-1.027	-0.787	$4.199_{0.526}^{3.673}$	$4.773_{0.604}^{4.170}$	14	0.77
${ }^{150} \mathrm{Nd}$	-0.380	-0.282	$1.707_{0.429}^{1.278}$	$2.190_{0.551}^{1.639}$	29	0.61

Shape and pn pairing fluctuations

$$
\begin{align*}
H & =h_{0}-\sum_{\mu=-1}^{1} g_{\mu}^{T=1} S_{\mu}^{\dagger} S_{\mu}-\frac{\chi}{2} \sum_{K=-2}^{2} Q_{2 K}^{\dagger} Q_{2 K} \\
& -g^{T=0} \sum_{\nu=-1}^{1} P_{\nu}^{\dagger} P_{\nu}+g_{p h} \sum_{\mu, \nu=-1}^{1} F_{\nu}^{\mu \dagger} F_{\nu}^{\mu} \tag{2}
\end{align*}
$$

where h_{0} contains spherical single particle energies, $Q_{2 K}$ are the components of a quadrupole operator defined in Ref. [15], and

$$
\begin{align*}
S_{\mu}^{\dagger} & =\frac{1}{\sqrt{2}} \sum_{l} \hat{l}\left[c_{l}^{\dagger} c_{l}^{\dagger}\right]_{00 \mu}^{001}, \quad P_{\mu}^{\dagger}=\frac{1}{\sqrt{2}} \sum_{l} \hat{l}\left[c_{l}^{\dagger} c_{l}^{\dagger}\right]_{0 \mu 0}^{010}, \\
F_{\nu}^{\mu} & =\frac{1}{2} \sum_{i} \sigma_{i}^{\mu} \tau_{i}^{\nu}=\sum_{l} \hat{l}\left[c_{l}^{\dagger} \bar{c}_{l}\right]_{0 \mu \nu}^{011} . \tag{3}\\
H^{\prime} & =H-\lambda_{Z} N_{Z}-\lambda_{N} N_{N}-\lambda_{Q} Q_{20}-\frac{\lambda_{P}}{2}\left(P_{0}+P_{0}^{\dagger}\right), \tag{6}
\end{align*}
$$

FIG. 3. (Color online.) Bottom right: $\mathcal{N}_{\phi_{I}} \mathcal{N}_{\phi_{F}}\left\langle\phi_{F}\right| \mathcal{P}_{F} \hat{M}_{0 \nu} \mathcal{P}_{I}\left|\phi_{I}\right\rangle$ for projected quasiparticle vacua with different values of the initial and final isoscalar pairing amplitudes ϕ_{I} and ϕ_{F}, from the SkO^{\prime}-based interaction (see text). Top and bottom left: Square of collective wave functions in ${ }^{76} \mathrm{Ge}$ and ${ }^{76} \mathrm{Se}$.
N. Hinohara and J. Engel, PRC 031031(R) (2014)

Shape and pn pairing fluctuations

$$
H=h_{0}-\sum_{\mu=-1}^{1} g_{\mu}^{T=1} S_{\mu}^{\dagger} S_{\mu}-\frac{\chi}{2} \sum_{K=-2}^{2} Q_{2 K}^{\dagger} Q_{2 K}
$$

$$
-g^{T=0} \sum_{\nu=-1}^{1} P_{\nu}^{\dagger} P_{\nu}
$$

where h_{0} contains spherical are the components of a qu Ref. [15], and

$$
\begin{aligned}
& S_{\mu}^{\dagger}=\frac{1}{\sqrt{2}} \sum_{l} \hat{l}\left[c_{l}^{\dagger} c_{l}^{\dagger}\right]_{00 \mu}^{001} \\
& F_{\nu}^{\mu}=\frac{1}{2} \sum_{i} \sigma_{i}^{\mu} \tau_{i}^{\nu}=\sum_{l} \hat{l}\left[c_{l}^{\dagger} \bar{c}_{l}\right]_{0 \mu \nu}^{011}
\end{aligned}
$$

$$
\begin{equation*}
H^{\prime}=H-\lambda_{Z} N_{Z}-\lambda_{N} N_{N}-\lambda_{Q} Q_{20}-\frac{\lambda_{P}}{2}\left(P_{0}+P_{0}^{\dagger}\right), \tag{6}
\end{equation*}
$$

Exploring explicitly pp/nn and pn pairing could produce cancellations

$A=116$ (possible candidate for detection)

$A=116$ (possible candidate for detection)

- Reduction of the NME with respect to the spherical value when shape mixing is included

$A=116$ (possible candidate for detection)

- Reduction of the NME with respect to the spherical value when shape mixing is included

- Larger pairing correlations in mother/
daughter nuclei produces
larger NMEs.

$A=116$ (possible candidate for detection)

- Reduction of the NME with respect to the spherical value when shape mixing is included

- Larger pairing
correlations in mother/
daughter nuclei produces
larger NMEs.

NME: ${ }^{A} \mathrm{Cd} \rightarrow{ }^{A}$ Sn Shell Effects

- GT component is always larger than Fermi.

T.R.R., Martínez-Pinedo, PLB 719, 174 (2013)

NME: ${ }^{A} C d \rightarrow{ }^{A} S n$ Shell Effects

- GT component is always larger than Fermi.
- Large enhancement of the NME for the mirror decay $A=98$.

T.R.R., Martínez-Pinedo, PLB 719, 174 (2013)

NME: ${ }^{A} \mathrm{Cd} \rightarrow{ }^{A}$ Sn Shell Effects

- GT component is always larger than Fermi.
- Large enhancement of the NME for the mirror decay $A=98$.
- Shell effects associated to the filling of neutrons in the corresponding sub-shells. Consistent with seniority model.

[^1]
NME: ${ }^{A} \mathrm{Cd} \rightarrow{ }^{\text {A }}$ Sn Shell Effects

- GT component is always larger than Fermi.
- Large enhancement of the NME for the mirror decay $A=98$.
- Shell effects associated to the filling of neutrons in the corresponding sub-shells. Consistent with seniority model.

[^2]
NME: ${ }^{A} \mathrm{Cd} \rightarrow{ }^{\mathrm{A}} \mathrm{Sn}$

Where do the differences come from?

- Same pattern in spherical EDF, seniority 0 Shell Model, and Generalized Seniority model (overall scale?)
- What is the effect of including more correlations?

NME: pf-shell

J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).

NME: pf-shell

- NMEs are reduced with respect to the spherical value when correlations are included.
- The biggest reduction is produced by angular

(c)

 momentum restoration and configuration mixing produces an increase of the NME.
- Cross-check nuclei: ${ }^{42} \mathrm{Ca},{ }^{50} \mathrm{Ca},{ }^{56} \mathrm{Fe}$
J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).

NME: pf-shell

1. Introduction

2. $0 v \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).

- The biggest reduction (in Shell model calculations) is produced by including higher seniority components in the nuclear wave functions.
- Isospin projection is relevant for the Fermi part of the NME and less important for the Gamow-Teller part.
- Isospin projection tends to reduce the NME.
- EDF does not include properly those higher seniority components, specially in spherical nuclei.
- p-n pairing effects could also be important in the reduction of the NME.
J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).

FIG. 5. (Color online) Nuclear matrix elements $M^{0 v}$ evaluated with the new parametrization developed in this work (filled squares) compared with the old method $\left(g_{p p}^{T=1}=g_{p p}^{T=0} \equiv g_{p p}\right)$ (empty circles). This is a QRPA with $g_{A}=1.27$ and a large-size single-particle level scheme, as in Table I, evaluation using the Argonne V18 potential.
F. Simkovic et al, PRC 7, 045501 (2013).
-1

- The biggest reduction (in Shell model calculations) is produced by including higher seniority components in the nuclear wave functions.
- Isospin projection is relevant for the Fermi part of the NME and less important for the Gamow-Teller part.
- Isospin projection tends to reduce the NME.
- EDF does not include properly those higher seniority components, specially in spherical nuclei.
- p-n pairing effects could also be important in the reduction of the NME.
J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).

$$
\begin{aligned}
H_{\mathrm{coll}}= & H_{M}+g^{T=1} \sum_{n=-1}^{1} S_{n}^{\dagger} S_{n}+g^{T=0} \sum_{m=-1}^{1} P_{m}^{\dagger} P_{m} \\
& +g_{p h} \sum_{m, n=-1}^{1}: \mathcal{F}_{m n}^{\dagger} \mathcal{F}_{m n}:+\chi \sum_{\mu=-2}^{2}: Q_{\mu}^{\dagger} Q_{\mu}:
\end{aligned}
$$

$$
\text { J. Menéndez, et al., PRC 93, } 014305 \text { (2016). }
$$

- Increase of the NME when isoscalar pairing is removed.
- Further increase when spin-isospin is also removed

ESNT Workshop | Saclay | Feb 2017 | MR-EDF calculations for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

$$
\begin{aligned}
H_{\mathrm{coll}}= & H_{M}+g^{T=1} \sum_{n=-1}^{1} S_{n}^{\dagger} S_{n}+g^{T=0} \sum_{m=-1}^{1} P_{m}^{\dagger} P_{m} \\
& +g_{p h} \sum_{m, n=-1}^{1}: \mathcal{F}_{m n}^{\dagger} \mathcal{F}_{m n}:+\chi \sum_{\mu=-2}^{2}: Q_{\mu}^{\dagger} Q_{\mu}:
\end{aligned}
$$

- GT operator is $\mathrm{SU}(4)$ invariant (neglecting the neutrino potential)
- GT operator can only connect states belonging to the same irreducible representation of SU(4)
- $\mathrm{SU}(4)$ is more broken when $T=0$ and spinisospin terms are removed from the Hamiltonian \Rightarrow the number of $\operatorname{SU}(4)$ irreps present both in the mother and daughter g.s. wave functions are larger \Rightarrow larger NMEs

NME: pf-shell

$$
\begin{aligned}
H_{\mathrm{coll}}= & H_{M}+g^{T=1} \sum_{n=-1}^{1} S_{n}^{\dagger} S_{n}+g^{T=0} \sum_{m=-1}^{1} P_{m}^{\dagger} P_{m} \\
& +g_{p h} \sum_{m, n=-1}^{1}: \mathcal{F}_{m n}^{\dagger} \mathcal{F}_{m n}:+\chi \sum_{\mu=-2}^{2}: Q_{\mu}^{\dagger} Q_{\mu}:
\end{aligned}
$$

- SM/GCM comparison with the same interaction.
- 1D: only pn strength as a generator coordinate.
- 2D: pn strength and axial quadrupole deformation as generator coordinates.

EXACT vs. VARIATIONAL!!

Occupation numbers

2. $0 v \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

FIG. 1. (Color online) Comparison between experimental and theoretical occupation numbers for $A=76$. Experimental values are from Refs. [1,2]. The ISM results correspond to the gen28.50 (GCN) and rg (RG) interactions. The QRPA standard numbers, TU(WS) and JY(WS) give the occupancies at the BCS level. The QRPA occupancies with adjusted single particle energies are given at the BCS level in the case of JY(ADJ) and at QRPA level for TU(ADJ). JY and TU results from Refs. [5] and [6], respectively. The experimental error bars are also shown.

$M^{0 \nu \beta \beta}$	GCN	WS	RG	ADJ-WS
ISM	2.81		3.26	
QRPA(JY)		5.36		4.11
QRPA(TU)		$5.07-6.25$		$4.59-5.44$

Fitting the underlying (WS) mean field to reproduce the "experimental" occupation numbers reduces the pnQRPA NMEs.
J. Menéndez et al., Phys. Rev. C 80, 048501 (2009)

Exp: J. Schiffer et al., Phys Rev. Lett. 100, 112501 (2008)

Occupation numbers

2. $0 \mathrm{v} \beta \beta$ transition operator
3. Nuclear structure effects
4. Summary and outlook

orbit	${ }^{76} \mathrm{Ge}$ ax	${ }^{76} \mathrm{Ge}$ triax	${ }^{76} \mathrm{Ge} \exp$	${ }^{76} \mathrm{Se}$ ax	${ }^{76}$ Se triax	${ }^{76} \mathrm{Se} \exp$
$\nu 0 f_{7 / 2}$	7.81	7.72	-	7.72	7.47	-
$\nu 1 p$	5.38	4.88	4.87 ± 0.20	4.74	4.30	4.41 ± 0.20
$\nu 0 f_{5 / 2}$	5.16	4.95	4.56 ± 0.40	4.96	4.24	3.83 ± 0.40
$\nu 0 g_{9 / 2}$	4.65	4.84	6.48 ± 0.30	3.92	4.10	5.80 ± 0.30
$\nu 1 d_{5 / 2}$	0.54	0.83	-	0.26	0.86	-
$\nu 0 g_{7 / 2}$	0.16	0.24	-	0.19	0.31	-
$\nu 1 d_{3 / 2}$	0.04	0.07	-	0.04	0.10	-
$\nu 2 s_{1 / 2}$	0.03	0.09	-	0.02	0.12	-
$\pi 0 f_{7 / 2}$	7.46	7.19	-	7.41	6.94	-
$\pi 1 p$	2.11	2.17	1.77 ± 0.15	3.29	2.69	2.08 ± 0.15
$\pi 0 f_{5 / 2}$	2.16	2.30	2.04 ± 0.25	2.98	2.63	3.16 ± 0.25
$\pi 0 g_{9 / 2}$	0.17	0.19	0.23 ± 0.25	0.21	1.16	0.84 ± 0.25
$\pi 1 d_{5 / 2}$	0.03	0.05	-	0.04	0.25	-
$\pi 0 g_{7 / 2}$	0.06	0.09	-	0.08	0.15	-
$\pi 1 d_{3 / 2}$	0.02	0.03	-	0.02	0.05	-
$\pi 2 s_{1 / 2}$	0.01	0.01	-	0.01	0.03	-

T. R. R., J. Phys. G 44, 034002 (2017)

- Experimental data are already able to constrain very long lower limit half-lives (we cross fingers for a positive signal soon!).
- $0 v \beta \beta$ preferred mechanism is the exchange of a light Majorana neutrino but some other mechanisms are being considered too.
- NMEs differ a factor of three between the different methods but we need to understand which are the pros/cons of each method to provide reliable numbers (precision vs. accuracy).
- Nuclear physics aspects like deformation, pairing, shell effects, etc., are understood similarly within different approaches.
- Systematic comparisons between ISM/EDF methods have been performed but... we need more!!
- Isospin mixing and restoration have to be done in the future. Why is it so difficult (perhaps impossible) with the current Gogny EDFs?
- Triaxiality has to be taken into account in $A=76$ and $A=100$ decays (at least).
- How relevant is the proper description of the spectra in $0 v \beta \beta$ NMEs?
- Occupation numbers with EDF to define physically sound valence spaces.
- Odd-odd nuclei is still a major challenge for GCM calculations.

○ Computational time?!?

Proton-neutron pairing with Gogny EDF

In all of the Gogny codes, a factorization of the HFB-like wave function is assumed:

$$
|\Phi\rangle=|\Phi\rangle_{p} \times|\Phi\rangle_{n}
$$

Therefore, the HFB transformation is block-diagonal in isospin:
$\beta_{a}^{\dagger}=\sum_{b} U_{b a} c_{b}^{\dagger}+V_{b a} c_{b} \rightarrow \quad U=\left(\begin{array}{cc}U_{p p} & 0 \\ 0 & U_{n n}\end{array}\right) \quad V=\left(\begin{array}{cc}V_{p p} & 0 \\ 0 & V_{n n}\end{array}\right)$
and, consequently, the density matrix and pairing tensor are also block-diagonal in isospin:

$$
\rho=\left(\begin{array}{cc}
\rho_{p p} & 0 \\
0 & \rho_{n n}
\end{array}\right) \quad \kappa=\left(\begin{array}{cc}
\kappa_{p p} & 0 \\
0 & \kappa_{n n}
\end{array}\right)
$$

Proton-neutron pairing with Gogny EDF

Given a two-body Hamiltonian: $\quad \hat{H}=\sum_{a b} t_{a b} c_{a}^{\dagger} c_{b}+\frac{1}{4} \sum_{a b c d} \bar{v}_{a b c d} c_{a}^{\dagger} c_{b}^{\dagger} c_{d} c_{c}$

The HFB energy is given by: $\quad E^{\mathrm{HFB}}=\operatorname{Tr}(t \rho)+\frac{1}{2} \operatorname{Tr}(\Gamma \rho)-\frac{1}{2} \operatorname{Tr}\left(\Delta \kappa^{*}\right)$

$$
\begin{aligned}
\Gamma_{a c} & =\sum_{b d} \bar{v}_{a b c d} \rho_{d b} \rightarrow \mathrm{HF} \text { field } \\
\Delta_{a b} & =\frac{1}{2} \sum_{c d} \bar{v}_{a b c d} \kappa_{c d} \rightarrow \text { Pairing field }
\end{aligned}
$$

Which parts of the interaction are explored by these fields?

$$
\bar{v}_{a b c d} \rightarrow\left[\begin{array}{c}
\bar{v}_{a_{p} b_{p} c_{p} d_{p}} \\
\bar{v}_{a_{n} b_{n} c_{n} d_{n}} \\
\bar{v}_{a_{p} b_{n} c_{p} d_{n}}
\end{array}\right.
$$

Proton-neutron pairing with Gogny EDF

Hartree-Fock field

$$
\Gamma_{a c} \rightarrow\left[\begin{array}{c}
\Gamma_{a_{p} c_{p}}=\sum_{b d} \bar{v}_{a_{p} b_{p} c_{p} d_{p}} \rho_{d_{p} b_{p}}+\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \rho_{d_{n} b_{n}} \\
\Gamma_{a_{n} c_{n}}=\sum_{b d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \rho_{d_{p} b_{p}}+\bar{v}_{a_{n} b_{n} c_{n} d_{n}} \rho_{d_{n} b_{n}} \\
\Gamma_{a_{n} c_{p}}=\sum_{b d} \bar{v}_{a_{n} b_{p} c_{p} d_{n}} \rho_{d_{n} b_{p}} \\
\Gamma_{a_{p} c_{n}}=\sum_{b d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \rho_{d_{p} b_{n}}
\end{array}\right.
$$

Pairing field

$$
\begin{gathered}
\Delta_{a_{n} b_{n}}=\frac{1}{2} \sum_{c d} v_{a_{n} b_{n} c_{n} d_{n}} \kappa_{c_{n} d_{n}} \\
\Delta_{a_{n} b_{p}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \kappa_{c_{n} d_{p}}+\bar{v}_{a_{n} b_{p} c_{p} d_{n}} \kappa_{c_{p} d_{n}} \\
\Delta_{a_{p} b_{n}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \kappa_{c_{n} d_{p}}+\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \kappa_{c_{p} d_{n}}
\end{gathered}
$$

Proton-neutron pairing with Gogny EDF

Hartree-Fock field

$$
\Gamma_{a c} \rightarrow
$$

$$
\begin{gathered}
\Gamma_{a_{p} c_{p}}=\sum_{b d} \bar{v}_{a_{p} b_{p} c_{p} d_{p}} \rho_{d_{p} b_{p}}+\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \rho_{d_{n} b_{n}} \\
\Gamma_{a_{n} c_{n}}=\sum_{b d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \rho_{d_{p} b_{p}}+\bar{v}_{a_{n} b_{n} c_{n} d_{n}} \rho_{d_{n} b_{n}} \\
\Gamma_{a_{n} c_{p}}=\sum_{b d} \bar{v}_{a_{n} b_{p} c_{p} d_{n}} \rho_{d} / b_{p} \\
\Gamma_{a_{p} c_{n}}=\sum_{b d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \rho_{d} b_{n}
\end{gathered}
$$

Pairing field

$$
\Delta_{a_{p} b_{p}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{p} b_{p} c_{p} d_{p}} \kappa_{c_{p} d_{p}}
$$

$$
\Delta_{a_{n} b_{n}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{n} b_{n} c_{n} d_{n}} \kappa_{c_{n} d_{n}}
$$

$$
\Delta_{a b} \rightarrow\left[\begin{array}{rl}
\Delta_{a_{n} b_{p}} & =\frac{1}{2} \sum_{c d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \kappa_{c_{n} d_{p}}+\bar{v}_{a_{n} b_{p} c_{p} d_{n}} \kappa_{c_{p} d_{n}} \\
\Delta_{a_{p} b_{n}} & =\frac{1}{2} \sum_{c d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \kappa_{c_{n} d_{p}}+\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \kappa_{c_{p} d_{n}}
\end{array}\right.
$$

Proton-neutron pairing with Gogny EDF

-

Hartree-Fock field

$$
\begin{aligned}
& \Gamma_{a c} \rightarrow\left[\begin{array}{c}
\Gamma_{a_{p} c_{p}}=\sum_{b l} \bar{v}_{a_{p} b_{p} c_{p} d_{p}} p_{d_{p} b_{p}}+\begin{array}{c}
\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \rho_{d_{n} b_{n}} \\
\Gamma_{a_{n} c_{n}}= \\
\sum_{b} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \\
p_{d_{p} b_{p}}+\bar{v}_{a_{n} b_{n} c_{n} d_{n}} \rho_{d_{n} b_{n}} \\
\Gamma_{a_{n} c_{p}}=\sum_{b d} \bar{v}_{a_{n} b_{p} c_{p} d_{n}} \rho_{d}
\end{array} b_{b_{p}} \\
\Gamma_{a_{p} c_{n}}=\sum_{b d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \rho_{d}, b_{n}
\end{array}\right. \\
& \mathrm{pp} / \mathrm{nn} / \mathrm{pn} \text { are taken } \\
& \text { into account }
\end{aligned}
$$

Pairing field

$$
\begin{gathered}
\Delta_{a_{n} b_{n}}=\overline{2} \sum_{c d} v_{a_{n} b_{n} c_{n} d_{n}} \kappa_{c_{n} d_{n}} \\
\Delta_{a_{n} b_{p}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \kappa_{c_{n} d_{p}}+\bar{v}_{a_{n} b_{p} c_{p} d_{n}} \kappa_{c_{p} d_{n}} \\
\Delta_{a_{p} b_{n}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \kappa_{c_{n} d_{p}}+\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \kappa_{c_{p} d_{n}}
\end{gathered}
$$

Proton-neutron pairing with Gogny EDF

Hartree-Fock field

Pairing field

$$
\begin{gathered}
\Delta_{a_{n} b_{n}}=\overline{2} \sum_{c d} v_{a_{n} b_{n} c_{n} d_{n}} \kappa_{c_{n} d_{n}} \\
\Delta_{a_{n} b_{p}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \kappa /_{n} d_{p}+\bar{v}_{a_{n} b_{p} c_{p} d_{n}} \kappa / d_{p} \\
\Delta_{a_{p} b_{n}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \kappa c_{n} d_{p}+\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \kappa / d_{p}
\end{gathered}
$$

Proton-neutron pairing with Gogny EDF

Hartree-Fock field

$$
\left[\begin{array}{rl}
\Gamma_{a_{p} c_{p}}= & \sum_{b} \bar{v}_{a_{p} b_{p} c_{p} d_{p}} p_{d_{p} b_{p}}+\begin{array}{l}
\bar{v}_{a_{p} b_{n} c_{p} d_{n}} p_{d_{n} b_{n}} \\
\Gamma_{a_{n} c_{n}}= \\
\sum_{b d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \rho_{d_{p} b_{p}}+\bar{v}_{a_{n} b_{n} c_{n} d_{n}} \\
\rho_{d_{n} b_{n}} \\
\text { into account }
\end{array} \\
\Gamma_{a_{n} c_{p}}=\sum_{b d} \bar{v}_{a_{n} b_{p} c_{p} d_{n}} \rho_{d} b_{p} & \\
& \Gamma_{a_{p} c_{n}}=\sum_{b d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \rho_{d} b_{n}
\end{array}\right.
$$

$$
\Delta_{a_{p} b_{p}}=\frac{1}{2} \sum_{c d} \overline{\bar{v}}_{a_{p} b_{p} c_{p} d_{p}} \kappa_{c_{p} d_{p}}
$$

Pairing field

$$
\Delta_{a b} \rightarrow\left[\begin{array}{l}
\Delta_{a_{n} b_{p}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \kappa / \bar{v}_{a_{n} b_{p} c_{p} d_{n}} \kappa / d_{p} \\
\Delta_{a_{p} b_{n}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \kappa c_{n} d_{p}+\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \kappa / d_{p} d_{n}
\end{array}\right.
$$

Proton-neutron pairing with Gogny EDF

Hartree-Fock field

We have to go beyond

$$
|\Phi\rangle=|\Phi\rangle_{n} \times|\Phi\rangle_{n}
$$

Pairing field
to include pn pairing.
$\Delta_{a_{n} b_{n}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{n} b_{n} c_{n} d_{n}} / \kappa_{c_{n} d_{n}} \quad$ no pn pairing!!!

$$
\Delta_{a b} \rightarrow\left[\begin{array}{l}
\Delta_{a_{n} b_{p}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{n} b_{p} c_{n} d_{p}} \kappa / \bar{v}_{a_{n} b_{p} c_{p} d_{n}} \kappa / d_{p} \\
\Delta_{a_{p} b_{n}}=\frac{1}{2} \sum_{c d} \bar{v}_{a_{p} b_{n} c_{n} d_{p}} \kappa / c_{n} d_{p}+\bar{v}_{a_{p} b_{n} c_{p} d_{n}} \kappa
\end{array}\right.
$$

Proton-neutron pairing with Gogny EDF

On top of this, Gogny parametrizations are chosen to cancel out the pairing part coming from the density-dependent term when the HFB wave function is factorized.

$$
\hat{V}^{D D}\left(\vec{r}_{1}, \vec{r}_{2}\right)=t_{3}\left(1+x_{0} P_{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho_{H}^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right) \rightarrow \text { density-dependent term }
$$

Proton-neutron pairing with Gogny EDF

On top of this, Gogny parametrizations are chosen to cancel out the pairing part coming from the density-dependent term when the HFB wave function is factorized.

$$
\begin{gathered}
\hat{V}^{D D}\left(\vec{r}_{1}, \vec{r}_{2}\right)=t_{3}\left(1+x_{0} P_{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho_{H}^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right) \rightarrow \text { density-dependent term } \\
\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(\delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-x_{0} \delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)+\rightarrow\right. \text { two-body matrix elements } \\
\left.S_{a d} S_{b c}\left(x_{0} \delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-\delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)\right]
\end{gathered}
$$

Proton-neutron pairing with Gogny EDF

On top of this, Gogny parametrizations are chosen to cancel out the pairing part coming from the density-dependent term when the HFB wave function is factorized.

$$
\begin{aligned}
\hat{V}^{D D}\left(\vec{r}_{1}, \vec{r}_{2}\right)=t_{3}\left(1+x_{0} P_{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho_{H}^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right) & \rightarrow \text { density-dependent term } \\
\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(\delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-x_{0} \delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)+\right. & \rightarrow \text { two-body matrix elements } \\
\left.S_{a d} S_{b c}\left(x_{0} \delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-\delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)\right] & I_{a b c d}^{D D}=\int \phi_{a}(\vec{r}) \phi_{b}(\vec{r}) \rho_{H}^{\alpha}(\vec{r}) \phi_{c}(\vec{r}) \phi_{d}(\vec{r}) d^{3} \vec{r} \\
& \rightarrow \text { spatial integrals }
\end{aligned}
$$

Proton-neutron pairing with Gogny EDF

On top of this, Gogny parametrizations are chosen to cancel out the pairing part coming from the density-dependent term when the HFB wave function is factorized.

$$
\begin{gathered}
\hat{V}^{D D}\left(\vec{r}_{1}, \vec{r}_{2}\right)=t_{3}\left(1+x_{0} P_{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho_{H}^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right) \rightarrow \text { density-dependent term } \\
\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(\delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-x_{0} \delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)+\rightarrow\right. \text { two-body matrix elements } \\
\left.S_{a d} S_{b c}\left(x_{0} \delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-\delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)\right]
\end{gathered}
$$

\rightarrow To compute the HF field:
$\tau_{a}=\tau_{c} \equiv \tau ; \tau_{b}=\tau_{d} \equiv \tau^{\prime}$
$\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(1-x_{0} \delta_{\tau \tau^{\prime}}\right)+S_{a d} S_{b c}\left(x_{0}-\delta_{\tau \tau^{\prime}}\right)\right]$

Proton-neutron pairing with Gogny EDF

On top of this, Gogny parametrizations are chosen to cancel out the pairing part coming from the density-dependent term when the HFB wave function is factorized.

$$
\begin{gathered}
\hat{V}^{D D}\left(\vec{r}_{1}, \vec{r}_{2}\right)=t_{3}\left(1+x_{0} P_{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho_{H}^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right) \rightarrow \text { density-dependent term } \\
\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(\delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-x_{0} \delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)+\rightarrow\right. \text { two-body matrix elements } \\
\left.S_{a d} S_{b c}\left(x_{0} \delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-\delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)\right]
\end{gathered}
$$

\rightarrow To compute the HF field:
$\tau_{a}=\tau_{c} \equiv \tau ; \tau_{b}=\tau_{d} \equiv \tau^{\prime}$
$\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(1-x_{0} \delta_{\tau \tau^{\prime}}\right)+S_{a d} S_{b c}\left(x_{0}-\delta_{\tau \tau^{\prime}}\right)\right]$
\rightarrow To compute the pairing field:
$\tau_{a}=\tau_{b} \equiv \tau ; \tau_{c}=\tau_{d} \equiv \tau^{\prime}$
$\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(1-x_{0}\right)+S_{a d} S_{b c}\left(x_{0}-1\right)\right] \delta_{\tau \tau^{\prime}}$

Proton-neutron pairing with Gogny EDF

On top of this, Gogny parametrizations are chosen to cancel out the pairing part coming from the density-dependent term when the HFB wave function is factorized.

$$
\begin{gathered}
\hat{V}^{D D}\left(\vec{r}_{1}, \vec{r}_{2}\right)=t_{3}\left(1+x_{0} P_{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho_{H}^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right) \rightarrow \text { density-dependent term } \\
\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(\delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-x_{0} \delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)+\rightarrow\right. \text { two-body matrix elements } \\
\left.S_{a d} S_{b c}\left(x_{0} \delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-\delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)\right]
\end{gathered}
$$

\rightarrow To compute the HF field:
$\tau_{a}=\tau_{c} \equiv \tau ; \tau_{b}=\tau_{d} \equiv \tau^{\prime}$
$\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(1-x_{0} \delta_{\tau \tau^{\prime}}\right)+S_{a d} S_{b c}\left(x_{0}-\delta_{\tau \tau^{\prime}}\right)\right]$
\rightarrow To compute the pairing field:
$\tau_{a}=\tau_{b} \equiv \tau ; \tau_{c}=\tau_{d} \equiv \tau^{\prime}$
$\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(1-x_{0}\right) S_{a d} S_{b c}\left(x_{0}-1\right)\right] \delta_{\tau \tau^{\prime}} \quad \rightarrow$ in all parametrizations

Proton-neutron pairing with Gogny EDF

On top of this, Gogny parametrizations are chosen to cancel out the pairing part coming from the density-dependent term when the HFB wave function is factorized.

$$
\begin{gathered}
\hat{V}^{D D}\left(\vec{r}_{1}, \vec{r}_{2}\right)=t_{3}\left(1+x_{0} P_{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho_{H}^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right) \rightarrow \text { density-dependent term } \\
\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(\delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-x_{0} \delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)+\rightarrow\right. \text { two-body matrix elements } \\
\left.S_{a d} S_{b c}\left(x_{0} \delta_{\tau_{a} \tau_{c}} \delta_{\tau_{b} \tau_{d}}-\delta_{\tau_{a} \tau_{d}} \delta_{\tau_{b} \tau_{c}}\right)\right]
\end{gathered}
$$

\rightarrow To compute the HF field:
$\tau_{a}=\tau_{c} \equiv \tau ; \tau_{b}=\tau_{d} \equiv \tau^{\prime}$
$\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(1-x_{0} \delta_{\tau \tau^{\prime}}\right)+S_{a d} S_{b c}\left(x_{0}-\delta_{\tau \tau^{\prime}}\right)\right]$
\rightarrow To compute the pairing field:
$\tau_{a}=\tau_{b} \equiv \tau ; \tau_{c}=\tau_{d} \equiv \tau^{\prime} \rightarrow$ it does not hold in the general case!!
$\bar{v}_{a b c d}^{D D}=t_{3} I_{a b c d}^{D D}\left[S_{a c} S_{b d}\left(1-x_{0}\right) S_{a d} S_{b c}\left(x_{0}-1\right)\right] \delta_{\tau \tau^{\prime}} \quad \rightarrow$ in all parametrizations

$$
x_{0}=1
$$

[^0]: J.D. Holt, J. Engel, Phys. Rev. C 87, 064315 (2013)

[^1]: T.R.R., Martínez-Pinedo, PLB 719, 174 (2013)

[^2]: J. Barea and F. lachello, Phys. Rev. C 79, 044301 (2009)

