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 Process mediated by the weak interaction which occurs in those even-even nuclei 
where the single beta decay is energetically forbidden.   

Neutrinoless double beta decay
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Double beta decay

Double beta decay is a second-order
process which appears when single-�
decay is energetically forbidden or
hindered by large �J
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Experiment Decay Present limit T1/2 Forecast limit T1/2 Ref.

GERDA 76Ge > 2.1x1025 yr  ~2x1026 yr PRL. 111, 122503 (2013) 

Majorana 76Ge ——  ~4x1027 yr arXiv:nucl-ex/ 0311013

EXO-200 136Xe > 1.1x1025 yr ~1.3x1028 yr Nature 510, 229 (2014)

KamLAND-Zen 136Xe > 1.9x1025 yr ~4x1026 yr PRL 110, 062502 (2013)

NEXT 136Xe —— ~1026 yr JINST 7, C11007 (2012)

(Super)NEMO3 82Se > 3.6x1023 yr ~1.2x1026 yr PRL 95, 182302 (2005)

CUORICINO (CUORE) 130Te > 3x1024 yr ~2x1026 yr PRC 78, 035502 (2008)

(Super)NEMO3 150Nd > 1.8x1022 yr ~5x1025 yr PRC 80, 032501 (2009)

SNO+ 150Nd —— > 1.6x1025 yr J. Phys. Conf. Ser. 447, 
012065 (2013)

Experimental status
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• Leading lepton number violating process contributing to 0νββ decay

- Exchange of light Majorana neutrino. 
- Exchange of heavy Majorana neutrino.

- Leptoquarks.

- Supersymmetric particles.

- … 


• Transition operator connecting initial and final states

- Relativistic/Non-relativistic.

- Nucleon size effects.

- Two-body weak currents.

- Form factors.

- Short-range correlations.

- Closure approximation.

- …


• Nuclear structure method (fully consistent or not with the operator) for 
calculating these NME.


- Correlations.

- Symmetry conservation.

- Valence space.

- …

NME: Starting points
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Method Recent references

Interacting Shell Model (ISM)

- Phys. Rev. Lett. 100, 052503 (2008).


- Nucl. Phys. A 818, 139 (2009).


- Phys. Rev. C 87, 014320 (2013). 


- Phys. Rev. Lett. 113, 262501 (2014).

pnQRPA
- Phys. Rev. C 77, 045503 (2008). 


- Phys Rev. C 87, 045501 (2013).


- J. Phys. G 39, 124005 (2012).

Interacting Boson Model (IBM)
- Phys. Rev. C 79, 044301 (2009). 


- Phys Rev. C 87, 014315 (2013).

Generator Coordinate Method (GCM-EDF)

- Phys. Rev. Lett. 105, 252503 (2010). 


- Phys. Rev. Lett 111, 142501 (2013).


- Phys. Rev. C 90, 031031(R) (2014). 


- Phys. Rev. C 90, 054309 (2014).


- Phys. Rev. C 91, 024316 (2015).

Nuclear structure methods
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nal GCM+PNAMP (PC-PK1) calculation; (b) the total NMEs calculated with
either only spherical configuration or full configurations, in comparison with
those of GCM+PNAMP (D1S) from Ref. [34]. The shaded area indicates the
uncertainty of the SRC effect within 10%. See text for more details.

the tensor terms were neglected. These two effects can bring a
difference up to ∼ 15% in the NMEs. By taking into account
this point, one can draw the conclusion from Fig. 5(b) that these
two calculations give consistent results for the total NMEs for
all the candidate nuclei with the exception of 150Nd.
Moreover, we note that in the calculation with pure spher-

ical configuration, PNP increases significantly the NMEs for
the 0νββ-decay evolved with one (semi)magic nucleus, includ-
ing 48Ca (127%), 116Cd (49%), 124Sn (55%), and 136Xe (58%),
where pairing collapse occurs in either protons or neutrons. The
increase in the NMEs by the PNP is mainly through the su-
perfluid partner nucleus. For 48Ca, pairing collapse is found
in both neutrons and protons, leading to about twice enhanced
normalized NME than the other three ones. It can be under-
stood from Eq.(6) that the ⟨βF = 0|Ô0νP̂J=0P̂NI P̂ZI |βI = 0⟩ for
48Ca-Ti does not change by the PNP, while the normalization
factorNF for the daughter nucleus 48Ti is increased, resulting in
the enhanced normalized NME. The comparison of the results
of “Sph+PNP (PC-PK1)” and “Sph+PNP (D1S)” in Fig. 5(b)
shows a large discrepancy in 100Mo-Ru and 150Nd-Sm. This
discrepancy could be attributed to different pairing properties.
However, after taking into account the static and dynamic de-
formation effects, which turn out to decrease the NME signif-
icantly, the discrepancy in 100Mo-Ru is much reduced, while
that in 150Nd-Sm remains and is mainly attributed to the differ-
ence in the overlap between the initial and final collective wave
functions, as already discussed in Ref. [37].
Figure 6 displays our final NMEs for the 0νββ-decay in

comparison with those by the ISM [23], renormalized QRPA
(RQRPA) [30], PHFB [33], NREDF (D1S) [34], and the
IBM2 [32]. There are also other calculations that are not taken

Figure 6: (Color online) Comparison of the NME M0ν for the 0νββ-decay from
different model calculations. The shaded area indicates the uncertainty of the
SRC effect within 10%. The adopted values are available on the web site [52].

Table 2: The upper limits of the effective neutrino mass ⟨mββ⟩ (eV) based on the
NMEs from the present GCM+PNAMP (PC-PK1) calculation, the lower limits
of the half-life T 0ν1/2(×10

24 yr) for the 0νββ-decay from most recent measure-
ments [56, 10, 57, 58, 8, 9, 59] and the phase-space factor G0ν(×10−15 yr−1)
from Ref. [14].

48Ca 76Ge 82Se 100Mo 130Te 136Xe 150Nd
⟨mββ⟩ ≤ 2.92 ≤ 0.20 ≤ 1.00 ≤ 0.38 ≤ 0.33 ≤ 0.11 ≤ 1.76
T 0ν1/2 ≥ 0.058 ≥ 30 ≥ 0.36 ≥ 1.1 ≥ 2.8 ≥ 34 ≥ 0.018
G0ν 24.81 2.363 10.16 15.92 14.22 14.58 60.03

for comparison. Here, only the calculations considering the
SRC effect with the UCOM (except for the IBM2 calculation
with the coupled-cluster model (CCM)) and using the radius
parameter R = 1.2A1/3 fm are adopted for comparison. Our
results are amongst the largest values of the existing calcula-
tions in most cases, except for 100Mo-Ru, 124Sn-Te and 130Te-
Xe. Moreover, the NME for 96Zr in both EDF-based calcu-
lations is significantly larger than the other results, which can
be traced back to the overestimated collectivity. If the ground
state of 96Zr was taken as the pure spherical configuration, the
NME becomes 5.64 (PC-PK1) and 3.94 (D1S), respectively.
We note that the consideration of higher-order deformation in
nuclear wave functions, such as octupole deformation in 150Sm-
Nd [53, 54], and triaxiality in 76Ge-Se [50, 51] and 100Mo-
Ru [55], is expected to hinder the corresponding NMEs further
in the DFT calculation.
Table 2 lists the upper limits of the effective neutrino mass
⟨mββ⟩ based on the present calculated NMEs for the nuclei
whose lower limits of the half-life T 0ν1/2 for the 0νββ-decay have
been recently measured [56, 10, 57, 58, 9, 59]. The smallest
value (≤ 0.11 eV) for the upper limit ⟨mββ⟩ is found based on the
combined results from KamLAND-Zen [9] and EXO-200 [8]
collaborations for the0νββ-decay half-life (T 0ν1/2 ≥ 3.4 × 10

25 yr
at 90% confidence level) of 136Xe. This value is closest to but
still larger than the estimated value (20 − 50 meV based on the
inverted hierarchy for neutrino masses [19]) by a factor of 2−5.
Summary and outlook.− In summary, we have reported a

5

J. M. Yao et al.,Phys. Rev. C 91, 024316 (2015) 

Current theoretical status

J. BAREA, J. KOTILA, AND F. IACHELLO PHYSICAL REVIEW C 87, 014315 (2013)

TABLE XII. Final IBM-2 matrix elements with M-S SRC and
error estimate.

Decay Light neutrino exchange Heavy neutrino exchange

48Ca 1.98(59) 16.3(95)
76Ge 5.42(103) 48.1(255)
82Se 4.37(83) 35.6(189)
96Zr 2.53(40) 59.0(309)
100Mo 3.73(60) 99.3(516)
110Pd 3.62(58) 95.7(498)
116Cd 2.78(44) 67.1(321)
124Sn 3.50(67) 37.8(200)
128Te 4.48(85) 48.4(257)
130Te 4.03(77) 44.0(233)
136Xe 3.33(63) 35.1(186)
148Nd 1.98(32) 59.4(309)
150Nd 2.32(37) 68.4(356)
154Sm 2.50(40) 67.1(349)
160Gd 3.62(58) 92.9(483)
198Pt 1.88(30) 61.5(320)

error is dominated by SRC. In Table XII we have used 58%
in 48Ca, 53% in nuclei with protons and neutrons in the same
major shell, and 52% in nuclei with protons and neutrons in
different major shells.

Finally, having investigated the effect of short-range corre-
lations on 0νββ we are now able to compare our results with
all available calculations done with the same SRC including
DFT [43] and HFB [42]. These are shown in Fig. 7. We
note now that while the ISM, the QRPA, and IBM-2 have
the same trend with A, the other two do not. For the isotopic
ratio M (0ν)(128Te)/M (0ν)(130Te) the DFT method gives 0.86,
in sharp contrast with the value 1.11. Also, while the ISM,
the QRPA, and IBM-2 have a small value for 96Zr, DFT has
a large value. We therefore conclude that the approximations
made in the DFT and HFB method lead to a different behavior
with A. This point is currently being investigated [50]. Also,
the Fermi matrix elements in DFT are comparable to those in
IBM-2 and larger than those in the ISM [50].

IBM 2
QRPA Tü
QRPA Jy
QRPA def
ISM
EDF
PHFB
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Mo Pd
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FIG. 7. (Color online) IBM-2 results for 0νββ nuclear matrix
elements compared with QRPA-Tü [13], the ISM [14], QRPA-Jy
[36,54–56], QRPA-deformed [41], DFT [43], and HFB [42].
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FIG. 8. (Color online) Expected half-lives for ⟨mν⟩ = 1 eV, gA =
1.269. The points for 128Te and 148Nd decays are not included in this
figure. The figure is in semilogarithmic scale.

D. Limits on neutrino mass

1. Light neutrino exchange

The calculation of nuclear matrix elements in IBM-2 can
now be combined with the phase-space factors calculated in [8]
and given in Table III and Fig. 8 of that reference to produce
our final results for half-lives for light neutrino exchange in
Table XIII and Fig. 8. The half-lives are calculated using the
formula

[
τ 0ν

1/2

]−1 = G
(0)
0ν |M0ν |2

∣∣∣∣
⟨mν⟩
me

∣∣∣∣
2

. (21)

We note here that the combination must be done consistently.
If the value of gA is included in M0ν , then it should not be
included in G

(0)
0ν , and similarly for a factor of 4 included in

some definition of G
(0)
0ν [2] and not in others [57]. See Eq. (53)

of Ref. [8]. This point has caused considerable confusion in
the literature. In Table XIII and Fig. 8 the values ⟨mν⟩ = 1 eV
and gA = 1.269 are used. For other values they can be scaled
with |⟨mν⟩/me|2 and g4

A.
The effective neutrino mass is the quantity we want

to extract from experiment. Unfortunately, the axial vector
coupling constant is renormalized in nuclei to gA,eff . A
(model-dependent) estimate of gA,eff can be obtained from
the experimental knowledge of single-β decay and/or of 2νββ
decay. This will be discussed in the following section. Here
we show in Fig. 9 and Table XIII the limits on neutrino
mass from current experimental upper limits using IBM-2
matrix elements of Table V and gA = 1.269. In addition to
the experimental upper limits, a value has been reported for
the half-life in 76Ge, 1.2 × 1025 yr [59]. This is also reported
in Fig. 9.

The average light neutrino mass is constrained by atmo-
spheric, solar, reactor, and accelerator neutrino oscillation
experiments to be [64]
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∣∣ ,

cij = cos ϑij , sij = sin ϑij , ϕ2,3 = [0, 2π ],
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nal GCM+PNAMP (PC-PK1) calculation; (b) the total NMEs calculated with
either only spherical configuration or full configurations, in comparison with
those of GCM+PNAMP (D1S) from Ref. [34]. The shaded area indicates the
uncertainty of the SRC effect within 10%. See text for more details.

the tensor terms were neglected. These two effects can bring a
difference up to ∼ 15% in the NMEs. By taking into account
this point, one can draw the conclusion from Fig. 5(b) that these
two calculations give consistent results for the total NMEs for
all the candidate nuclei with the exception of 150Nd.
Moreover, we note that in the calculation with pure spher-

ical configuration, PNP increases significantly the NMEs for
the 0νββ-decay evolved with one (semi)magic nucleus, includ-
ing 48Ca (127%), 116Cd (49%), 124Sn (55%), and 136Xe (58%),
where pairing collapse occurs in either protons or neutrons. The
increase in the NMEs by the PNP is mainly through the su-
perfluid partner nucleus. For 48Ca, pairing collapse is found
in both neutrons and protons, leading to about twice enhanced
normalized NME than the other three ones. It can be under-
stood from Eq.(6) that the ⟨βF = 0|Ô0νP̂J=0P̂NI P̂ZI |βI = 0⟩ for
48Ca-Ti does not change by the PNP, while the normalization
factorNF for the daughter nucleus 48Ti is increased, resulting in
the enhanced normalized NME. The comparison of the results
of “Sph+PNP (PC-PK1)” and “Sph+PNP (D1S)” in Fig. 5(b)
shows a large discrepancy in 100Mo-Ru and 150Nd-Sm. This
discrepancy could be attributed to different pairing properties.
However, after taking into account the static and dynamic de-
formation effects, which turn out to decrease the NME signif-
icantly, the discrepancy in 100Mo-Ru is much reduced, while
that in 150Nd-Sm remains and is mainly attributed to the differ-
ence in the overlap between the initial and final collective wave
functions, as already discussed in Ref. [37].
Figure 6 displays our final NMEs for the 0νββ-decay in

comparison with those by the ISM [23], renormalized QRPA
(RQRPA) [30], PHFB [33], NREDF (D1S) [34], and the
IBM2 [32]. There are also other calculations that are not taken

Figure 6: (Color online) Comparison of the NME M0ν for the 0νββ-decay from
different model calculations. The shaded area indicates the uncertainty of the
SRC effect within 10%. The adopted values are available on the web site [52].

Table 2: The upper limits of the effective neutrino mass ⟨mββ⟩ (eV) based on the
NMEs from the present GCM+PNAMP (PC-PK1) calculation, the lower limits
of the half-life T 0ν1/2(×10

24 yr) for the 0νββ-decay from most recent measure-
ments [56, 10, 57, 58, 8, 9, 59] and the phase-space factor G0ν(×10−15 yr−1)
from Ref. [14].

48Ca 76Ge 82Se 100Mo 130Te 136Xe 150Nd
⟨mββ⟩ ≤ 2.92 ≤ 0.20 ≤ 1.00 ≤ 0.38 ≤ 0.33 ≤ 0.11 ≤ 1.76
T 0ν1/2 ≥ 0.058 ≥ 30 ≥ 0.36 ≥ 1.1 ≥ 2.8 ≥ 34 ≥ 0.018
G0ν 24.81 2.363 10.16 15.92 14.22 14.58 60.03

for comparison. Here, only the calculations considering the
SRC effect with the UCOM (except for the IBM2 calculation
with the coupled-cluster model (CCM)) and using the radius
parameter R = 1.2A1/3 fm are adopted for comparison. Our
results are amongst the largest values of the existing calcula-
tions in most cases, except for 100Mo-Ru, 124Sn-Te and 130Te-
Xe. Moreover, the NME for 96Zr in both EDF-based calcu-
lations is significantly larger than the other results, which can
be traced back to the overestimated collectivity. If the ground
state of 96Zr was taken as the pure spherical configuration, the
NME becomes 5.64 (PC-PK1) and 3.94 (D1S), respectively.
We note that the consideration of higher-order deformation in
nuclear wave functions, such as octupole deformation in 150Sm-
Nd [53, 54], and triaxiality in 76Ge-Se [50, 51] and 100Mo-
Ru [55], is expected to hinder the corresponding NMEs further
in the DFT calculation.
Table 2 lists the upper limits of the effective neutrino mass
⟨mββ⟩ based on the present calculated NMEs for the nuclei
whose lower limits of the half-life T 0ν1/2 for the 0νββ-decay have
been recently measured [56, 10, 57, 58, 9, 59]. The smallest
value (≤ 0.11 eV) for the upper limit ⟨mββ⟩ is found based on the
combined results from KamLAND-Zen [9] and EXO-200 [8]
collaborations for the0νββ-decay half-life (T 0ν1/2 ≥ 3.4 × 10

25 yr
at 90% confidence level) of 136Xe. This value is closest to but
still larger than the estimated value (20 − 50 meV based on the
inverted hierarchy for neutrino masses [19]) by a factor of 2−5.
Summary and outlook.− In summary, we have reported a
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TABLE XII. Final IBM-2 matrix elements with M-S SRC and
error estimate.

Decay Light neutrino exchange Heavy neutrino exchange

48Ca 1.98(59) 16.3(95)
76Ge 5.42(103) 48.1(255)
82Se 4.37(83) 35.6(189)
96Zr 2.53(40) 59.0(309)
100Mo 3.73(60) 99.3(516)
110Pd 3.62(58) 95.7(498)
116Cd 2.78(44) 67.1(321)
124Sn 3.50(67) 37.8(200)
128Te 4.48(85) 48.4(257)
130Te 4.03(77) 44.0(233)
136Xe 3.33(63) 35.1(186)
148Nd 1.98(32) 59.4(309)
150Nd 2.32(37) 68.4(356)
154Sm 2.50(40) 67.1(349)
160Gd 3.62(58) 92.9(483)
198Pt 1.88(30) 61.5(320)

error is dominated by SRC. In Table XII we have used 58%
in 48Ca, 53% in nuclei with protons and neutrons in the same
major shell, and 52% in nuclei with protons and neutrons in
different major shells.

Finally, having investigated the effect of short-range corre-
lations on 0νββ we are now able to compare our results with
all available calculations done with the same SRC including
DFT [43] and HFB [42]. These are shown in Fig. 7. We
note now that while the ISM, the QRPA, and IBM-2 have
the same trend with A, the other two do not. For the isotopic
ratio M (0ν)(128Te)/M (0ν)(130Te) the DFT method gives 0.86,
in sharp contrast with the value 1.11. Also, while the ISM,
the QRPA, and IBM-2 have a small value for 96Zr, DFT has
a large value. We therefore conclude that the approximations
made in the DFT and HFB method lead to a different behavior
with A. This point is currently being investigated [50]. Also,
the Fermi matrix elements in DFT are comparable to those in
IBM-2 and larger than those in the ISM [50].
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FIG. 7. (Color online) IBM-2 results for 0νββ nuclear matrix
elements compared with QRPA-Tü [13], the ISM [14], QRPA-Jy
[36,54–56], QRPA-deformed [41], DFT [43], and HFB [42].
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FIG. 8. (Color online) Expected half-lives for ⟨mν⟩ = 1 eV, gA =
1.269. The points for 128Te and 148Nd decays are not included in this
figure. The figure is in semilogarithmic scale.

D. Limits on neutrino mass

1. Light neutrino exchange

The calculation of nuclear matrix elements in IBM-2 can
now be combined with the phase-space factors calculated in [8]
and given in Table III and Fig. 8 of that reference to produce
our final results for half-lives for light neutrino exchange in
Table XIII and Fig. 8. The half-lives are calculated using the
formula

[
τ 0ν

1/2

]−1 = G
(0)
0ν |M0ν |2

∣∣∣∣
⟨mν⟩
me

∣∣∣∣
2

. (21)

We note here that the combination must be done consistently.
If the value of gA is included in M0ν , then it should not be
included in G

(0)
0ν , and similarly for a factor of 4 included in

some definition of G
(0)
0ν [2] and not in others [57]. See Eq. (53)

of Ref. [8]. This point has caused considerable confusion in
the literature. In Table XIII and Fig. 8 the values ⟨mν⟩ = 1 eV
and gA = 1.269 are used. For other values they can be scaled
with |⟨mν⟩/me|2 and g4

A.
The effective neutrino mass is the quantity we want

to extract from experiment. Unfortunately, the axial vector
coupling constant is renormalized in nuclei to gA,eff . A
(model-dependent) estimate of gA,eff can be obtained from
the experimental knowledge of single-β decay and/or of 2νββ
decay. This will be discussed in the following section. Here
we show in Fig. 9 and Table XIII the limits on neutrino
mass from current experimental upper limits using IBM-2
matrix elements of Table V and gA = 1.269. In addition to
the experimental upper limits, a value has been reported for
the half-life in 76Ge, 1.2 × 1025 yr [59]. This is also reported
in Fig. 9.

The average light neutrino mass is constrained by atmo-
spheric, solar, reactor, and accelerator neutrino oscillation
experiments to be [64]
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Transition operator

3

tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form

jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
state, and the decay operator reads

Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes

4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

J †
µ (x1)J µ†(x2)

q + Ed
,

(10)

where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
tor Ed within a certain range will not lead to dramatic
changes of M0ν [22, 46–48]. The sensitivity of the NME
to changes of Ed will be discussed further later.
Considering the four terms in Eq. (7), the operator

can be decomposed into the vector coupling (VV), axial-
vector coupling (AA), axial-vector and pseudoscalar
coupling (AP), pseudoscalar coupling (PP), and weak-
magnetism coupling (MM) channels, as

Ô0ν =
∑

i

Ô0ν
i , (i = V V,AA,AP, PP,MM) (11)

with each component being

Ô0ν
i =

4πR

g2A

∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q(q + Ed)

[

J †
µJ µ†

]

i
,

(12)

and the “two-current” operators
[

J †J †
]

i
being

g2V (q
2)
(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

, (13a)

g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

, (13b)

2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13c)

g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13d)

g2M (q2)

(

ψ̄
σµi
2mp

qiτ−ψ

)(1)(

ψ̄
σµj

2mp
qjτ−ψ

)(2)

. (13e)
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tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.
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tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator
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can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form

jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)
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τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer
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obtained after a few steps [8]:
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, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
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where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
tor Ed within a certain range will not lead to dramatic
changes of M0ν [22, 46–48]. The sensitivity of the NME
to changes of Ed will be discussed further later.
Considering the four terms in Eq. (7), the operator
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coupling (AP), pseudoscalar coupling (PP), and weak-
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∑
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Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average
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Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average
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Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes

4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

J †
µ (x1)J µ†(x2)

q + Ed
,

(10)
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Ô0ν
i , (i = V V,AA,AP, PP,MM) (11)

with each component being
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is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form
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ing electrons and neglecting the small energy transfer
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tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.
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can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form
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The hadronic current is expressed in terms of nucleon
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operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer
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M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
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make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average
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versions of the 5D-collective Bohr Hamiltonian provide a
very successful alternative which can be applied even in
heavy nuclei [67]. It remains to be investigated in the fu-
ture, whether these methods can be used also successfully
for investigations of 0νββ decay matrix elements.

3. Validity of non-relativistic reduced calculations and
contribution of the tensor term

One advantage of our method is that it is fully rela-
tivistic and therefore it allows us to investigate the non-
relativistic approximation in most calculations. In this
case the hadronic current J †

µ (x) in Eq. (10) is expanded
in terms of |q|/mp. If terms are kept up to the first order,
the fully relativistic operator in Eq. (10) is reduced to the
non-relativistic operator used in previous studies [12, 68].
The non-relativistic “two-current” operator

[

J †
µJ µ†

]

NR
can be decomposed, as in other non-relativistic calcula-
tions, into the Fermi, the Gamow-Teller, and the tensor
parts:

[

−hF(q
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2)Sq

12

]

τ (1)− τ (2)− , (34)
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and σ12 = σ(1) · σ(2). Each channel (K: F, GT, T)
of Eq. (34) can be labeled by the terms of the hadronic
current from which it originates, as
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∑
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3
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3
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hGT−MM (q2) = −2

3
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2), (35f)

hT−PP (q
2) = hGT−PP (q
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hT−MM (q2) = −1

2
hGT−MM (q2). (35h)

In Fig. 9 we compare results calculated with the first
order operator with those of the full operator, for the
NME in each coupling channel and for both the 0+1 → 0+1
and 0+1 → 0+2 transitions. For comparison we also dis-
play the results obtained by the operator with zeroth
order of |q|/mp in the hadronic current. In all circum-
stances the dominant contributions come from the AA
coupling channel. In zeroth order of the non-relativistic
reduction it represents the Gamow-Teller channel. In this
comparison, considerable differences could only be found

in the AP and PP coupling channels due to the counter-
diagonal structure of the gamma matrices involved. How-
ever, the deviations cancel out (< 1%) in the total NMEs
for the first order operator, while the results of the ze-
roth order operator deviate by roughly 16%. Thus the
first order operator utilized by other authors is a very
good approximation to the full operator retaining most
of the relativistic effects.

FIG. 9: (Color online) Contribution from each coupling chan-
nel to the total NMEs of 0νββ decay from 150Nd to 150Sm, for
both the (a) 0+1 → 0+1 and (b) 0+1 → 0+2 transitions. Values
of M0ν evaluated using the full relativistic operator Ô0ν are
compared with that obtained with the operators in the non-
relativistic approximations. The results are calculated with
the GCM+AMP method.

In Table III we present results for the 0+1 → 0+1 transi-
tion obtained with the first order operator. They are
compared with IBM-2 calculations [20]. Considering
χT = MT/MGT, the ratio of the tensor part to the dom-
inant Gamow-Teller part, one clearly recognizes the im-
portance of the tensor term. In the literature one finds
rarely discussions about the tensor effect for the nucleus
150Nd. However, analysing the results for other isotopes,
two different conclusions can be drawn. On the one
hand, the tensor effect is considered as negligible with
χT < 1% according to the calculations in the ISM [17],
in the QRPA studies of the Jyvaskyla group [11] and in
PHFB [22], and it is totally neglected in the NREDF cal-
culations of Refs. [23, 26]. On the other hand, it is proven
to be important with a contribution of 5% to 10% in the
QRPA calculations of the Tübingen group [10] and in
the IBM calculations [20]. Our result seems to be con-
sistent with the later opinion. As we can see from the
table, while the absolute value for the tensor term in our
calculation is very close to that given by the IBM-2, χT

is smaller due to the larger Gamow-Teller contribution.
This implies that we predict a relatively small tensor ef-
fect, but in the same order of magnitude as the IBM-2
calculations [20]. This conclusion needs to be confirmed
by further systematic investigations.

Transition operator
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tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form

jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
state, and the decay operator reads

Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes

4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

J †
µ (x1)J µ†(x2)

q + Ed
,

(10)

where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
tor Ed within a certain range will not lead to dramatic
changes of M0ν [22, 46–48]. The sensitivity of the NME
to changes of Ed will be discussed further later.
Considering the four terms in Eq. (7), the operator

can be decomposed into the vector coupling (VV), axial-
vector coupling (AA), axial-vector and pseudoscalar
coupling (AP), pseudoscalar coupling (PP), and weak-
magnetism coupling (MM) channels, as

Ô0ν =
∑

i

Ô0ν
i , (i = V V,AA,AP, PP,MM) (11)

with each component being

Ô0ν
i =
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3x2

∫
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eiq·(x1−x2)
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and the “two-current” operators
[

J †J †
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being
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tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
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mechanism, the formalism of the MR-CDFT, and the
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Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
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the derivation and to show the form of the relativistic op-
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momentum transfer limit, the vector, the axial-vector,
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µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes

4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

J †
µ (x1)J µ†(x2)

q + Ed
,

(10)

where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
tor Ed within a certain range will not lead to dramatic
changes of M0ν [22, 46–48]. The sensitivity of the NME
to changes of Ed will be discussed further later.
Considering the four terms in Eq. (7), the operator

can be decomposed into the vector coupling (VV), axial-
vector coupling (AA), axial-vector and pseudoscalar
coupling (AP), pseudoscalar coupling (PP), and weak-
magnetism coupling (MM) channels, as

Ô0ν =
∑

i

Ô0ν
i , (i = V V,AA,AP, PP,MM) (11)

with each component being

Ô0ν
i =

4πR

g2A

∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q(q + Ed)

[

J †
µJ µ†

]

i
,

(12)

and the “two-current” operators
[

J †J †
]

i
being

g2V (q
2)
(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

, (13a)

g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

, (13b)

2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13c)

g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13d)

g2M (q2)

(

ψ̄
σµi
2mp

qiτ−ψ

)(1)(

ψ̄
σµj

2mp
qjτ−ψ

)(2)

. (13e)

• Non-relativistic reduction

F. Simkovic et. al, PRC 60, 055502 (1999)
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versions of the 5D-collective Bohr Hamiltonian provide a
very successful alternative which can be applied even in
heavy nuclei [67]. It remains to be investigated in the fu-
ture, whether these methods can be used also successfully
for investigations of 0νββ decay matrix elements.

3. Validity of non-relativistic reduced calculations and
contribution of the tensor term

One advantage of our method is that it is fully rela-
tivistic and therefore it allows us to investigate the non-
relativistic approximation in most calculations. In this
case the hadronic current J †

µ (x) in Eq. (10) is expanded
in terms of |q|/mp. If terms are kept up to the first order,
the fully relativistic operator in Eq. (10) is reduced to the
non-relativistic operator used in previous studies [12, 68].
The non-relativistic “two-current” operator

[

J †
µJ µ†

]

NR
can be decomposed, as in other non-relativistic calcula-
tions, into the Fermi, the Gamow-Teller, and the tensor
parts:

[

−hF(q
2) + hGT(q

2)σ12 + hT(q
2)Sq

12

]

τ (1)− τ (2)− , (34)

with the tensor operator Sq
12 = 3(σ(1) · q̂)(σ(2) · q̂)− σ12

and σ12 = σ(1) · σ(2). Each channel (K: F, GT, T)
of Eq. (34) can be labeled by the terms of the hadronic
current from which it originates, as

hK(q2) =
∑

i

hK−i(q
2), (i = V V,AA,AP, PP,MM)

with

hF−V V (q
2) = −g2V (q

2), (35a)

hGT−AA(q
2) = −g2A(q

2), (35b)

hGT−AP (q
2) =

2

3
gA(q

2)gP (q
2)

q2

2mp
, (35c)

hGT−PP (q
2) = −1

3
g2P (q

2)
q4

4m2
p

, (35d)

hGT−MM (q2) = −2

3
g2M (q2)

q2

4m2
p
, (35e)

hT−AP (q
2) = hGT−AP (q

2), (35f)

hT−PP (q
2) = hGT−PP (q

2), (35g)

hT−MM (q2) = −1

2
hGT−MM (q2). (35h)

In Fig. 9 we compare results calculated with the first
order operator with those of the full operator, for the
NME in each coupling channel and for both the 0+1 → 0+1
and 0+1 → 0+2 transitions. For comparison we also dis-
play the results obtained by the operator with zeroth
order of |q|/mp in the hadronic current. In all circum-
stances the dominant contributions come from the AA
coupling channel. In zeroth order of the non-relativistic
reduction it represents the Gamow-Teller channel. In this
comparison, considerable differences could only be found

in the AP and PP coupling channels due to the counter-
diagonal structure of the gamma matrices involved. How-
ever, the deviations cancel out (< 1%) in the total NMEs
for the first order operator, while the results of the ze-
roth order operator deviate by roughly 16%. Thus the
first order operator utilized by other authors is a very
good approximation to the full operator retaining most
of the relativistic effects.

FIG. 9: (Color online) Contribution from each coupling chan-
nel to the total NMEs of 0νββ decay from 150Nd to 150Sm, for
both the (a) 0+1 → 0+1 and (b) 0+1 → 0+2 transitions. Values
of M0ν evaluated using the full relativistic operator Ô0ν are
compared with that obtained with the operators in the non-
relativistic approximations. The results are calculated with
the GCM+AMP method.

In Table III we present results for the 0+1 → 0+1 transi-
tion obtained with the first order operator. They are
compared with IBM-2 calculations [20]. Considering
χT = MT/MGT, the ratio of the tensor part to the dom-
inant Gamow-Teller part, one clearly recognizes the im-
portance of the tensor term. In the literature one finds
rarely discussions about the tensor effect for the nucleus
150Nd. However, analysing the results for other isotopes,
two different conclusions can be drawn. On the one
hand, the tensor effect is considered as negligible with
χT < 1% according to the calculations in the ISM [17],
in the QRPA studies of the Jyvaskyla group [11] and in
PHFB [22], and it is totally neglected in the NREDF cal-
culations of Refs. [23, 26]. On the other hand, it is proven
to be important with a contribution of 5% to 10% in the
QRPA calculations of the Tübingen group [10] and in
the IBM calculations [20]. Our result seems to be con-
sistent with the later opinion. As we can see from the
table, while the absolute value for the tensor term in our
calculation is very close to that given by the IBM-2, χT

is smaller due to the larger Gamow-Teller contribution.
This implies that we predict a relatively small tensor ef-
fect, but in the same order of magnitude as the IBM-2
calculations [20]. This conclusion needs to be confirmed
by further systematic investigations.

Transition operator

J. M. Yao et al., Phys. Rev. C 90, 054309 (2014)

Table 1: The normalized NME M̃0ν for the 0νββ-decay obtained with the
particle number projected spherical mean-field configuration (βI = βF = 0)
by the PC-PK1 force using both the relativistic and non-relativistic reduced
(first-order of q/mp in the one-body current) transition operators. The ratio
of the AA term to the total NME, RAA ≡ M̃0ν

AA/M̃
0ν , the relativistic effect

∆Rel. ≡ (M̃0ν − M̃0ν
NR)/M̃

0ν and the ratio of the tensor part to the total NME,
RT ≡ M̃0ν

NR,T/M̃
0ν
NR, are also presented.

Sph+PNP (PC-PK1) M̃0ν RAA M̃0ν
NR ∆Rel. RT

48Ca→48Ti 3.66 81% 3.74 −2.1% −2.4%
76Ge→76Se 7.59 94% 7.71 −1.6% 3.5%
82Se→82Kr 7.58 93% 7.68 −1.4% 2.9%
96Zr→96Mo 5.64 95% 5.63 0.2% 3.6%
100Mo→100Ru 10.92 95% 10.91 0.1% 3.5%
116Cd→116Sn 6.18 94% 6.13 0.7% 1.9%
124Sn→124Te 6.66 94% 6.78 −1.8% 4.9%
130Te→130Xe 9.50 94% 9.64 −1.4% 4.3%
136Xe→136Ba 6.59 94% 6.70 −1.7% 4.1%
150Nd→150Sm 13.25 95% 13.08 1.3% 2.5%

tions of the mother and daughter nuclei differ considerably from
each other, such as 76Ge-Se and 150Nd-Sm. Moreover, shape
fluctuation is shown to be significant in the light 0νββ candi-
date nuclei, the description of which is impossible with the ap-
proaches based on single-reference state [33, 28, 29]. This dy-
namic deformation effect (or shape mixing effect) could mod-
erate the quenching effect from the static deformation on the
NMEs [37], which is fully taken into account in the present
multi-reference BMF-CDFT approach.
Nuclear matrix elements for the 0νββ decay.− In order

to show the deformation-dependence of the NME, Table 1
presents the normalized NME M̃0ν(βI , βF) at spherical shape
(βI = βF = 0) for the 0νββ-decay obtained with both the rela-
tivistic and non-relativistic reduced transition operators, where
M̃0ν is defined as

M̃0ν(βI , βF) = NFNI ⟨βF |Ô
0νP̂J=0P̂NI P̂ZI |βI⟩, (6)

with N−2a = ⟨βa|P̂J=000 P̂Na P̂Za |βa⟩ for a = I, F. It is seen that
the error arisen from the first-order non-relativistic reduction is
marginal, which can either increase or decrease the total NME
by a factor within 2%. This value is modified only slightly
in the full GCM calculation, for instance becoming ∼ 5% for
150Nd [37]. The one-body charge-changing nucleon current,
Eq. (4), generates not only the Fermi and Gamow-Teller (GT)
terms but also tensor terms that have been neglected in the non-
relativistic study [34]. With the help of non-relativistic approx-
imation of the transition operator, one can isolate the contribu-
tion of the tensor part [26, 37], which is obtained by subtracting
the contributions of Fermi and GT terms from the total NME.
It is shown in Table 1 that the contribution of tensor terms is
within 5% of the total NME.
Figure 4 displays the normalized NME M̃0ν as a function of

the intrinsic quadrupole deformation βI and βF of the mother
and daughter nuclei, respectively. Similar to the behavior of the
GT part shown in the MR-DFT (D1S) calculation [34], the nor-
malized NME M̃0ν is concentrated rather symmetrically along
the diagonal line βI = βF , implying that the decay between

Figure 4: (Color online) Normalized NME M̃0ν as a function of the intrinsic
deformation parameter β of the initial AZ and final A(Z + 2) nuclei.

nuclei with different deformation is strongly hindered. More-
over, the M̃0ν has the largest value at the spherical configura-
tion for most candidate nuclei except for 48Ca-Ti, 96Zr-Mo, and
136Xe-Ba. It implies that generally the 0νββ-decay is favored if
both nuclei are spherical. The largest M̃0ν in 136Xe-Ba is found
around the deformation region with βI = βF ≃ 0.5, at which
deformed configuration, pairing energy is peaked in both nu-
clei due to the very high single-particle level density. However,
this configuration (β ≃ 0.5) has a negligible contribution to the
final NME of 136Xe-Ba because its weight is almost zero in the
ground-state wave function, cf. Fig. 3.
Figure 5(a) displays the contribution of each coupling term

(AA,VV, PP,MM, AP) in Eq.(4) to the total NMEs. It is shown
that the weak-magnetism (MM) term is negligible (∼ 4%).
The interference term of the axial-vector (AA) and pseudoscalar
coupling (AP) has an opposite contribution (∼ 30%), which
almost cancels out the sum of VV , PP, and MM terms. Of
particular interest is that the total NME has a very similar
behavior as that of the predominated AA term with the ratio
RAA ≃ 95%. Actually, we have found that the deformation-
dependent NMEs shown in Fig. 4 are also very similar even
if we include only the AA term. It indicates that the AA term
provides a good approximation for the total NME, Eq. (3).
In the non-relativistic approximation, the two-current opera-
tor with only the axial-vector coupling term is simplified as
J†L,µ(x1)J

µ†

L (x2) = −g
2
A(q

2)σ(1) · σ(2)τ(1)− τ
(2)
− , the calculation of

which is much cheaper than computing the full terms, cf. (4).
Similar conclusion can also be made based on the results of
QRPA calculation [26] using the non-relativistic reduced op-
erators. Figure 5(b) displays the NMEs calculated either with
pure spherical configuration or with full configurations in the
GCM+PNAMP (PC-PK1), in comparison with those of the
non-relativistic results [34]. Before comparing the two results,
we should point out that in the non-relativistic calculation [34],
the SRC effect was taken into account with the UCOM, while

4

L. S. Song et al.,  Phys. Rev. C 90, 054309 (2014).
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- Neglect the tensor term.

- Closure approximation 
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Neutrino potentials
Starting from the weak Lagrangian that describes the process some 
approximations are made:    


1. Non-relativistic approach in the hadronic part.


2. Closure approximation in the virtual intermediate state


3. Nucleon form factors taken in the dipolar approximation.


4. Tensor contribution is neglected.


5. High order currents are included (HOC).


6. Short range correlations are included with an UCOM correlator.

- Find the initial and final 0+ (and, in the no closure approximation, the intermediate) states

- Evaluate the transition operators between these states

Transition operator
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Transition operator

• The ‘bare’ operator should be 
transformed into an ‘effective’ 
operator defined in the valence space 

J.D. Holt, J. Engel, Phys. Rev. C 87, 064315 (2013)

EFFECTIVE DOUBLE-β-DECAY OPERATOR FOR . . . PHYSICAL REVIEW C 87, 064315 (2013)

discussion. No matter the two-body operator of interest, how-
ever, the starting point is always the construction of projection
operators P̂ and Q̂ that divide the full many-body Hilbert space
into a model space, in which subsequent exact diagonalization
is carried out, and everything else. In our calculations in nuclei
with mass near A = 80, the model space consists of the 0f5/2,
1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons
and neutrons, above a 56Ni core in a harmonic-oscillator basis
of 13 major shells with h̄ω = 10.0 MeV.

After specifying the model space, one must define a
mapping between eigenstates of the full Hamiltonian and pro-
jections of those eigenstates onto the model space. In MBPT
this is done perturbatively. The result is a set of diagrams with
two incoming legs and two outgoing legs, with each diagram
representing a contribution to the two-body matrix elements
of the effective Hamiltonian or effective (two-body) transition
operator. The usual Feynman rules are used to evaluate the
diagrams, but to the set of familiar-looking diagrams one must
add “folded” diagrams, which eliminate the energy depen-
dence of the effective operator [15,16]. One way to organize
the sum of all diagrams is by grouping all those without
folds into a “Q̂ box” (for the Hamiltonian) or an “X̂ box”
(for the transition operator) and then writing the complete sum,
including folded diagrams, in terms of the Q̂ and X̂ boxes and
their derivatives with respect to unperturbed energies. The first
few terms in the Q̂ and X̂ boxes appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body
transition operator, which combines X̂ and Q̂ boxes, than for
the Hamiltonian, where only Q̂ boxes are needed. Effective
model-space operators in the basis of energy eigenstates are
always defined (for a bare operator M) via

⟨feff|Meff |ieff⟩
⟨feff|feff⟩

1
2 ⟨ieff|ieff⟩

1
2

= ⟨f |M |i⟩ , (6)

where the states that lie in the model space, |ieff⟩ ≡ P̂ |i⟩
and |feff⟩ ≡ P̂ |f ⟩, are not in general normalized. If M is
the Hamiltonian, then only diagonal matrix elements are
nonzero, and the denominator is canceled by a similar factor
in the numerator. For two-body transition operators, that is

a
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dVlow-k

+
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FIG. 1. The Q̂ box to second order in Vlow k (ellipses indicate
higher-order terms). The first line contains one-body contributions
and the others contain two-body contributions. Exchange diagrams,
though not shown, are included in our calculations.
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+
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dc
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FIG. 2. (Color online) The X̂ box to first order in Vlow k . Solid
(red online) up- or down-going lines indicate neutrons and dotted
(blue online) lines indicate protons. The wavy horizontal lines, as in
Fig. 1, represent Vlow k , and the dashed horizontal lines represent the
0νββ-decay operator in Eq. (1).

not the case, and state norms must be explicitly computed.
Prior authors have approached the issue of norms in several
ways. References [2,29], for instance, choose to expand the
denominators and fold them into the numerators, thus com-
pletely eliminating all disconnected diagrams. The resulting
expressions, however, become complicated as the number of
folds increases, and the approach requires the construction
of a special basis as an intermediate step. For these reasons
Ref. [28] advocates keeping the denominator and numerator
separate, at the price of introducing disconnected diagrams
that only cancel when the sum is carried out completely. Here,
though we evaluate the Q̂ box to third order and the X̂ box
to second order in the interaction, we include only one fold in
each of the three factors on the left-hand side of Eq. (6), and so
opt to follow Refs. [2,28] in expanding the denominator and
folding with the numerator. The resulting expression for the
matrix elements of an operator Meff is approximately1

⟨cd|Meff |ab⟩

=
([

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε) + 3
8

(
dQ̂(ε)

dε

)2

. . .

]

×
[
X̂(ε) + Q̂(ε)

∂X̂(εf , ε)
∂εf

∣∣∣∣
εf =ε

+ ∂X̂(ε, εi)
∂εi

∣∣∣∣
εi=ε

Q̂(ε) . . .

]

×
[

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε)

+ 3
8

(
dQ̂(ε)

dε

)2

. . .

])

cd,ab

, (7)

where ε is the unperturbed energy of both the initial and final
states (we take the energies to be the same). Both Q̂ and X̂ are
matrices, with indices corresponding to the possible two-body

1Because of the need for a special basis, this expression is only
strictly correct when the terms in square brackets are diagonal. They
are close to diagonal in the calculations presented here.

064315-3
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discussion. No matter the two-body operator of interest, how-
ever, the starting point is always the construction of projection
operators P̂ and Q̂ that divide the full many-body Hilbert space
into a model space, in which subsequent exact diagonalization
is carried out, and everything else. In our calculations in nuclei
with mass near A = 80, the model space consists of the 0f5/2,
1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons
and neutrons, above a 56Ni core in a harmonic-oscillator basis
of 13 major shells with h̄ω = 10.0 MeV.

After specifying the model space, one must define a
mapping between eigenstates of the full Hamiltonian and pro-
jections of those eigenstates onto the model space. In MBPT
this is done perturbatively. The result is a set of diagrams with
two incoming legs and two outgoing legs, with each diagram
representing a contribution to the two-body matrix elements
of the effective Hamiltonian or effective (two-body) transition
operator. The usual Feynman rules are used to evaluate the
diagrams, but to the set of familiar-looking diagrams one must
add “folded” diagrams, which eliminate the energy depen-
dence of the effective operator [15,16]. One way to organize
the sum of all diagrams is by grouping all those without
folds into a “Q̂ box” (for the Hamiltonian) or an “X̂ box”
(for the transition operator) and then writing the complete sum,
including folded diagrams, in terms of the Q̂ and X̂ boxes and
their derivatives with respect to unperturbed energies. The first
few terms in the Q̂ and X̂ boxes appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body
transition operator, which combines X̂ and Q̂ boxes, than for
the Hamiltonian, where only Q̂ boxes are needed. Effective
model-space operators in the basis of energy eigenstates are
always defined (for a bare operator M) via

⟨feff|Meff |ieff⟩
⟨feff|feff⟩

1
2 ⟨ieff|ieff⟩

1
2

= ⟨f |M |i⟩ , (6)

where the states that lie in the model space, |ieff⟩ ≡ P̂ |i⟩
and |feff⟩ ≡ P̂ |f ⟩, are not in general normalized. If M is
the Hamiltonian, then only diagonal matrix elements are
nonzero, and the denominator is canceled by a similar factor
in the numerator. For two-body transition operators, that is
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and the others contain two-body contributions. Exchange diagrams,
though not shown, are included in our calculations.
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FIG. 2. (Color online) The X̂ box to first order in Vlow k . Solid
(red online) up- or down-going lines indicate neutrons and dotted
(blue online) lines indicate protons. The wavy horizontal lines, as in
Fig. 1, represent Vlow k , and the dashed horizontal lines represent the
0νββ-decay operator in Eq. (1).

not the case, and state norms must be explicitly computed.
Prior authors have approached the issue of norms in several
ways. References [2,29], for instance, choose to expand the
denominators and fold them into the numerators, thus com-
pletely eliminating all disconnected diagrams. The resulting
expressions, however, become complicated as the number of
folds increases, and the approach requires the construction
of a special basis as an intermediate step. For these reasons
Ref. [28] advocates keeping the denominator and numerator
separate, at the price of introducing disconnected diagrams
that only cancel when the sum is carried out completely. Here,
though we evaluate the Q̂ box to third order and the X̂ box
to second order in the interaction, we include only one fold in
each of the three factors on the left-hand side of Eq. (6), and so
opt to follow Refs. [2,28] in expanding the denominator and
folding with the numerator. The resulting expression for the
matrix elements of an operator Meff is approximately1

⟨cd|Meff |ab⟩

=
([

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε) + 3
8

(
dQ̂(ε)

dε

)2

. . .

]

×
[
X̂(ε) + Q̂(ε)

∂X̂(εf , ε)
∂εf

∣∣∣∣
εf =ε

+ ∂X̂(ε, εi)
∂εi

∣∣∣∣
εi=ε

Q̂(ε) . . .

]

×
[

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε)

+ 3
8

(
dQ̂(ε)

dε

)2

. . .

])

cd,ab

, (7)

where ε is the unperturbed energy of both the initial and final
states (we take the energies to be the same). Both Q̂ and X̂ are
matrices, with indices corresponding to the possible two-body

1Because of the need for a special basis, this expression is only
strictly correct when the terms in square brackets are diagonal. They
are close to diagonal in the calculations presented here.
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discussion. No matter the two-body operator of interest, how-
ever, the starting point is always the construction of projection
operators P̂ and Q̂ that divide the full many-body Hilbert space
into a model space, in which subsequent exact diagonalization
is carried out, and everything else. In our calculations in nuclei
with mass near A = 80, the model space consists of the 0f5/2,
1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons
and neutrons, above a 56Ni core in a harmonic-oscillator basis
of 13 major shells with h̄ω = 10.0 MeV.

After specifying the model space, one must define a
mapping between eigenstates of the full Hamiltonian and pro-
jections of those eigenstates onto the model space. In MBPT
this is done perturbatively. The result is a set of diagrams with
two incoming legs and two outgoing legs, with each diagram
representing a contribution to the two-body matrix elements
of the effective Hamiltonian or effective (two-body) transition
operator. The usual Feynman rules are used to evaluate the
diagrams, but to the set of familiar-looking diagrams one must
add “folded” diagrams, which eliminate the energy depen-
dence of the effective operator [15,16]. One way to organize
the sum of all diagrams is by grouping all those without
folds into a “Q̂ box” (for the Hamiltonian) or an “X̂ box”
(for the transition operator) and then writing the complete sum,
including folded diagrams, in terms of the Q̂ and X̂ boxes and
their derivatives with respect to unperturbed energies. The first
few terms in the Q̂ and X̂ boxes appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body
transition operator, which combines X̂ and Q̂ boxes, than for
the Hamiltonian, where only Q̂ boxes are needed. Effective
model-space operators in the basis of energy eigenstates are
always defined (for a bare operator M) via

⟨feff|Meff |ieff⟩
⟨feff|feff⟩

1
2 ⟨ieff|ieff⟩

1
2

= ⟨f |M |i⟩ , (6)

where the states that lie in the model space, |ieff⟩ ≡ P̂ |i⟩
and |feff⟩ ≡ P̂ |f ⟩, are not in general normalized. If M is
the Hamiltonian, then only diagonal matrix elements are
nonzero, and the denominator is canceled by a similar factor
in the numerator. For two-body transition operators, that is
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FIG. 1. The Q̂ box to second order in Vlow k (ellipses indicate
higher-order terms). The first line contains one-body contributions
and the others contain two-body contributions. Exchange diagrams,
though not shown, are included in our calculations.
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Fig. 1, represent Vlow k , and the dashed horizontal lines represent the
0νββ-decay operator in Eq. (1).

not the case, and state norms must be explicitly computed.
Prior authors have approached the issue of norms in several
ways. References [2,29], for instance, choose to expand the
denominators and fold them into the numerators, thus com-
pletely eliminating all disconnected diagrams. The resulting
expressions, however, become complicated as the number of
folds increases, and the approach requires the construction
of a special basis as an intermediate step. For these reasons
Ref. [28] advocates keeping the denominator and numerator
separate, at the price of introducing disconnected diagrams
that only cancel when the sum is carried out completely. Here,
though we evaluate the Q̂ box to third order and the X̂ box
to second order in the interaction, we include only one fold in
each of the three factors on the left-hand side of Eq. (6), and so
opt to follow Refs. [2,28] in expanding the denominator and
folding with the numerator. The resulting expression for the
matrix elements of an operator Meff is approximately1
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where ε is the unperturbed energy of both the initial and final
states (we take the energies to be the same). Both Q̂ and X̂ are
matrices, with indices corresponding to the possible two-body

1Because of the need for a special basis, this expression is only
strictly correct when the terms in square brackets are diagonal. They
are close to diagonal in the calculations presented here.
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where E ¼ Ei " E0
i, p ¼ pi " p0

i, and P ¼ pi þ p0
i,

and vector (V), axial (A), pseudoscalar (P), and magnetic
(M) couplings, gVðp2Þ, gAðp2Þ, gPðp2Þ, and gMðp2Þ [9].
In chiral EFT, the p dependence is due to loop

corrections and pion propagators, to order Q2: gV;Aðp2Þ ¼
gV;Að1" 2 p2

!2
V;A
Þ, with gV ¼ 1, !V ¼ 850 MeV, !A ¼

2
ffiffiffi
3

p
=rA ¼ 1040 MeV; gPðp2Þ ¼ 2g!pnF!

m2
!þp2 " 4gAðp2Þ m

!2
A

and gM ¼ "p ""n ¼ 3:70, with pion decay constant
F!¼92:4MeV,m!¼138:04MeV, and g!pn¼13:05 [11].

At leading order Q0, only the momentum-independent
gA and gV terms contribute. They give rise to p & 1 MeV
GTand Fermi (#") single-$ and 2%$$ decay. On the other
hand, when studying processes that probe larger momen-
tum transfers, terms of order Q2 need to be included.
For 0%$$ decay with p& 100 MeV, the Q0 terms are
still most important and the axial term dominates. In SM
calculations [12], one has M0%$$

Q0;axial
=M0%$$ ' 1:20,

M0%$$
Q0;vector

=M0%$$ ' 0:15 compared to the final M0%$$.

Among the Q2 terms, form-factor-type (FF) contribu-
tions and the gP part of Ji;1b dominate. The pseudoscalar
term is important, because pgPðp2Þ ' 7:9 for p&
100 MeV in 0%$$ decay. They reduce the NMEs:
M0%$$

FF =M0%$$ ' "0:20 and M0%$$
gP =M0%$$ ' "0:20

[12]. The remaining Q2 terms are odd under parity, so
they require either a P-wave electron (whose phase space
is suppressed [10] by ' 0:03–0:06 for 0%$$ decay

candidates) or another odd-parity term to connect 0þ

states. Therefore, the P and E terms in Eqs. (1) and (2)
can be neglected, and only the term with the large
gM þ gV ¼ 4:70 is kept, leading to a small ' 5%
contribution [12].
At order Q3, 2b currents enter in chiral EFT [5]. These

include vector spatial, axial temporal, and axial spatial
parts [13]. The first two are odd under parity, and therefore
can be neglected. Consequently, for the cases studied here,
the dominant weak 2b currents only have an axial spatial
component, Jaxial2b ¼ PA

i<j Jij, with [5]

J12¼" gA
F2
!
½2d1ð!1#

"
1 þ!2#

"
2 Þþd2!)#

"
)*

" gA
2F2

!

1

m2
!þk2

"#
c4þ

1

4m

$
k)ð!))kÞ#")

þ4c3k + ð!1#
"
1 þ!2#

"
2 Þk" i

2m
k + ð!1"!2Þq#")

%
;

(3)

where #") ¼ ð#1 ) #2Þ" and the same for !), k ¼ 1
2 ðp0

2 "
p2 " p0

1 þ p1Þ and q¼ 1
4ðp1þp0

1"p2"p0
2Þ. Equation (3)

includes contributions from the one-pion-exchange c3, c4
parts and from the short-range couplings d1, d2, where due
to the Pauli principle only the combination d1 þ 2d2 ¼
cD=ðgA!&Þ enters (with !& ¼ 700 MeV).
We study the impact of chiral 2b currents in nuclei at the

normal-ordered 1b level by summing the second nucleon
over occupied states in a spin and isospin symmetric
reference state or core: Jeffi;2b ¼

P
jð1" PijÞJij, where Pij

is the exchange operator. The normal-ordered 1b level is
expected to be a very good approximation in medium-mass
and heavy nuclei, because of phase space arguments [14].
This has also been explored for chiral 2b currents in
nuclear matter [15], but limited to long wavelengths and
without connecting 2b currents and nuclear forces. Taking
a Fermi-gas approximation for the core and neglecting
tensorlike terms ðk + !k" 1

3 k
2!Þ#", we obtain the

normal-ordered 1b current:

Jeffi;2b ¼ "gA!i#
"
i

'

F2
!

"
cD
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þ 2

3
c3

p2

4m2
! þ p2

þ Ið'; PÞ
#
1

3
ð2c4 " c3Þ þ

1

6m

$%
; (4)

where ' ¼ 2k3F=ð3!2Þ is the density of the reference state,
kF the corresponding Fermi momentum, and Ið'; PÞ is due
to the summation in the exchange term,

Ið';PÞ¼1"3m2
!

2k2F
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!
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FIG. 2 (color online). Nuclear matrix elements M0%$$ for
0%$$ decay. At order Q0, the NMEs include only the leading
p ¼ 0 axial and vector 1b currents. At the next order, all Q2

1b-current contributions not suppressed by parity are taken into
account. At order Q3, the thick bars are predicted from the long-
range parts of 2b currents (cD ¼ 0). The thin bars estimate the
theoretical uncertainty from the short-range coupling cD by
taking an extreme range for the quenching (see text). For
comparison, we show the SM results of Ref. [12] based on
phenomenological 1b currents only. The inset (representative

for 136Xe) shows that the GT part, M0%$$
GT ¼ R

dpCGTðpÞ, is
dominated by p& 100 MeV.
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TABLE II. The same as Table I, but for the CD-Bonn interaction instead of the Argonne V18 interaction.

Nucleus M ′0ν M ′0ν 2bc ⟨M ′0ν⟩ ε (%)
1bc Parameters of Ref. [7] Parameters of Ref. [8] with

a b c d a b c d
quenching

48Ca 0.649 0.615 0.605 0.561 0.542 0.606 0.606 0.570 0.569 0.58(0.03) 10
76Ge 5.849 5.086 4.904 4.356 4.082 4.990 4.858 4.371 4.175 4.60(0.40) 21
82Se 5.255 4.538 4.366 3.848 3.577 4.453 4.327 3.867 3.669 4.08(0.38) 22
96Zr 3.144 2.953 2.872 2.608 2.485 2.883 2.835 2.603 2.532 2.72(0.18) 12
100Mo 6.164 5.469 5.295 4.747 4.469 5.326 5.208 4.726 4.542 4.97(0.39) 19
110Pd 6.532 5.772 5.589 5.029 4.758 5.629 5.497 4.998 4.806 5.26(0.40) 19
116Cd 4.474 3.888 3.749 3.338 3.125 3.796 3.685 3.317 3.149 3.51(0.31) 22
124Sn 4.024 3.646 3.556 3.273 3.158 3.553 3.494 3.239 3.170 3.29(0.20) 16
130Te 4.642 4.063 3.921 3.473 3.242 3.958 3.861 3.468 3.313 3.66(0.32) 21
136Xe 2.602 2.276 2.196 1.943 1.812 2.206 2.149 1.926 1.837 2.04(0.18) 21

and still contribute non-negligibly at several hundred MeV. In
addition, the 0νββ matrix element contains a Fermi part, for
which we have assumed no quenching. While this assumption
may not be completely accurate, it is implied at low momentum
transfer by conservation of the vector current (CVC). The
overall quenching of the vector current is certain to be less
than that of the axial-vector current. (In the results listed in
Tables I and II the Fermi matrix elements are smaller than in
some other calculations because the isovector particle-particle
interaction was adjusted as explained in Ref. [15] to reflect
isospin symmetry).

Why is the QRPA 0νββ quenching less than that in the shell
model? Part of the reason, as we noted in the introduction,
is that in the QRPA the strength of the isoscalar pairing
interaction, which we call gT =0

pp , is adjusted to reproduce
the measured 2νββ rate. The suppression of 2νββ decay by
two-body currents implies that the value of gT =0

pp is smaller
than it would be without those currents. The smaller gT =0

pp in
turn implies less quenching for the 0νββ matrix element.
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FIG. 1. (Color online) Nuclear matrix elements M ′0ν for all the
nuclei considered here. The empty circles and squares represent the
results with the one-body current only, and the solid circles and
squares the average of the results with two-body currents included.
The error bars represent the dispersion in those values (see text).

Figure 2 illustrates this idea. The upper panel shows the
2νββ matrix element, with (solid red) and without (dashed
blue) two-body currents. The two vertical lines indicate the
values of gT =0

pp needed to reproduce the “measured” matrix
element [16], defined as that which gives the lifetime under
the assumption that gA is unquenched. The value of gT =0

pp that
works with the two-body currents is smaller. The lower panel
shows the consequences for 0νββ decay. The longer (purple)
arrow represents the quenching that would obtain if gT =0

pp were
not adjusted for the presence of the two-body currents (as is the
case in the shell model, where the interaction is fixed ahead
of time). The shorter arrow represents the same quenching
after adjusting gT =0

pp . The requirement that we reproduce 2νββ
decay thus means that the 0νββ matrix element is quenched
noticeably less than it would otherwise be.
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FIG. 2. (Color online) The quenching of 2νββ and 0νββ decay
by two-body currents in χEFT. Top: M ′2ν vs gT =0

pp , the strength
of isoscalar pairing. The solid (red) line is the unquenched matrix
element and the dashed (blue) line the matrix element with quenching
caused by two-body currents, with the parametrization EGM+δci

from Ref. [7]. The dotted black line is the measured matrix element
[16] under the assumption that gA is unquenched. The vertical lines
are the values of gT =0

pp that reproduce the measurement with and
without two-body currents. Bottom: The same, for M ′0ν (without a
measured value). The long (purple) arrow represents the quenching
when gT =0

pp is not readjusted to reproduce 2νββ decay. The short
(cyan) arrow is the quenching when gT =0

pp is readjusted.
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discussion. No matter the two-body operator of interest, how-
ever, the starting point is always the construction of projection
operators P̂ and Q̂ that divide the full many-body Hilbert space
into a model space, in which subsequent exact diagonalization
is carried out, and everything else. In our calculations in nuclei
with mass near A = 80, the model space consists of the 0f5/2,
1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons
and neutrons, above a 56Ni core in a harmonic-oscillator basis
of 13 major shells with h̄ω = 10.0 MeV.

After specifying the model space, one must define a
mapping between eigenstates of the full Hamiltonian and pro-
jections of those eigenstates onto the model space. In MBPT
this is done perturbatively. The result is a set of diagrams with
two incoming legs and two outgoing legs, with each diagram
representing a contribution to the two-body matrix elements
of the effective Hamiltonian or effective (two-body) transition
operator. The usual Feynman rules are used to evaluate the
diagrams, but to the set of familiar-looking diagrams one must
add “folded” diagrams, which eliminate the energy depen-
dence of the effective operator [15,16]. One way to organize
the sum of all diagrams is by grouping all those without
folds into a “Q̂ box” (for the Hamiltonian) or an “X̂ box”
(for the transition operator) and then writing the complete sum,
including folded diagrams, in terms of the Q̂ and X̂ boxes and
their derivatives with respect to unperturbed energies. The first
few terms in the Q̂ and X̂ boxes appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body
transition operator, which combines X̂ and Q̂ boxes, than for
the Hamiltonian, where only Q̂ boxes are needed. Effective
model-space operators in the basis of energy eigenstates are
always defined (for a bare operator M) via

⟨feff|Meff |ieff⟩
⟨feff|feff⟩

1
2 ⟨ieff|ieff⟩

1
2

= ⟨f |M |i⟩ , (6)

where the states that lie in the model space, |ieff⟩ ≡ P̂ |i⟩
and |feff⟩ ≡ P̂ |f ⟩, are not in general normalized. If M is
the Hamiltonian, then only diagonal matrix elements are
nonzero, and the denominator is canceled by a similar factor
in the numerator. For two-body transition operators, that is
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FIG. 1. The Q̂ box to second order in Vlow k (ellipses indicate
higher-order terms). The first line contains one-body contributions
and the others contain two-body contributions. Exchange diagrams,
though not shown, are included in our calculations.
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FIG. 2. (Color online) The X̂ box to first order in Vlow k . Solid
(red online) up- or down-going lines indicate neutrons and dotted
(blue online) lines indicate protons. The wavy horizontal lines, as in
Fig. 1, represent Vlow k , and the dashed horizontal lines represent the
0νββ-decay operator in Eq. (1).

not the case, and state norms must be explicitly computed.
Prior authors have approached the issue of norms in several
ways. References [2,29], for instance, choose to expand the
denominators and fold them into the numerators, thus com-
pletely eliminating all disconnected diagrams. The resulting
expressions, however, become complicated as the number of
folds increases, and the approach requires the construction
of a special basis as an intermediate step. For these reasons
Ref. [28] advocates keeping the denominator and numerator
separate, at the price of introducing disconnected diagrams
that only cancel when the sum is carried out completely. Here,
though we evaluate the Q̂ box to third order and the X̂ box
to second order in the interaction, we include only one fold in
each of the three factors on the left-hand side of Eq. (6), and so
opt to follow Refs. [2,28] in expanding the denominator and
folding with the numerator. The resulting expression for the
matrix elements of an operator Meff is approximately1
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2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε) + 3
8

(
dQ̂(ε)

dε

)2

. . .

]

×
[
X̂(ε) + Q̂(ε)

∂X̂(εf , ε)
∂εf

∣∣∣∣
εf =ε

+ ∂X̂(ε, εi)
∂εi

∣∣∣∣
εi=ε

Q̂(ε) . . .

]

×
[

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε)

+ 3
8

(
dQ̂(ε)

dε

)2

. . .

])

cd,ab

, (7)

where ε is the unperturbed energy of both the initial and final
states (we take the energies to be the same). Both Q̂ and X̂ are
matrices, with indices corresponding to the possible two-body

1Because of the need for a special basis, this expression is only
strictly correct when the terms in square brackets are diagonal. They
are close to diagonal in the calculations presented here.
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MBPT

where E ¼ Ei " E0
i, p ¼ pi " p0

i, and P ¼ pi þ p0
i,

and vector (V), axial (A), pseudoscalar (P), and magnetic
(M) couplings, gVðp2Þ, gAðp2Þ, gPðp2Þ, and gMðp2Þ [9].
In chiral EFT, the p dependence is due to loop

corrections and pion propagators, to order Q2: gV;Aðp2Þ ¼
gV;Að1" 2 p2

!2
V;A
Þ, with gV ¼ 1, !V ¼ 850 MeV, !A ¼

2
ffiffiffi
3

p
=rA ¼ 1040 MeV; gPðp2Þ ¼ 2g!pnF!

m2
!þp2 " 4gAðp2Þ m

!2
A

and gM ¼ "p ""n ¼ 3:70, with pion decay constant
F!¼92:4MeV,m!¼138:04MeV, and g!pn¼13:05 [11].

At leading order Q0, only the momentum-independent
gA and gV terms contribute. They give rise to p & 1 MeV
GTand Fermi (#") single-$ and 2%$$ decay. On the other
hand, when studying processes that probe larger momen-
tum transfers, terms of order Q2 need to be included.
For 0%$$ decay with p& 100 MeV, the Q0 terms are
still most important and the axial term dominates. In SM
calculations [12], one has M0%$$

Q0;axial
=M0%$$ ' 1:20,

M0%$$
Q0;vector

=M0%$$ ' 0:15 compared to the final M0%$$.

Among the Q2 terms, form-factor-type (FF) contribu-
tions and the gP part of Ji;1b dominate. The pseudoscalar
term is important, because pgPðp2Þ ' 7:9 for p&
100 MeV in 0%$$ decay. They reduce the NMEs:
M0%$$

FF =M0%$$ ' "0:20 and M0%$$
gP =M0%$$ ' "0:20

[12]. The remaining Q2 terms are odd under parity, so
they require either a P-wave electron (whose phase space
is suppressed [10] by ' 0:03–0:06 for 0%$$ decay

candidates) or another odd-parity term to connect 0þ

states. Therefore, the P and E terms in Eqs. (1) and (2)
can be neglected, and only the term with the large
gM þ gV ¼ 4:70 is kept, leading to a small ' 5%
contribution [12].
At order Q3, 2b currents enter in chiral EFT [5]. These

include vector spatial, axial temporal, and axial spatial
parts [13]. The first two are odd under parity, and therefore
can be neglected. Consequently, for the cases studied here,
the dominant weak 2b currents only have an axial spatial
component, Jaxial2b ¼ PA

i<j Jij, with [5]

J12¼" gA
F2
!
½2d1ð!1#

"
1 þ!2#

"
2 Þþd2!)#

"
)*

" gA
2F2

!

1

m2
!þk2

"#
c4þ

1

4m

$
k)ð!))kÞ#")

þ4c3k + ð!1#
"
1 þ!2#

"
2 Þk" i

2m
k + ð!1"!2Þq#")

%
;

(3)

where #") ¼ ð#1 ) #2Þ" and the same for !), k ¼ 1
2 ðp0

2 "
p2 " p0

1 þ p1Þ and q¼ 1
4ðp1þp0

1"p2"p0
2Þ. Equation (3)

includes contributions from the one-pion-exchange c3, c4
parts and from the short-range couplings d1, d2, where due
to the Pauli principle only the combination d1 þ 2d2 ¼
cD=ðgA!&Þ enters (with !& ¼ 700 MeV).
We study the impact of chiral 2b currents in nuclei at the

normal-ordered 1b level by summing the second nucleon
over occupied states in a spin and isospin symmetric
reference state or core: Jeffi;2b ¼

P
jð1" PijÞJij, where Pij

is the exchange operator. The normal-ordered 1b level is
expected to be a very good approximation in medium-mass
and heavy nuclei, because of phase space arguments [14].
This has also been explored for chiral 2b currents in
nuclear matter [15], but limited to long wavelengths and
without connecting 2b currents and nuclear forces. Taking
a Fermi-gas approximation for the core and neglecting
tensorlike terms ðk + !k" 1

3 k
2!Þ#", we obtain the

normal-ordered 1b current:

Jeffi;2b ¼ "gA!i#
"
i

'

F2
!

"
cD

gA!&
þ 2

3
c3

p2

4m2
! þ p2

þ Ið'; PÞ
#
1

3
ð2c4 " c3Þ þ

1

6m

$%
; (4)

where ' ¼ 2k3F=ð3!2Þ is the density of the reference state,
kF the corresponding Fermi momentum, and Ið'; PÞ is due
to the summation in the exchange term,

Ið';PÞ¼1"3m2
!

2k2F
þ3m3

!

2k3F
arccot

"
m2

!þP2=4"k2F
2m!kF

%

þ 3m2
!

4k3FP

#
k2Fþm2

!"
P2

4

$
log

"
m2

!þðkF"P=2Þ2
m2

!þðkFþP=2Þ2
%
:

(5)
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FIG. 2 (color online). Nuclear matrix elements M0%$$ for
0%$$ decay. At order Q0, the NMEs include only the leading
p ¼ 0 axial and vector 1b currents. At the next order, all Q2

1b-current contributions not suppressed by parity are taken into
account. At order Q3, the thick bars are predicted from the long-
range parts of 2b currents (cD ¼ 0). The thin bars estimate the
theoretical uncertainty from the short-range coupling cD by
taking an extreme range for the quenching (see text). For
comparison, we show the SM results of Ref. [12] based on
phenomenological 1b currents only. The inset (representative

for 136Xe) shows that the GT part, M0%$$
GT ¼ R

dpCGTðpÞ, is
dominated by p& 100 MeV.

PRL 107, 062501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

5 AUGUST 2011

062501-2

J. Menéndez, D. Gazit, A. Schwenk, 
Phys. Rev. Lett. 107, 062501 (2011)
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TABLE II. The same as Table I, but for the CD-Bonn interaction instead of the Argonne V18 interaction.

Nucleus M ′0ν M ′0ν 2bc ⟨M ′0ν⟩ ε (%)
1bc Parameters of Ref. [7] Parameters of Ref. [8] with

a b c d a b c d
quenching

48Ca 0.649 0.615 0.605 0.561 0.542 0.606 0.606 0.570 0.569 0.58(0.03) 10
76Ge 5.849 5.086 4.904 4.356 4.082 4.990 4.858 4.371 4.175 4.60(0.40) 21
82Se 5.255 4.538 4.366 3.848 3.577 4.453 4.327 3.867 3.669 4.08(0.38) 22
96Zr 3.144 2.953 2.872 2.608 2.485 2.883 2.835 2.603 2.532 2.72(0.18) 12
100Mo 6.164 5.469 5.295 4.747 4.469 5.326 5.208 4.726 4.542 4.97(0.39) 19
110Pd 6.532 5.772 5.589 5.029 4.758 5.629 5.497 4.998 4.806 5.26(0.40) 19
116Cd 4.474 3.888 3.749 3.338 3.125 3.796 3.685 3.317 3.149 3.51(0.31) 22
124Sn 4.024 3.646 3.556 3.273 3.158 3.553 3.494 3.239 3.170 3.29(0.20) 16
130Te 4.642 4.063 3.921 3.473 3.242 3.958 3.861 3.468 3.313 3.66(0.32) 21
136Xe 2.602 2.276 2.196 1.943 1.812 2.206 2.149 1.926 1.837 2.04(0.18) 21

and still contribute non-negligibly at several hundred MeV. In
addition, the 0νββ matrix element contains a Fermi part, for
which we have assumed no quenching. While this assumption
may not be completely accurate, it is implied at low momentum
transfer by conservation of the vector current (CVC). The
overall quenching of the vector current is certain to be less
than that of the axial-vector current. (In the results listed in
Tables I and II the Fermi matrix elements are smaller than in
some other calculations because the isovector particle-particle
interaction was adjusted as explained in Ref. [15] to reflect
isospin symmetry).

Why is the QRPA 0νββ quenching less than that in the shell
model? Part of the reason, as we noted in the introduction,
is that in the QRPA the strength of the isoscalar pairing
interaction, which we call gT =0

pp , is adjusted to reproduce
the measured 2νββ rate. The suppression of 2νββ decay by
two-body currents implies that the value of gT =0

pp is smaller
than it would be without those currents. The smaller gT =0

pp in
turn implies less quenching for the 0νββ matrix element.
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FIG. 1. (Color online) Nuclear matrix elements M ′0ν for all the
nuclei considered here. The empty circles and squares represent the
results with the one-body current only, and the solid circles and
squares the average of the results with two-body currents included.
The error bars represent the dispersion in those values (see text).

Figure 2 illustrates this idea. The upper panel shows the
2νββ matrix element, with (solid red) and without (dashed
blue) two-body currents. The two vertical lines indicate the
values of gT =0

pp needed to reproduce the “measured” matrix
element [16], defined as that which gives the lifetime under
the assumption that gA is unquenched. The value of gT =0

pp that
works with the two-body currents is smaller. The lower panel
shows the consequences for 0νββ decay. The longer (purple)
arrow represents the quenching that would obtain if gT =0

pp were
not adjusted for the presence of the two-body currents (as is the
case in the shell model, where the interaction is fixed ahead
of time). The shorter arrow represents the same quenching
after adjusting gT =0

pp . The requirement that we reproduce 2νββ
decay thus means that the 0νββ matrix element is quenched
noticeably less than it would otherwise be.
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FIG. 2. (Color online) The quenching of 2νββ and 0νββ decay
by two-body currents in χEFT. Top: M ′2ν vs gT =0

pp , the strength
of isoscalar pairing. The solid (red) line is the unquenched matrix
element and the dashed (blue) line the matrix element with quenching
caused by two-body currents, with the parametrization EGM+δci

from Ref. [7]. The dotted black line is the measured matrix element
[16] under the assumption that gA is unquenched. The vertical lines
are the values of gT =0

pp that reproduce the measurement with and
without two-body currents. Bottom: The same, for M ′0ν (without a
measured value). The long (purple) arrow represents the quenching
when gT =0

pp is not readjusted to reproduce 2νββ decay. The short
(cyan) arrow is the quenching when gT =0

pp is readjusted.
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In-medium SRG 
could also do the 
job!
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We want to study the role of


- Deformation and shape mixing.

- Pairing pp/nn/pn correlations.

- Shell effects.

- Isospin conservation.

- Pair breaking (seniority).

- Occupation numbers.

- Size of the valence space.


in the nuclear matrix elements using a standard prescription for the 
transition operator.

NME: Nuclear structure aspects
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Transitions

1. Axial states 

2. Angular momentum

3. Quadrupole deformations

4. Quadrupole and pairing  pp/nn correlations 

5. Quadrupole and pn correlations

6. Quadrupole and octupole deformations
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f |Ô0⇥��
⇤ |�0;NiZi

i ⇥G0;NiZi

�i
=

⌥

qiqf ;�f �i

⇤

⇧ u
0;NfZf

qf ,�f�
n

0;Nf Zf

�f

⌅

⌃
�
�
G

0;Nf Zf

�f

⇥�
�0; NfZf ; qf |Ô0⇥��
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [64].

FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (!)
are compared with the GCM results (") and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [64].

and 150Sm. The octupole degree of freedom reduces the
E2 transition strengths between positive-parity states
significantly in both nuclei. It worsens the agreement in
150Nd but improves it in 150Sm. Our GCM describes the
negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
Figure 3 compares the GCM excitation energies with

those of two single-configuration calculations, one based
on the J = 0 energy minimum and the other on a state

FIG. 4: (Color online) Normalized nuclear matrix elements
M̃0ν(qI , qF ) for the neutrinoless double-beta decay of 150Nd,
where {q} ≡ {β2,β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF
2 fixed at 0.2 Panel (b)

plots the same quantity with the restriction βI
3 = βF

3 .

with deformation parameters determined by the experi-
mental B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values
[64]. The GCM results are in much better agreement with
the data than are the single-configuration results. As spin
increases, however, the GCM increasingly over-predicts
the data, indicating that some important correlations
are missing. Time-reversal-symmetry-breaking reference
states, produced in a cranking calculation, would likely
lower the energies of high-spin states [65].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
⟨qF |Ô0ν P̂ J=0P̂NI P̂ZIP π=+|qI⟩

√

N
0+
qI ,qIN

0+
qF ,qF

, (14)

with the norms N for each nucleus defined in Eq. (9).
The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 ,β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from

J. M. Yao and J. Engel, arXiv 1604.06297 (2016) 3

C. Nuclear matrix element for 0νββ decay

The 0νββ decay nuclear matrix element is

M0ν =
4πR

g2A(0)

∫ ∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

⟨0+F |J
†
µ (x1)|m⟩⟨m|J µ†(x2)|0

+
I ⟩

q + Em − (EI + EF )/2
, (10)

where J †
µ is the charge-changing nuclear current operator

[61] and q is the momentum transferred from leptons to
nucleons. The nuclear radius R = 1.2A1/3 makes the ma-
trix element dimensionless. In the closure approximation
and with the GCM state vectors from Eq. (7) as ground
states |0+I/F ⟩ of the initial and final nuclei, we obtain

M0ν =
∑

qI ,qF

f
0+
I

qI f
0+
F

qF ⟨qF |Ô
0ν P̂ J=0

00 P̂N P̂ZP̂ π=+|qI⟩ ,

(11)
with the transition operator given by

Ô0ν =
4πR

g2A(0)

∫

d3q

(2π)3

∫ ∫

d3x1d
3x2

eiq·(x1−x2)

q(q + Ed)

× [J †
µ (x1)J

µ†(x2)] , (12)

and Ed set to 1.12A1/2 ≃ 13.72 Mev [62].
The operator [J †

µ (x1)J µ†(x2)], when Fourier trans-
formed, contains the terms [46],

V V : g2V (q
2)

(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

(13)

AA : g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

AP : 2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

PP : g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

MM : g2M (q2)

(

ψ̄
σµi
2mN

qiτ−ψ

)(1) (

ψ̄
σµj

2mN
qjτ−ψ

)(2)

,

where τ− is the isospin lowering operator that changes
neutrons into protons, σµν = i

2 [γµ, γν ], and V,A, P,M
denote the vector, axial vector, pseudoscalar, and mag-
netic pieces of the one-nucleon current. Following Ref.
[63], we take the form factors gV (q2), gA(q2), gM (q2),

and gP (q2) to be V (q2) =
gV (0)

(1 + q2/Λ2
V )

2
, gA(q2) =

gA(0)

(1 + q2/Λ2
A)

2
, gP (q2) = gA(q2)

2mN

q2 +m2
π
(1 −

m2
π

Λ2
A

), and

gM (q2) = (µp − µn)gV (q2), with gV (0) = 1.0, gA(0) =
1.254, µp − µn = 3.70, Λ2

V = 0.710 (GeV)2, ΛA = 1.09
GeV, mN = 0.93827 GeV and mπ = 0.13957 GeV. For
the sake of simplicity, we neglect short-range correlations.
We include, alongside the generator coordinates from

Ref. [46], the octupole deformation parameter β3. The
parity breaking (and subsequent projection) and the
larger number of reference states caused by the inclu-
sion of octupole deformation increase computing time but

FIG. 1: (Color online) Mean-field energy surfaces for 150Nd
(a) and 150Sm (b), projected energy surfaces for 150Nd (c)
and 150Sm (d), and the square of the collective ground-state
wave function for 150Nd (e) and 150Sm (f), all in the β2-β3

plane.

otherwise cause no problems in our calculation. We ini-
tially include 50 reference states with β3 > 0. From this
set, 29 natural states turn out to sufficient to include
essentially all the contributions of the original 50 states
to both structure properties and 0νββ decay matrix ele-
ments.

III. RESULTS AND DISCUSSION

Figure 1 shows the mean-field and quantum-number-
projected energy surfaces, as well as the collective
wave functions |gJα(q)|

2, for the ground states of 150Nd
and 150Sm. The collective wave functions, defined

as gJπα (q) ≡
∑

q′
[

N Jπ
q,q′

]1/2
fJπα
q′ , provide information

about the importance of deformation with parameters q
in the state |Jπ

α ⟩. The mean-field energy surfaces in both
nuclei around the quadrupole-deformed minima with β2
around 0.2 are almost flat in the octupole direction. This
kind of surface often signifies a critical point symmetry
[5, 7, 11]. Our surface, however, is flat only before pro-
jection of the states that determine it onto the subspace
with Jπ = 0+ and well-defined N and Z; after projec-
tion it shows pronounced minima around β3 ∼ 0.1. In
addition, valleys connects the prolate and oblate min-
ima through octupole shapes in both nuclei, leading to
a reduction of quadrupole collectivity and large octupole
shape fluctuations.
Figure 2 shows the low-lying energy spectra in 150Nd
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [64].

FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (!)
are compared with the GCM results (") and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [64].

and 150Sm. The octupole degree of freedom reduces the
E2 transition strengths between positive-parity states
significantly in both nuclei. It worsens the agreement in
150Nd but improves it in 150Sm. Our GCM describes the
negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
Figure 3 compares the GCM excitation energies with

those of two single-configuration calculations, one based
on the J = 0 energy minimum and the other on a state

FIG. 4: (Color online) Normalized nuclear matrix elements
M̃0ν(qI , qF ) for the neutrinoless double-beta decay of 150Nd,
where {q} ≡ {β2,β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF
2 fixed at 0.2 Panel (b)

plots the same quantity with the restriction βI
3 = βF

3 .

with deformation parameters determined by the experi-
mental B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values
[64]. The GCM results are in much better agreement with
the data than are the single-configuration results. As spin
increases, however, the GCM increasingly over-predicts
the data, indicating that some important correlations
are missing. Time-reversal-symmetry-breaking reference
states, produced in a cranking calculation, would likely
lower the energies of high-spin states [65].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
⟨qF |Ô0ν P̂ J=0P̂NI P̂ZIP π=+|qI⟩

√

N
0+
qI ,qIN

0+
qF ,qF

, (14)

with the norms N for each nucleus defined in Eq. (9).
The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 ,β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from
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FIG. 5: (Color online) The final matrix element M0ν from
the GCM calculation with and without [46] octupole shape
fluctuations (REDF) and those of the QRPA (“QRPA F” [66],
“QRPA M” [45], “QRPA T” [47]), the IMB-2 [67], and the
non-relativistic GCM, based on the Gogny D1S interaction,
with [68] and without [44] pairing fluctuations.

6.4 to 2.2 as β3 increases to 0.3 At the configurations
that minimize the projected energies, with both values
of β2 about 0.2 and both values of β3 about 0.1, M̃0ν is
4.76. At the configuration that best fits the experimental
B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values, corre-
sponding to deformation parameters βI

2 = 0.285,βI
3 =

0.113,βF
2 = 0.193,βF

3 = 0.145, M̃0ν is only 1.38.
As already discussed in Refs. [46, 48], M̃0ν near spher-

ical shapes is much larger than predicted by the Gogny
D1S interaction [44]. The difference arises at least in part
from a difference in average pairing gaps, which for the
neutrons in 150Nd and 150Sm are about 30% larger here
than in Ref. [44] (even though the gaps are similar at the
mean-field minima).
When all configurations are appropriately combined,

we obtain a final value for the matrix element M0ν(0+1 →
0+1 ) of 5.2, which is just 7% smaller than the result 5.6
obtained without octupole deformation [46]. (The con-
tributions from the V V,AA,AP, PP , and MM terms are
1.03, 4.87,−1.65, 0.70, and 0.21, respectively). The small
reduction, significantly less than what would result from
the use of the single configuration in each nucleus that
minimizes the energy (4.76) shows that shape fluctua-
tions wash out the effects of octupole deformation. For
the 0νββ decay to the excited 0+ state in 150Sm, we find

M0ν(0+1 → 0+2 ) = 0.72.

Figure 5 compares the ground-state to ground-state
matrix elements M0ν(0+1 → 0+1 ) from several models.
Our relativistic EDF-based GCM result is still about
twice those of the deformed quasiparticle random phase
approximation (QRPA) and the interacting boson model
(IBM), and about three times that of the non-relativistic
Gogny-based GCM. A more careful study of shell struc-
ture and pairing will help resolve the last discrepancy.
And we can expect both GCM matrix elements to shrink
once the isoscalar pairing amplitude is included as a gen-
erator coordinate [69, 70].

IV. SUMMARY

We have used covariant multi-reference density func-
tional theory to treat low-lying positive- and negative-
parity states in 150Nd and 150Sm. The GCM mixes
symmetry-projected states with different amounts of
quadrupole and octupole deformation. The results indi-
cate that octupole shape fluctuations significantly reduce
quadrupole collectivity in the low-lying states of both nu-
clei. Both static quadrupole and octupole deformation
quench the nuclear matrix element for 0νββ decay, but
shape fluctuations moderate the effect, so that adding
octupole degrees of freedom ends up reducing the matrix
element by only 7%.

Acknowledgements

We are grateful to R. Rodŕıguez-Guzmán, C. F. Jiao,
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Rodŕıguegz for providing us the unpublished results of his
non-relativistic GCM calculations. Support for this work
was provided through the Scientific Discovery through
Advanced Computing (SciDAC) program funded by US
Department of Energy, Office of Science, Advanced Sci-
entific Computing Research and Nuclear Physics, under
Contract No. DE-SC0008641, ER41896, and by the Na-
tional Natural Science Foundation of China under Grant
Nos. 11575148, 11475140, and 11305134.

[1] J. Argyriades, R. Arnold, C. Augier, J. Baker,
A. S. Barabash, A. Basharina-Freshville, M. Bongrand,
G. Broudin, V. Brudanin, A. J. Caffrey, E. Chauveau,
Z. Daraktchieva, D. Durand, V. Egorov, N. Fatemi-
Ghomi, R. Flack, P. Hubert, J. Jerie, S. Jullian,
M. Kauer, S. King, A. Klimenko, O. Kochetov, S. I.
Konovalov, V. Kovalenko, D. Lalanne, T. Lamhamdi,
K. Lang, Y. Lemière, C. Longuemare, G. Lutter,
C. Marquet, J. Martin-Albo, F. Mauger, A. Nachab,
I. Nasteva, I. Nemchenok, F. Nova, P. Novella,
H. Ohsumi, R. B. Pahlka, F. Perrot, F. Piquemal,
J. L. Reyss, J. S. Ricol, R. Saakyan, X. Sarazin,
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FIG. 3: (color online) Correlation between half-lives in 76Ge
and 136Xe calculated with (�2) -red dotted line- and (�2, �)
-blue continuous line- and the lower experimental limits (90%
CL) from HdM [2], IGEX [40], GERDA [5], KamLAND-
Zen [4] and EXO-200 [3].

already reported in previous works within the EDF and
LSSM frameworks [28–31]. On the other hand, we study
the dependence of the NME on the pairing degree of free-
dom fixing the deformations of the initial and final states
at the values where the maximum of the 136Ba collective
wave function is found (�

2

= 0.1) and leaving free the
values for (�, �0) -see Fig. 2(b).

Vanishing matrix elements are obtained for � < 2 and
�0 < 2. However, for �(�0) values larger than 2 the matrix
element grows rapidly with increasing �(�0) in the band
region �0 ⇡ � � 3 and �0 ⇡ � + 3. A correlation between
pairing and NME has been also previously reported in-
directly [21, 28, 30] but it is explicitly shown for the first
time in this work. Furthermore, the distribution is quite
wide meaning that pairing mixing plays an important
role.

The final step in the calculation of the NME is to con-
sider the shape and pairing fluctuations present in the
initial and final wave functions (Fig. 1(c)-(d)). Taking
into account the wave function shapes and looking at
Fig. 2(b) we find that the relevant part is the square de-
fined by the intersection of the horizontal and vertical
lines. Here we see that the pairing fluctuations allow
a large richness of values of the nuclear matrix element
(from zero up to approximately 5) which definitively con-
tribute to the final value.

The results for the most probable candidates to detect
0⌫�� decays are summarized in Table I. We find in the
136Xe decay discussed above a 14% larger NME when
the pairing degree of freedom is explicitly included which
leads to a reduction of the half-life in a factor 0.77. This
result is consistent with exploring regions with larger val-
ues of the NME in the pairing degree of freedom thanks
to the fluctuations in � included in the collective wave
functions. The same e↵ect happens for the rest of can-
didates where the NME obtained including both defor-

mation and pairing fluctuations are increased from 10%
to 40% with respect to the values found by considering
only shape mixings. The 48Ca is the only particular case
where, due to its double magic character, the initial wave
function is significantly moved towards less pairing cor-
relations, thus giving a slightly smaller NME. Except for
this decay, the updated NMEs lead to a reduction of the
predicted half-lives up to factors from 0.81 (82Se) to 0.52
(128Te). Furthermore, a shorter 76Ge half-life as a func-
tion of the 136Xe one is predicted in the region allowed
by HdM, IGEX [40], GERDA, EXO-200 and KamLAND-
Zen experiments, as it is represented in Fig. 3. However,
the HdM claim is incompatible both with the previous
and these new values of the NMEs.
Recently the large values of the Fermi part obtained

within QRPA, IBM and EDF methods compared to the
LSSM ones has been discussed in terms of isospin sym-
metry violation. Hence, spurious contributions to Fermi
-and possibly GT- matrix elements exist in those cases
where the initial and final states are not isospin eigen-
states. In Ref. [41] is shown in the QRPA framework
that correcting the parameters to have the Fermi part of
the 2⌫�� decay equal to zero, the M0⌫

F is reduced but
M0⌫

GT is barely a↵ected. In Table I we show separately
the GT and F components of the NME and we see that
the gain including pairing fluctuations is similar in both
channels. This fact could indicate that the observed in-
crease is not produced by a stronger isospin symmetry
violation. Nevertheless, the e↵ect on the NMEs of the
restoration of the isospin symmetry within this frame-
work is beyond the scope of the present paper but some
work is in progress along this line.
In summary, we have presented calculations for 0⌫��

matrix elements within the EDF framework, including for

Isotope �Q(�2) �Q(�2, �) M0⌫
(�2) M0⌫

(�2, �) Var (%)

T1/2(�2,�)

T1/2(�2)

48
Ca 0.265 0.131 2.3701.9140.456 2.2291.7970.431 -6 1.13

76
Ge 0.271 0.190 4.6013.7150.886 5.5514.4701.082 21 0.69

82
Se -0.366 -0.246 4.2183.3810.837 4.6743.7430.931 11 0.81

96
Zr 2.580 2.628 5.6504.6181.032 6.4985.2961.202 15 0.76

100
Mo 1.879 1.757 5.0844.1490.935 6.5885.3611.227 30 0.60

116
Cd 1.365 1.337 4.7953.9310.864 5.3484.3720.976 12 0.80

124
Sn -0.830 -0.687 4.8083.8930.916 5.7874.6801.107 20 0.69

128
Te -0.564 -0.594 4.1073.0791.027 5.6874.2551.432 38 0.52

130
Te -0.348 -0.628 5.1304.1410.989 6.4055.1611.244 25 0.64

136
Xe -1.027 -0.787 4.1993.6730.526 4.7734.1700.604 14 0.77

150
Nd -0.380 -0.282 1.7071.2780.429 2.1901.6390.551 29 0.61

TABLE I: Di↵erence between theoretical and experimental
Q values and nuclear matrix elements for the most probable
0⌫�� emitters considering shape fluctuations (�2) and both
shape and pairing fluctuations (�2, �) explicitly. Superscript
(underscript) values correspond to the Gamow-Teller (Fermi)
components. The last two columns are the variation of the
NME and half-lives when the additional pairing degree of free-
dom is included.

N. López-Vaquero, T.R.R., J.L. Egido, PRL 111, 142501 (2013)
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nuclear radius, inserted by convention to make the ma-
trix element dimensionless. The form factors hF(q) and
hGT(q) contain the vector and axial vector coupling con-
stants, forbidden corrections to the weak current, nucleon
form factors, and the “Argonne” short-range correlation
function [13]. See, e.g., Ref. [14] for details; note that
we absorb the inverse square of the axial-vector coupling
constant into our definition of hF .

To compute the matrix element in Eq. (1) we need
good representations of the initial and final ground states
|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X

µ=�1

gT=1
µ S†

µSµ � �

2

2X

K=�2

Q†
2KQ2K

� gT=0
1X

⌫=�1

P †
⌫P⌫ + gph

1X

µ,⌫=�1

Fµ†
⌫ Fµ

⌫ , (2)

where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and

S†
µ =

1p
2

X

l

l̂[c†l c
†
l ]
001
00µ , P †

µ =
1p
2

X

l

l̂[c†l c
†
l ]
010
0µ0 ,

Fµ
⌫ =

1

2

X

i

�µ
i ⌧

⌫
i =

X

l

l̂[c†l c̄l]
011
0µ⌫ . (3)

In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
�P

2

⇣
P0 + P †

0

⌘
, (6)

where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers

2
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replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
�P

2

⇣
P0 + P †

0

⌘
, (6)

where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers

4

TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit

-10

-5

0

5

10

0 0.5 1 1.5 2 2.5 3

M
0n

gT=0/ḡT=1
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FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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nuclear radius, inserted by convention to make the ma-
trix element dimensionless. The form factors hF(q) and
hGT(q) contain the vector and axial vector coupling con-
stants, forbidden corrections to the weak current, nucleon
form factors, and the “Argonne” short-range correlation
function [13]. See, e.g., Ref. [14] for details; note that
we absorb the inverse square of the axial-vector coupling
constant into our definition of hF .

To compute the matrix element in Eq. (1) we need
good representations of the initial and final ground states
|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X

µ=�1

gT=1
µ S†

µSµ � �

2

2X

K=�2

Q†
2KQ2K

� gT=0
1X

⌫=�1

P †
⌫P⌫ + gph

1X

µ,⌫=�1

Fµ†
⌫ Fµ

⌫ , (2)

where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and

S†
µ =

1p
2

X

l

l̂[c†l c
†
l ]
001
00µ , P †

µ =
1p
2

X

l

l̂[c†l c
†
l ]
010
0µ0 ,

Fµ
⌫ =

1

2

X

i

�µ
i ⌧

⌫
i =

X

l

l̂[c†l c̄l]
011
0µ⌫ . (3)

In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
�P

2

⇣
P0 + P †

0

⌘
, (6)

where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints
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where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit
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FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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A=116 (possible candidate for detection) 

- Reduction of the NME 
with respect to the 
spherical value when 
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FIG. 5. (Color online) Dependence of the calculated matrix
elements on the number of valence neutron pairs in the GS scheme.
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that annihilates a correlated pair of neutrons and creates a
correlated pair of protons. This operator can be written, to a
good approximation, as [23]

P
(0)
+πP

(0)
−ν = απανs

†
π (%π − Nπ )1/2 (%ν − Nν)1/2 s̃ν, (42)

where %π and %ν are the pair degeneracies of the major shells
and Nπ and Nν are the boson numbers (numbers of pairs). The
matrix elements of the operator in Eq. (42) are

⟨Nπ + 1, Nν − 1
∣∣P (0)

+πP
(0)
−ν

∣∣Nπ , Nν⟩

= απαν

√
(Nπ + 1)(%π − Nπ )(%ν − Nν + 1)Nν . (43)

The coefficients απ ,αν are characteristic quantities of each
major shell. The behavior (43) is shown in Fig. 6. (This
is slightly different from the realistic calculation of Fig. 5
obtained with single-particle levels for protons slightly differ-
ent than for neutron.) Equation (43) provides a simple estimate
of M (0ν). As an example of application of Eq. (43), consider the
ratio 128

52 Te76/
130
52 Te78. For Te, protons and neutrons are in the

50–82 shell, %π = %ν = 16 and Nπ = 1 and Nν = 13(128Te),
Nν = 14 (130Te). From (43) one obtains

M (0ν)(128Te)
M (0ν)(130Te)

= 1.11. (44)

The result of our calculation (IBM-2 in Table IV) gives
M (0ν)(128Te)/M (0ν)(130Te) = 4.517

4.059 = 1.11. This calculation
includes FSC and SRC effects. Formula (43), derived in GS
and spherical nuclei, appears also to be valid for the full
calculation (IBM-2) and weakly deformed nuclei. The analogy
between neutrinoless double-β decay and 2n and 2p transfer
suggests that the physical decay occurs in a correlated pair
and is thus enhanced by pairing correlations. It also allows a
model-independent prediction for ratios of matrix elements,
by resorting to experimental data for 2n (and 2p) transfer
reactions

A
ZXN (p, t)AZXN−2. (45)

The intensities of these reactions are proportional to the square
of the matrix elements of the operator P

(0)
−ν and thus, for fixed

proton number, to the square of the matrix elements M (0ν). As
reported in Ref. [23], the experimental two-neutron transfer
reactions in Te appear to be well described by Eq. (43).

The relation described above is also well satisfied by
QRPA. For example, from Table IV, row QRPA, we have
M (0ν)(128Te)/M (0ν)(130Te) = 3.770

3.338 = 1.13.
We suggest that the relation

M (0ν) ≃ απαν

√
Nπ + 1

√
Nν

√
%π − Nπ

√
%ν − Nν + 1

(46)

be used to estimate M (0ν) for spherical and weakly deformed
nuclei with A >∼ 60. By fitting our calculation in 76Ge with (43)
we find απαν = 0.186 for protons and neutrons in the 28–
50 shell and by fitting in 128Te we find απαν = 0.114 for
protons and neutrons in the 50–82 shell. These values are used
in Fig. 6, where also the two points 128Te and 130Te are shown.

As mentioned above, this estimate applies to spherical
and weakly deformed nuclei. For strongly deformed nuclei,
it should be modified as discussed in Ref. [23].

C. Effects of deformation

The effects of deformation can be easily seen within the
microscopic IBM framework. In spherical nuclei, the ground
state is composed of S pairs (s bosons) and is well described
by generalized seniority. As the deformation increases, the
number of d-bosons in the ground state increases, reaching
a maximum of (2/3)(Nπ + Nν) in SU(3) nuclei. The effects
of the deformation are the differences between the rows GS
and IBM-2 in Table I. For the nuclei described in this article,
the effect is a reduction by about 20%. The advantage of the
method discussed in this article is that one can do calculations
in any nucleus with A >∼ 70. For semimagic nuclei, one can
use GS, whereas for all others one can use IBM-2. To study
further the effects of strong defomation, we are planning to
calculate the matrix elements in the decay of 160Gd, 232Th, and
238U, for which we need first to obtain realistic wave functions
that describe accurately all observed properties. The results of
the calculation will be presented in a forthcoming publication.

044301-9

J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009)
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- Larger pairing correlations in 
mother/daughter nuclei produces 
larger NMEs.


- Closely related to shell effects

T.R.R., Martínez-Pinedo, PLB 719, 174 (2013)
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NME: pf-shell

- Same pattern in spherical EDF, seniority 0 Shell Model, and 
Generalized Seniority model (overall scale?) 


- What is the effect of including more correlations?

Where do the differences come from?

CORRELATIONS AND NEUTRINOLESS ββ DECAY . . . PHYSICAL REVIEW C 90, 024311 (2014)
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FIG. 1. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b) and Cr→Fe (c) 0νββ decays,

calculated with shell model (SM) and energy density functional (EDF) methods. The D1S EDF interaction is used (circles). In the SM case,
the KB3G (squares) and GXPF1A (lozenges) effective interactions are employed.

Refs. [31,50]. Maxima are more marked in SM calculations,
where the initial and final states share the same isospin
quantum number, T . In the SM case the two states are exactly
isospin-symmetric, because Coulomb and isospin-symmetry-
breaking terms in the nuclear interaction are neglected, but the
overlap between mirror initial and final states is also maximal
in the EDF approach, which includes the Coulomb term. For
EDF calculations, however, T is not a good quantum number.

The configuration space and nuclear correlations included
in SM and EDF calculations are very different, with the SM
being able to take into account more general correlations but
in a rather limited valence space. Regarding the size of the
configuration space it is important to note that in the pf shell
the SM includes all orbitals with their corresponding spin-
orbit partner. This is relevant because in the 0νββ decay of
heavier nuclei, some spin-orbit partners are not included in
SM calculations, and this has been pointed out as a possible
cause of the relatively small SM NMEs. The SM calculations
analyzed in this work are thus free from this shortcoming.

We can get more insight in the comparison of SM and
EDF NMEs by simplifying the nuclear structure correlations
present in the initial and final states of the 0νββ decay. Figure 2
shows M0ν

GT calculated with the same transition operator as
Fig. 1, but with simplified nuclear states. For the EDF, spherical
symmetry is assumed. In the SM case, only configurations
with zero seniority (s = 0) are permitted, this is, protons and
neutrons are coupled in J = 0 pairs; no proton-neutron J =
0 pairs are included. We observe that the GT parts of the
NMEs calculated in these simplified schemes are significantly
larger than in the full calculation for both approaches, with a

striking agreement between SM and EDF NMEs. Indeed SM
GXPF1A calculations lie within 10% of EDF values, while
SM KB3G calculations are about 25% larger. The difference
between the two SM results stems from the different J = 0,
T = 1 pairing. As shown in Fig. 1, this difference between
effective interactions is washed out when full calculations are
performed. The agreement between SM and EDF NMEs is in
strong contrast with the full NME calculations shown in Fig. 1,
where SM NMEs were half of the EDF values.

This implies that the spherical EDF and seniority-zero
SM calculations, while conceptually very different, capture
approximately the same physics, leaving out the nuclear
structure correlations that reduce the 0νββ decay NMEs.
Some of these have been identified in Refs. [15,17,31] as the
correlations associated with high-seniority components in the
SM, and collective deformation effects in EDF calculations.
High seniority components have been also studied within the
QRPA in Ref. [21].

Figure 2 also shows that the trends followed by the NMEs
calculated in both approaches are very similar, and indeed
they follow to a good approximation the generalized seniority
scheme in a single shell [51]:

M0ν
GT ≃ απαν

√
Nπ + 1

√
%π − Nπ

√
Nν

√
%ν − Nν + 1,

(6)

where Nπ(ν) is the number of proton (neutron) pairs in the shell,
%π(ν) the pair degeneracy and απ(ν) coefficients characteristic
of a major shell. Deviations from Eq. (6) are due to nonperfect
shell closures and the A dependence in the neutrino potentials.
The “inverted parabola” from initial number of neutrons
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FIG. 2. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b), and Cr→Fe (c) 0νββ decays,

with seniority-zero shell model (SM) and spherical energy density functional (EDF) states. Interactions are as in Fig. 1.
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J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).
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- NMEs are reduced with respect to the 
spherical value when correlations are included.


- The biggest reduction is produced by angular 
momentum restoration and configuration 
mixing produces an increase of the NME.


- Cross-check nuclei: 42Ca, 50Ca, 56Fe J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).
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NME: pf-shell
CORRELATIONS AND NEUTRINOLESS ββ DECAY . . . PHYSICAL REVIEW C 90, 024311 (2014)

corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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- The biggest reduction (in Shell model 
calculations) is produced by including 
higher seniority components in the 
nuclear wave functions.


- Isospin projection is relevant for the 
Fermi part of the NME and less 
important for the Gamow-Teller part.


- Isospin projection tends to reduce the 
NME.


- EDF does not include properly those 
higher seniority components, specially 
in spherical nuclei.


- p-n pairing effects could also be 
important in the reduction of the NME.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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FIG. 4. (Color online) Multipole decomposition of the matrix
element M0ν

F . The results with the old and new parametrizations are
compared. Note the dominant effect for the 0+ multipole and the
relatively small effects for the other multipoles. This is the case of
76Ge.

From the tables one can see that the new parametrization,
leading to M2ν

F = 0.0, leads to a substantial reduction of the
M0ν

F component of M0ν and an overall ∼10%–20% reduction
of the final M0ν nuclear matrix elements. It is encouraging
that both variants of the M0ν matrix elements for 48Ca are now
rather close to the results of nuclear shell model evaluation.
(With gA = 1.27 our M0ν values are 0.54 in the listed case
and 0.71 in the variant where the even-odd mass differences
are treated as arising from pairing, both with the Argonne V18
potential and 0.59 (0.77) with the CD-Bonn potential, while
the shell model values are 0.59 in Ref. [18] and 0.82 (0.90) for
the Argonne V18 (CD-Bonn) potential in Ref. [19].) Note that
only in the case of 48Ca is the full oscillator pf shell included
and hence the Ikeda sum rule is fulfilled in the nuclear shell
model treatment. We are, naturally, well aware of the fact that
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FIG. 5. (Color online) Nuclear matrix elements M0ν evaluated
with the new parametrization developed in this work (filled squares)
compared with the old method (gT =1

pp = gT =0
pp ≡ gpp) (empty circles).

This is a QRPA with gA = 1.27 and a large-size single-particle level
scheme, as in Table I, evaluation using the Argonne V18 potential.

applying the QRPA in the case of 48Ca is questionable; our
results should be treated with that in mind.

Finally, in order to better visualize the effect of the new
parametrization of the particle-particle interaction, we show
in Fig. 4 an example of the multipole decomposition of the
matrix element M0ν

F . One can see there that the contribution of
the intermediate multipole 0+ is drastically reduced with our
choice of gT =1

pp , while all the other multipoles are affected only
slightly or not at all. This is, in some sense, analogous to the
situation with M0ν

GT, where the parameter gT =0
pp affects mostly

the intermediate 1+ states, while all the other multipolarities
are affected much less.

We compare in Fig. 5 the M0ν matrix elements for all
considered nuclei evaluated with the old and new parametriza-
tions of gpp. The smaller values of M0ν in 48Ca, 166Cd, 124Sn,
136Xe, and to some extent also in 96Zr are related to the magic
or semimagic nucleon number in these nuclei, and thus to the
reduced pairing correlations in them.

V. COMPARISON OF THE χF VALUES EVALUATED
BY DIFFERENT METHODS

As we argued in this work, the result of the new parametriza-
tion of the particle-particle interaction, which partially restores
isospin symmetry and leads to the correct M2ν

F = 0 value,
is the reduction of the Fermi part M0ν

F of the 0νββ nuclear
matrix element. At the same time, the largest component of
that matrix element, M0ν

GT, remains essentially unaffected. One
can see that most clearly by considering the quantity χF , the
ratio M0ν

F /M0ν
GT.

In Table IV we compare the χF values obtained with
different methods. [An analogous table, naturally without our
new results, appears in Ref. [20] in their Table VII. However,
as we already mentioned, their definition of χF contains an
extra factor (gV /gA)2.] One can see in Table IV that in the
nuclear shell model, and in our QRPA calculation with the
new parametrization of gpp, the χF values are substantially
smaller than in the previous approaches. (In IBM-2 the χF are
very small when neutrons and protons are in different shells.
That is an artifact of the model where only one shell in each
system is included.)

In the shell model, and in our new QRPA calculations, the
χF values are relatively close to −1/3, the value one would
obtain in pure S = 0 states. However, in the shell model the
χF values are systematically smaller than in our version of
the QRPA. Why this is so remains to be understood. (To be
really precise, χF = −1/3 would arise for pure S = 0 when
the higher order terms in the weak current are absent, when
in the nucleon form factor the cutoff parameters for the vector
and axial vector currents are the same, and the average energies
Ē are chosen to be the same in both neutrino potentials.) As
we pointed out before, while the S = 0 component is large,
the other parts, in particular S = 1, are clearly present.

We may notice that the QRPA values of χF are always
smaller with the quenched value gA = 1.0 compared to the
unquenched value gA = 1.27. That trend continues when the
amount of quenching is increased, e.g., to gA = 0.8 where χF

values are really quite close to −1/3. However, the question

045501-8
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shell. This Hamiltonian employs a monopole interaction and
collective pieces: isovector J = 0 and isoscalar J = 1 pairing
terms, a quadrupole-quadrupole term, and a spin-isospin
term. We compare the 0νββ decay matrix elements that this
interaction produces with those produced by the full shell
model interaction in the Ca, Ti, and Cr isotopic chains (heavier
elements are computationally more demanding, as well as
more sensitive to orbitals beyond the pf shell), and identify the
most relevant collective correlations for ββ decay. Second, we
use the collective interaction within a GCM calculation that
includes the isoscalar pairing amplitude and the quadrupole
moment as generator coordinates, and compare the resulting
0νββ decay matrix elements to those of the shell model.
Finally, we try to assess the degree to which our conclusions
hold for the heavier nuclei in which ββ decay could be detected
in next-generation experiments.

The rest of this paper is structured as follows. Section II
describes the extraction of the separable collective interaction
and discusses each of its components. Section III briefly
presents the 0νββ decay operator and compares the matrix
elements, calculated in the shell model with both the full and
collective Hamiltonians, for isotopes of Ca, Ti, and Cr. It also
shows GCM matrix elements for the same nuclei, calculated
with the same collective interaction, and finally discusses the
matrix elements for heavier nuclei that are of real interest for
0νββ decay experiments. Section IV is a conclusion.

II. SEPARABLE COLLECTIVE INTERACTION

We work in the pf -shell configuration space, comprising
the 0f7/2, 1p3/2, 1p1/2, and 0f5/2 orbitals. As a reference
Hamiltonian we use the shell model interaction KB3G [19],
which has been extensively tested throughout the pf shell.
This interaction provides a very good description of nu-
clear structure, including spectroscopy, electromagnetic and
Gamow-Teller transitions, and deformation [15]. Then, follow-
ing the work of Dufour and Zuker [18], we build the separable
collective Hamiltonian that best approximates KB3G. Roughly
speaking, Ref. [18] determines the structure of the lowest-lying
collective states in the particle-hole and pairing representations
with a given angular momentum J , isospin T , and parity π , and
then constructs a series of separable terms, with appropriate
strengths, that reproduce those states. Dufour and Zuker find
that the most important terms in the particle-hole channel are
the isoscalar quadrupole and spin-isospin (στστ ) interactions,
and in the pairing channel the isovector J π = 0+ and isoscalar
J π = 1+ interactions.

The separable collective Hamiltonian, Hcoll, that includes
the full monopole piece of the KB3G interaction and the
dominant collective terms found by Dufour and Zuker has
the form

Hcoll = HM + gT =1
1∑

n=−1

S†
nSn + gT =0

1∑

m=−1

P †
mPm

+ gph

1∑

m,n=−1

: F†
mnFmn : +χ

2∑

µ=−2

: Q†
µQµ : , (1)

TABLE I. Strengths (in MeV) of the isovector pairing (gT =1),
isoscalar paring (gT =0), spin-isospin (gph), and quadrupole (χ )
interactions in the separable collective Hamiltonian Hcoll [Eq. (1)].
The values are taken from Ref. [18] and scaled to nucleon number A =
42. For heavier isotopes the strengths are multiplied by (42/A)1/3.

gT =1 gT =0 gph χ

−0.377 −0.587 0.057 −0.141

where the colons indicate normal ordering. The monopole
Hamiltonian HM includes two-body terms and one-body
(single-particle) energies, both taken from KB3G. In addition

S†
n = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,0,1

0,0,n,

P †
m = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,1,0

0,m,0,

(2)
Fmn = 2

∑

α

√
2lα + 1(a†

α ãα)0,1,1
0,m,n,

Qµ = 1√
5

∑

α,β

⟨nαlα||r2Y2/b
2||nβ lβ⟩(a†

α ãβ)2,0,0
µ,0,0,

where Fmn, written in first quantization, is just
∑

i σm(i)τn(i),
b is the usual oscillator parameter, a†

α creates a nucleon in
a single-particle orbital with principal quantum number nα

and orbital angular momentum lα , and ãa destroys a nucleon
in the time-reversed orbital [more precisely, ãlα ,mα ,sα ,τα

≡
(−1)lα+1−mα−sα−ταalα ,−mα ,sα ,−τα

, where mα is the z component
of the orbital angular momentum, sα is the z component of the
spin, and τα is the z component of the isospin]. The superscripts
following the parentheses stand for the two-particle orbital
angular momentum, spin, and isospin, and the subscripts for
their z components. The strengths of the various terms, gT =1,
gT =0, gph, and χ , are taken from Ref. [18] and appear in Table I
for mass A = 42 (they scale with A−1/3). Note that the pairing
and quadrupole-quadrupole terms are attractive, as expected.
Reference [20] uses a similar collective Hamiltonian, also
based on the decomposition in Ref. [18], but without the
spin-isospin term, to study the competition between isovector
and isoscalar pairing in pf -shell nuclei.

The significance of the various terms in Hcoll is as follows:
The monopole Hamiltonian HM adds effective neutron- and
proton-number-dependent effective single-particle energies
to the bare energies. The remaining terms are collective—
an isovector spin-0 pairing interaction, an isoscalar spin-1
pairing interaction, a quadrupole-quadrupole interaction, and
a Landau-Migdal-style spin-isospin interaction. Many studies
of nuclear collectivity (e.g., [21–23]) include only isovec-
tor pairing (usually without the proton-neutron part) and
quadrupole-quadrupole terms. And isoscalar pairing is fre-
quently downplayed. Among the models studying 0νββ decay
matrix elements, the EDF-based GCM and the IBM have not
yet included isoscalar pairing explicitly.

According to Ref. [18], the terms included in Hcoll are
the most important for pf -shell nuclei (we could also have
included, for example, an isovector quadrupole-quadrupole
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FIG. 2. Gamow-Teller part of the 0νββ decay matrix elements
MGT

0ν , for the decay of Ca isotopes into Ti as a function of the neutron
number Nparent in the parent nucleus. Results are shown for the KB3G
interaction (black circles, solid line), the full collective interaction
Hcoll (red circles, dashed line), Hcoll with the quadrupole-quadrupole
term removed (purple squares, dotted line), Hcoll with the isoscalar
pairing term removed (blue squares, short-dashed line), and Hcoll with
both the isoscalar-pairing and spin-isospin pieces removed (orange
squares, dot-dashed line).

15%–20%. That result is consistent with those of previous
studies [9,34–36] that note a small matrix element when the
parent and daughter have different quadrupole properties.

Perhaps the most striking feature of Fig. 2 is the suppression
of the matrix elements by isoscalar pairing. Removing that
term from the Hamiltonian increases the matrix elements by
more than a factor of two (closer to three in many isotopes),
or between 1 and 2 units. When, in addition, the spin-isospin
term is removed, the matrix elements grow even further. As
Fig. 3 shows, the large effect of isoscalar pairing is common to
the matrix elements of all the Ca, Ti, and Cr isotopes we study,
from those with N ∼ Z to very neutron-rich nuclei. For the
matrix elements of the most isospin-asymmetric nuclei ( 58Ca
and 60Ca) the effect of isoscalar pairing is somewhat milder
but still important. The sensitivity to isoscalar (proton-neutron)
pairing is familiar from QRPA [37,38] and GCM studies [14]
and makes it clear that a good description of proton-neutron
correlations is crucial to obtain accurate 0νββ decay nuclear
matrix elements.

The significance of isoscalar pairing is not quite as straight-
forward as it first appears, however. The matrix elements
vary just about 10% when only the spin-isospin interaction
is omitted from Hcoll. As Fig. 2 shows, when the spin-isospin
term is included in the separable collective Hamiltonian, the
impact of omitting isoscalar pairing, though still significant, is
smaller than with the spin-isospin term excluded. This result
suggests that the missing isoscalar-pairing correlations can
to some extent be compensated for, or captured, by other
collective interactions. In that sense, we can consider the
dramatic changes in the matrix elements shown in Figs. 2

FIG. 3. Gamow-Teller part of the 0νββ decay matrix elements,
MGT

0ν , for the decay of Ti isotopes into Cr (top panel), and Cr isotopes
into Fe (bottom), as a function of the neutron number Nparent of the
parent nucleus. Results are shown for the KB3G interaction (black,
solid line), the collective interaction Hcoll (red, dashed line), and Hcoll

without the isoscalar pairing term (blue, short-dashed line).

and 3 to be an upper bound for the effects of isoscalar
pairing. Pieces of the nuclear Hamiltonian, both collective
and noncollective, that are not included in Hcoll might soften
the impact of omitting isoscalar-pairing, in the same way that
the spin-isospin interaction does.

The impact of isoscalar pairing correlations in 0νββ decay
is undeniable. One way to understand it is through spin-
isospin SU(4) symmetry. The GT operator, if we neglect the
neutrino potential, is invariant under SU(4) transformations,
implying that only states belonging to the same irreducible
representations (irreps) of SU(4) can be connected by the
operator; the matrix elements between states in different irreps
vanish. Furthermore, in the absence of spin-orbit splitting in
the HM piece, the collective Hamiltonian Hcoll is invariant
under SU(4) if the isovector and isoscalar pairing terms have
the same strength, gT =1 = gT =0. The situation resembles
that associated with the ββ decay Fermi operator, which
because of isospin symmetry has vanishing matrix elements
between states belonging to different isospin-SU(2) irreps, i.e.,
having different total isospin [39]. In 0νββ decay the neutrino
potential breaks the SU(2) invariance of the operator and the
matrix elements, MF

0ν , do not vanish, but they are nevertheless
suppressed [6,8,10,17].

In pf -shell nuclei the spin-orbit splitting is sizable, and
nuclear states are in general a combination of several different
SU(4) irreps [40]. However, since gT =0 is only slightly larger
than gT =1, and the spin-isospin interaction, which conserves
the SU(4) symmetry, effectively increases the energy separa-
tion among SU(4) irreps, the fraction of irreps shared between
the parent and daughter nuclei is small. This fact is illustrated in
the top part of Fig. 4, which shows the percentage of the ground
state in each Ti isotope (daughter nucleus) belonging in irreps
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shell. This Hamiltonian employs a monopole interaction and
collective pieces: isovector J = 0 and isoscalar J = 1 pairing
terms, a quadrupole-quadrupole term, and a spin-isospin
term. We compare the 0νββ decay matrix elements that this
interaction produces with those produced by the full shell
model interaction in the Ca, Ti, and Cr isotopic chains (heavier
elements are computationally more demanding, as well as
more sensitive to orbitals beyond the pf shell), and identify the
most relevant collective correlations for ββ decay. Second, we
use the collective interaction within a GCM calculation that
includes the isoscalar pairing amplitude and the quadrupole
moment as generator coordinates, and compare the resulting
0νββ decay matrix elements to those of the shell model.
Finally, we try to assess the degree to which our conclusions
hold for the heavier nuclei in which ββ decay could be detected
in next-generation experiments.

The rest of this paper is structured as follows. Section II
describes the extraction of the separable collective interaction
and discusses each of its components. Section III briefly
presents the 0νββ decay operator and compares the matrix
elements, calculated in the shell model with both the full and
collective Hamiltonians, for isotopes of Ca, Ti, and Cr. It also
shows GCM matrix elements for the same nuclei, calculated
with the same collective interaction, and finally discusses the
matrix elements for heavier nuclei that are of real interest for
0νββ decay experiments. Section IV is a conclusion.

II. SEPARABLE COLLECTIVE INTERACTION

We work in the pf -shell configuration space, comprising
the 0f7/2, 1p3/2, 1p1/2, and 0f5/2 orbitals. As a reference
Hamiltonian we use the shell model interaction KB3G [19],
which has been extensively tested throughout the pf shell.
This interaction provides a very good description of nu-
clear structure, including spectroscopy, electromagnetic and
Gamow-Teller transitions, and deformation [15]. Then, follow-
ing the work of Dufour and Zuker [18], we build the separable
collective Hamiltonian that best approximates KB3G. Roughly
speaking, Ref. [18] determines the structure of the lowest-lying
collective states in the particle-hole and pairing representations
with a given angular momentum J , isospin T , and parity π , and
then constructs a series of separable terms, with appropriate
strengths, that reproduce those states. Dufour and Zuker find
that the most important terms in the particle-hole channel are
the isoscalar quadrupole and spin-isospin (στστ ) interactions,
and in the pairing channel the isovector J π = 0+ and isoscalar
J π = 1+ interactions.

The separable collective Hamiltonian, Hcoll, that includes
the full monopole piece of the KB3G interaction and the
dominant collective terms found by Dufour and Zuker has
the form

Hcoll = HM + gT =1
1∑

n=−1

S†
nSn + gT =0

1∑

m=−1

P †
mPm

+ gph

1∑

m,n=−1

: F†
mnFmn : +χ

2∑

µ=−2

: Q†
µQµ : , (1)

TABLE I. Strengths (in MeV) of the isovector pairing (gT =1),
isoscalar paring (gT =0), spin-isospin (gph), and quadrupole (χ )
interactions in the separable collective Hamiltonian Hcoll [Eq. (1)].
The values are taken from Ref. [18] and scaled to nucleon number A =
42. For heavier isotopes the strengths are multiplied by (42/A)1/3.

gT =1 gT =0 gph χ

−0.377 −0.587 0.057 −0.141

where the colons indicate normal ordering. The monopole
Hamiltonian HM includes two-body terms and one-body
(single-particle) energies, both taken from KB3G. In addition

S†
n = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,0,1

0,0,n,

P †
m = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,1,0

0,m,0,

(2)
Fmn = 2

∑

α

√
2lα + 1(a†

α ãα)0,1,1
0,m,n,

Qµ = 1√
5

∑

α,β

⟨nαlα||r2Y2/b
2||nβ lβ⟩(a†

α ãβ)2,0,0
µ,0,0,

where Fmn, written in first quantization, is just
∑

i σm(i)τn(i),
b is the usual oscillator parameter, a†

α creates a nucleon in
a single-particle orbital with principal quantum number nα

and orbital angular momentum lα , and ãa destroys a nucleon
in the time-reversed orbital [more precisely, ãlα ,mα ,sα ,τα

≡
(−1)lα+1−mα−sα−ταalα ,−mα ,sα ,−τα

, where mα is the z component
of the orbital angular momentum, sα is the z component of the
spin, and τα is the z component of the isospin]. The superscripts
following the parentheses stand for the two-particle orbital
angular momentum, spin, and isospin, and the subscripts for
their z components. The strengths of the various terms, gT =1,
gT =0, gph, and χ , are taken from Ref. [18] and appear in Table I
for mass A = 42 (they scale with A−1/3). Note that the pairing
and quadrupole-quadrupole terms are attractive, as expected.
Reference [20] uses a similar collective Hamiltonian, also
based on the decomposition in Ref. [18], but without the
spin-isospin term, to study the competition between isovector
and isoscalar pairing in pf -shell nuclei.

The significance of the various terms in Hcoll is as follows:
The monopole Hamiltonian HM adds effective neutron- and
proton-number-dependent effective single-particle energies
to the bare energies. The remaining terms are collective—
an isovector spin-0 pairing interaction, an isoscalar spin-1
pairing interaction, a quadrupole-quadrupole interaction, and
a Landau-Migdal-style spin-isospin interaction. Many studies
of nuclear collectivity (e.g., [21–23]) include only isovec-
tor pairing (usually without the proton-neutron part) and
quadrupole-quadrupole terms. And isoscalar pairing is fre-
quently downplayed. Among the models studying 0νββ decay
matrix elements, the EDF-based GCM and the IBM have not
yet included isoscalar pairing explicitly.

According to Ref. [18], the terms included in Hcoll are
the most important for pf -shell nuclei (we could also have
included, for example, an isovector quadrupole-quadrupole
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FIG. 4. Top panel: Percentage of ground state in daughter nuclei
(Ti isotopes) belonging to SU(4) irreducible representations (irreps)
that are also present in the corresponding parent nuclei (Ca isotopes),
as a function of the neutron number Nparent of the parent nucleus.
Results are shown for the KB3G effective interaction (black circles,
solid line), the collective Hamiltonian Hcoll (red circles, dashed line),
Hcoll without the isoscalar pairing term (blue circles, short-dashed
line), Hcoll without both the isoscalar pairing and the spin-isospin
terms (orange circles, dot-dashed line), and the KB3G interaction
diagonalized in a basis of a seniority-zero states (purple squares,
dotted line). Bottom panel: MGT

2ν (cl.) (see text) as a function of Nparent.
Correspondence between results and symbols/lines is the same as in
the top panel.

that are also present in the ground state of the corresponding
Ca isotope (parent). The small percentages mean that in the
approximation that the neutrino potential is replaced by a
constant, i.e., with the 0νββ decay operator replaced by the
closure version of the 2νββ decay operator MGT

2ν (cl.), the
matrix elements are tiny (see the bottom panel of Fig. 4).
The result explains why MGT for 0νββ decay, which reflects
mild SU(4) breaking by the neutrino potential, is generally
small rather than either tiny or large. The only exception is
in mirror nuclei, where the irreps in the parent and daughter
are identical. There the matrix elements are larger than others
in the same isotopic chain, as both shell-model and GCM
calculations show [6,16,17].

Little remains of SU(4) symmetry when the isoscalar
pairing and the spin-isospin terms are removed from the
Hamiltonian. As Fig. 4 shows, setting gT =0 = 0 causes the
percentage of the ground states in parent and daughter nuclei
belonging to shared SU(4) irreps to increase substantially,
which in turn increases MGT

2ν (cl.). The effect is even stronger
when the spin-isospin interaction is removed as well. And as
Figs. 2 and 3 show, the MGT

0ν matrix elements also increase
dramatically. (The percentage of common irreps in the parent
and and daughter nuclei actually decreases faster with N − Z
than the matrix elements. The reason is that the matrix elements
between states in the same irrep are proportional to N − Z
[41]).

FIG. 5. Two-neutrino ββ decay matrix elements MGT
2ν , for the

decay of Ca isotopes into Ti as a function of the neutron number Nparent

in the parent nucleus. Results are shown for the KB3G interaction
(black circles, solid line), the full collective interaction Hcoll (red
circles, dashed line), Hcoll with the isoscalar pairing term removed
(blue squares, short-dashed line), and Hcoll with both isoscalar-pairing
and spin-isospin parts removed (orange squares, dot-dashed line).

The same kind of SU(4) breaking is at play when ground
states are forced to have seniority zero, that is, states con-
sisting entirely of like-particle J = 0 pairs. By construction,
seniority-zero states have no proton-neutron pairs or spin-
isospin correlations and thus break SU(4) strongly. As a result,
the percentage of the ground states in the parent and daughter
nuclei belonging to shared irrep increases and both MGT

2ν (cl.)
and MGT

0ν grow (see Refs. [17,31]).
In addition, we study the impact of isoscalar pairing in

2νββ decay. The lower part of Fig. 4 suggests that spin-isospin
and isoscalar pairing correlations are relevant for 2νββ decay,
but for a detailed study the matrix elements need to be
calculated beyond the closure approximation, because of the
small momentum transfers involved in 2νββ transitions [2].

Figure 5 shows nonclosure 2νββ decay matrix elements
calculated with the shell-model KB3G interaction, the col-
lective Hamiltonian Hcoll, and with the same Hamiltonian
but excluding the isoscalar pairing and/or spin-isospin parts
in Hcoll. As in 0νββ decay, the results obtained with the
full collective Hamiltonian Hcoll are in very good agreement
with the full shell-model results, suggesting that the collective
Hamiltonian includes all the interaction components relevant
for 2νββ decay and that fine details of the shell-model
interaction only affect this decay moderately.

The impact of isoscalar pairing and spin-isospin corre-
lations is sizable and, like in 0νββ decay, excluding both
collective terms (or only the isoscalar pairing part) leads
to significantly overestimated 2νββ decay matrix elements.
Figure 5 also shows that for 2νββ decay, excluding only the
spin-isospin interaction leads to overestimated matrix elements
in neutron-rich nuclei as well (in 0νββ decay all matrix
elements vary just by about 10%). In general, the effect of

014305-5



2. 0νββ transition operator 3. Nuclear structure effects1. Introduction 4. Summary and outlook

ESNT Workshop | Saclay | Feb 2017 | MR-EDF calculations for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

NME: pf-shell
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shell. This Hamiltonian employs a monopole interaction and
collective pieces: isovector J = 0 and isoscalar J = 1 pairing
terms, a quadrupole-quadrupole term, and a spin-isospin
term. We compare the 0νββ decay matrix elements that this
interaction produces with those produced by the full shell
model interaction in the Ca, Ti, and Cr isotopic chains (heavier
elements are computationally more demanding, as well as
more sensitive to orbitals beyond the pf shell), and identify the
most relevant collective correlations for ββ decay. Second, we
use the collective interaction within a GCM calculation that
includes the isoscalar pairing amplitude and the quadrupole
moment as generator coordinates, and compare the resulting
0νββ decay matrix elements to those of the shell model.
Finally, we try to assess the degree to which our conclusions
hold for the heavier nuclei in which ββ decay could be detected
in next-generation experiments.

The rest of this paper is structured as follows. Section II
describes the extraction of the separable collective interaction
and discusses each of its components. Section III briefly
presents the 0νββ decay operator and compares the matrix
elements, calculated in the shell model with both the full and
collective Hamiltonians, for isotopes of Ca, Ti, and Cr. It also
shows GCM matrix elements for the same nuclei, calculated
with the same collective interaction, and finally discusses the
matrix elements for heavier nuclei that are of real interest for
0νββ decay experiments. Section IV is a conclusion.

II. SEPARABLE COLLECTIVE INTERACTION

We work in the pf -shell configuration space, comprising
the 0f7/2, 1p3/2, 1p1/2, and 0f5/2 orbitals. As a reference
Hamiltonian we use the shell model interaction KB3G [19],
which has been extensively tested throughout the pf shell.
This interaction provides a very good description of nu-
clear structure, including spectroscopy, electromagnetic and
Gamow-Teller transitions, and deformation [15]. Then, follow-
ing the work of Dufour and Zuker [18], we build the separable
collective Hamiltonian that best approximates KB3G. Roughly
speaking, Ref. [18] determines the structure of the lowest-lying
collective states in the particle-hole and pairing representations
with a given angular momentum J , isospin T , and parity π , and
then constructs a series of separable terms, with appropriate
strengths, that reproduce those states. Dufour and Zuker find
that the most important terms in the particle-hole channel are
the isoscalar quadrupole and spin-isospin (στστ ) interactions,
and in the pairing channel the isovector J π = 0+ and isoscalar
J π = 1+ interactions.

The separable collective Hamiltonian, Hcoll, that includes
the full monopole piece of the KB3G interaction and the
dominant collective terms found by Dufour and Zuker has
the form

Hcoll = HM + gT =1
1∑

n=−1

S†
nSn + gT =0

1∑

m=−1

P †
mPm

+ gph

1∑

m,n=−1

: F†
mnFmn : +χ

2∑

µ=−2

: Q†
µQµ : , (1)

TABLE I. Strengths (in MeV) of the isovector pairing (gT =1),
isoscalar paring (gT =0), spin-isospin (gph), and quadrupole (χ )
interactions in the separable collective Hamiltonian Hcoll [Eq. (1)].
The values are taken from Ref. [18] and scaled to nucleon number A =
42. For heavier isotopes the strengths are multiplied by (42/A)1/3.

gT =1 gT =0 gph χ

−0.377 −0.587 0.057 −0.141

where the colons indicate normal ordering. The monopole
Hamiltonian HM includes two-body terms and one-body
(single-particle) energies, both taken from KB3G. In addition

S†
n = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,0,1

0,0,n,

P †
m = 1√

2

∑

α

√
2lα + 1(a†

αa†
α)0,1,0

0,m,0,

(2)
Fmn = 2

∑

α

√
2lα + 1(a†

α ãα)0,1,1
0,m,n,

Qµ = 1√
5

∑

α,β

⟨nαlα||r2Y2/b
2||nβ lβ⟩(a†

α ãβ)2,0,0
µ,0,0,

where Fmn, written in first quantization, is just
∑

i σm(i)τn(i),
b is the usual oscillator parameter, a†

α creates a nucleon in
a single-particle orbital with principal quantum number nα

and orbital angular momentum lα , and ãa destroys a nucleon
in the time-reversed orbital [more precisely, ãlα ,mα ,sα ,τα

≡
(−1)lα+1−mα−sα−ταalα ,−mα ,sα ,−τα

, where mα is the z component
of the orbital angular momentum, sα is the z component of the
spin, and τα is the z component of the isospin]. The superscripts
following the parentheses stand for the two-particle orbital
angular momentum, spin, and isospin, and the subscripts for
their z components. The strengths of the various terms, gT =1,
gT =0, gph, and χ , are taken from Ref. [18] and appear in Table I
for mass A = 42 (they scale with A−1/3). Note that the pairing
and quadrupole-quadrupole terms are attractive, as expected.
Reference [20] uses a similar collective Hamiltonian, also
based on the decomposition in Ref. [18], but without the
spin-isospin term, to study the competition between isovector
and isoscalar pairing in pf -shell nuclei.

The significance of the various terms in Hcoll is as follows:
The monopole Hamiltonian HM adds effective neutron- and
proton-number-dependent effective single-particle energies
to the bare energies. The remaining terms are collective—
an isovector spin-0 pairing interaction, an isoscalar spin-1
pairing interaction, a quadrupole-quadrupole interaction, and
a Landau-Migdal-style spin-isospin interaction. Many studies
of nuclear collectivity (e.g., [21–23]) include only isovec-
tor pairing (usually without the proton-neutron part) and
quadrupole-quadrupole terms. And isoscalar pairing is fre-
quently downplayed. Among the models studying 0νββ decay
matrix elements, the EDF-based GCM and the IBM have not
yet included isoscalar pairing explicitly.

According to Ref. [18], the terms included in Hcoll are
the most important for pf -shell nuclei (we could also have
included, for example, an isovector quadrupole-quadrupole
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excluding both isoscalar pairing and spin-isospin terms is
larger than the sum of the matrix element increases resulting
from not including each term individually. Overall the impact
of the isoscalar pairing and spin-isospin terms are qualitatively
similar but quantitatively different in the neutrinoless and
two-neutrino ββ decay modes.

B. 0νββ decay of p f -shell nuclei in the GCM

The strength of the GCM, QRPA (based on EDF), and IBM
(based on bosons) is their treatment of collectivity. Although
these methods sacrifice some of the complex valence-space
correlations captured by the shell model, they can effectively
include larger single-particle spaces, which are frequently
required to capture collective correlations. Here we test the
ability of the GCM, with the same collective interaction
discussed in Sec. II, Hcoll, to reproduce shell-model MGT

0ν

matrix elements.
The GCM is an extension of mean-field theory that

supplements the lowest-energy quasiparticle vacuum with
other quasiparticle vacua that are constrained to have different
expectation values for the operators representing collective
coordinates. The method is used most commonly to allow
vacua with a range of values for the axial quadrupole
moment ⟨Q0⟩ to appear in low-lying collective states; in such
applications the quantum states are obtained by diagonalizing
the Hamiltonian in the space of nonorthogonal vacua with
different quadrupole moments, or equivalently, different values
of the deformation parameter β.

The generator coordinates, the collective degrees of free-
dom in the GCM, are chosen at the beginning of the
calculation, and it is crucial to include all collective degrees of
freedom that are important for the phenomena being studied.
Nonaxial quadrupole coordinates are ostensibly important but
because they affect ground states less than excited states (and
because they make angular-momentum projection quite time
consuming), we restrict ourselves to axially deformed shapes.
And we neglect like-particle pairing fluctuations because they
change MGT

0ν by 30% or less in the pf shell [12]. Isoscalar
pairing is another story, however. Beginning with the QRPA
work of Ref. [38], it has been apparent that dynamical isoscalar
pairing correlations have a significant effect on MGT

0ν (the static
correlations vanish). Reference [14] showed how to add their
effects by using ⟨P0 + P

†
0 ⟩ as a generator coordinate. This

isoscalar pairing amplitude breaks the particle number and
rotational symmetries but preserves axial symmetry, so we
project the HFB states onto states with good particle number
and angular momentum to restore the broken symmetries. The
other components of the isoscalar pairing amplitude (related to
P

†
±1) are included through the angular-momentum projection.

Isospin symmetry is broken and not restored in our calculation.
Figure 6 shows our GCM results for the 0νββ decay of Ti

and Cr isotopes with the interaction Hcoll. We compare them
to the shell-model values obtained from the diagonalization
of Hcoll. Both the “1d” version of the GCM, which treats
only the isoscalar pairing amplitude as a coordinate, and
the “2d” version, which adds a coordinate corresponding
to axial deformation, agree well with the full shell-model
results with Hcoll. (The two GCMs agree with each other

FIG. 6. Gamow-Teller part of 0νββ decay matrix elements, MGT
0ν ,

for the decay of Ti isotopes into Cr (top panel) and Cr isotopes into
Fe (bottom panel), as a function of the neutron number Nparent in
the parent nucleus. Results are shown for the shell model with the
collective Hamiltonian Hcoll (red, dashed line), the GCM with the
same Hcoll but without quadrupole-quadrupole interaction, and with
the isoscalar pairing amplitude as only coordinate (blue, short-dashed
line), and the GCM with the quadrupole-quadrupole interaction
and with the axial quadrupole deformation parameter β as second
coordinate (purple, dotted line).

because the addition of the quadrupole interaction, as we
have already seen, does not have a large effect on the matrix
elements.) Together with the demonstrated adequacy of Hcoll,
the agreement suggests that theories of collective motion,
which can be extended to several shells, can provide reliable
matrix elements in heavier nuclei, where a single valence shell
may not be sufficient.

In the isotopes with neutron numbers in the range N = 28 −
32 the GCM results deviate from those of the shell-model. For
these transitions either the parent or daughter nucleus contains
a closed shell at N = 28 or N = 32, and collectivity plays
a smaller role. In addition, at present our GCM calculation
excludes vacua without pairing to avoid numerical instability,
so that we omit the most important states in closed-shell
systems. The inclusion of individual particle-hole excitations
across shells in the GCM basis will improve the present results.

C. 0νββ decay in important nuclei near A = 80 and A = 130

The results presented so far illustrate the importance of
collective correlations for the 0νββ decay matrix elements of
nuclei in the lower part of the pf shell. Of all these isotopes,
however, only 48Ca actually has even a chance to be used in
a ββ experiment. All other relevant nuclei are too heavy for
shell-model calculations in complete oscillator shells, so that
an analysis like that in Sec. III A is not possible. Nevertheless,
we try to estimate the importance of isoscalar pairing for the
ββ decay of these isotopes.
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EXACT vs. VARIATIONAL!!
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TABLE I. Proton and neutron occupation numbers of nuclei 76Ge
and 76Se. Experiment from Refs. [1,2] vs theoretical results, obtained
for the gcn28.50 and rg interactions.

1p1/2 + 1p3/2 0f5/2 0g9/2

Neutrons
76Ge (exp) 4.87 ± 0.20 4.56 ± 0.40 6.48 ± 0.30
76Ge (gcn28.50) 5.19 5.02 5.79
76Ge (rg) 4.83 4.78 6.39
76Se (exp) 4.41 ± 0.20 3.83 ± 0.40 5.80 ± 0.30
76Se (gcn28.50) 4.86 4.54 4.60
76Se (rg) 4.08 4.06 5.86

Protons
76Ge (exp) 1.77 ± 0.15 2.04 ± 0.25 0.23 ± 0.25
76Ge (gcn28.50) 1.70 1.90 0.40
76Ge (rg) 1.34 2.00 0.66
76Se (exp) 2.08 ± 0.15 3.16 ± 0.25 0.84 ± 0.25
76Se (gcn28.50) 2.74 2.27 0.99
76Se (rg) 2.12 2.79 1.08

76Ge and 76Se, the difference between the ISM and QRPA
NME values diminishes. Notice however that expressing the
effects in percentages may be misleading. Indeed, in the
ISM case the NME increases by 0.45 while in the two
QRPA calculations the reductions amount to 1.25 and 0.64,
respectively.

The above analysis points out the relevance of occupation
numbers in order to obtain a reliable result for the NME of
the 0νββ decay. However, some caution needs to be taken
regarding this point. For instance, we have observed that,
performing calculations with truncations in the maximum
seniority allowed in the wave functions (sm), the occupancies
obtained are essentially independent of sm, while the NME
is strongly reduced when high order seniority components
are allowed in the wave functions. This can be observed
in Table III. Therefore, it is concluded that occupation

TABLE II. Values of the NME (M0νββ ) for the 76Ge → 76Se decay
for ISM and QRPA calculations. QRPA(JY)-WS and QRPA(TU)-WS
are the original QRPA calculations from Refs. [7] for Jyväskylä
and [8] for Tübingen. ADJ-WS are the calculations using a Woods-
Saxon potential adjusted to reproduce the experimental occupancies,
collected from Refs. [5] (JY) and [6] (TU). UCOM type SRC’s
are considered. All results compared with r0 = 1.2 fm and a
nonquenched axial coupling.

M0νββ GCN WS RG ADJ-WS

ISM 2.81 3.26
QRPA(JY) 5.36 4.11
QRPA(TU) 5.07–6.25 4.59–5.44

numbers by themselves do not fix the NME value, even
though they are presumably necessary to get a sensible
result.

In the same fashion, it is interesting to look at the variation
of the nuclear matrix element of the 2νββ transition. Since the
parameter gpp is fixed in QRPA calculations in order to repro-
duce the experimental 2νββ matrix element, in that case no
prediction is possible. On the contrary, within the ISM we can
make this comparison. The result is that this matrix element is
moderately enhanced as was the case of the 0νββ decay, chang-
ing from 0.32 MeV−1 obtained with the gcn28.50 interaction
up to 0.41 MeV−1 when rg is employed. They are to be com-
pared with the experimental number 0.14 ± 0.01 MeV−1 [9].
Beforehand, these theoretical values have to be quenched
in order to take into account the valence space trunca-
tion, which effectively quenches the Gamow-Teller strength.
This quenching factor must lie between 0.7 for 0h̄ω
spaces and 0.53 for the similar r4h valence space. Tak-
ing 0.6 we get 0.12 and 0.15 MeV−1, very close to the
experiment.

In our 0νββ results, however, we have not included any
quenching. The reason for that lies in the difference between
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FIG. 1. (Color online) Comparison between
experimental and theoretical occupation num-
bers for A = 76. Experimental values are from
Refs. [1,2]. The ISM results correspond to the
gcn28.50 (GCN) and rg (RG) interactions. The
QRPA standard numbers, TU(WS) and JY(WS)
give the occupancies at the BCS level. The
QRPA occupancies with adjusted single particle
energies are given at the BCS level in the case
of JY(ADJ) and at QRPA level for TU(ADJ).
JY and TU results from Refs. [5] and [6],
respectively. The experimental error bars are also
shown.
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Occupation numbers
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TABLE I. Proton and neutron occupation numbers of nuclei 76Ge
and 76Se. Experiment from Refs. [1,2] vs theoretical results, obtained
for the gcn28.50 and rg interactions.

1p1/2 + 1p3/2 0f5/2 0g9/2

Neutrons
76Ge (exp) 4.87 ± 0.20 4.56 ± 0.40 6.48 ± 0.30
76Ge (gcn28.50) 5.19 5.02 5.79
76Ge (rg) 4.83 4.78 6.39
76Se (exp) 4.41 ± 0.20 3.83 ± 0.40 5.80 ± 0.30
76Se (gcn28.50) 4.86 4.54 4.60
76Se (rg) 4.08 4.06 5.86

Protons
76Ge (exp) 1.77 ± 0.15 2.04 ± 0.25 0.23 ± 0.25
76Ge (gcn28.50) 1.70 1.90 0.40
76Ge (rg) 1.34 2.00 0.66
76Se (exp) 2.08 ± 0.15 3.16 ± 0.25 0.84 ± 0.25
76Se (gcn28.50) 2.74 2.27 0.99
76Se (rg) 2.12 2.79 1.08

76Ge and 76Se, the difference between the ISM and QRPA
NME values diminishes. Notice however that expressing the
effects in percentages may be misleading. Indeed, in the
ISM case the NME increases by 0.45 while in the two
QRPA calculations the reductions amount to 1.25 and 0.64,
respectively.

The above analysis points out the relevance of occupation
numbers in order to obtain a reliable result for the NME of
the 0νββ decay. However, some caution needs to be taken
regarding this point. For instance, we have observed that,
performing calculations with truncations in the maximum
seniority allowed in the wave functions (sm), the occupancies
obtained are essentially independent of sm, while the NME
is strongly reduced when high order seniority components
are allowed in the wave functions. This can be observed
in Table III. Therefore, it is concluded that occupation

TABLE II. Values of the NME (M0νββ ) for the 76Ge → 76Se decay
for ISM and QRPA calculations. QRPA(JY)-WS and QRPA(TU)-WS
are the original QRPA calculations from Refs. [7] for Jyväskylä
and [8] for Tübingen. ADJ-WS are the calculations using a Woods-
Saxon potential adjusted to reproduce the experimental occupancies,
collected from Refs. [5] (JY) and [6] (TU). UCOM type SRC’s
are considered. All results compared with r0 = 1.2 fm and a
nonquenched axial coupling.

M0νββ GCN WS RG ADJ-WS

ISM 2.81 3.26
QRPA(JY) 5.36 4.11
QRPA(TU) 5.07–6.25 4.59–5.44

numbers by themselves do not fix the NME value, even
though they are presumably necessary to get a sensible
result.

In the same fashion, it is interesting to look at the variation
of the nuclear matrix element of the 2νββ transition. Since the
parameter gpp is fixed in QRPA calculations in order to repro-
duce the experimental 2νββ matrix element, in that case no
prediction is possible. On the contrary, within the ISM we can
make this comparison. The result is that this matrix element is
moderately enhanced as was the case of the 0νββ decay, chang-
ing from 0.32 MeV−1 obtained with the gcn28.50 interaction
up to 0.41 MeV−1 when rg is employed. They are to be com-
pared with the experimental number 0.14 ± 0.01 MeV−1 [9].
Beforehand, these theoretical values have to be quenched
in order to take into account the valence space trunca-
tion, which effectively quenches the Gamow-Teller strength.
This quenching factor must lie between 0.7 for 0h̄ω
spaces and 0.53 for the similar r4h valence space. Tak-
ing 0.6 we get 0.12 and 0.15 MeV−1, very close to the
experiment.

In our 0νββ results, however, we have not included any
quenching. The reason for that lies in the difference between
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FIG. 1. (Color online) Comparison between
experimental and theoretical occupation num-
bers for A = 76. Experimental values are from
Refs. [1,2]. The ISM results correspond to the
gcn28.50 (GCN) and rg (RG) interactions. The
QRPA standard numbers, TU(WS) and JY(WS)
give the occupancies at the BCS level. The
QRPA occupancies with adjusted single particle
energies are given at the BCS level in the case
of JY(ADJ) and at QRPA level for TU(ADJ).
JY and TU results from Refs. [5] and [6],
respectively. The experimental error bars are also
shown.
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Exp: J. Schiffer et al., Phys Rev. Lett. 100, 112501 (2008)

Fitting the underlying (WS) mean field to 
reproduce the “experimental” occupation 
numbers reduces the pnQRPA NMEs.
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Occupation numbers
Role of triaxiality in 76Ge and 76Se nuclei studied with Gogny energy density functionals14

orbit 76Ge ax 76Ge triax 76Ge exp 76Se ax 76Se triax 76Se exp

⌫0f
7/2 7.81 7.72 — 7.72 7.47 —

⌫1p 5.38 4.88 4.87±0.20 4.74 4.30 4.41±0.20

⌫0f
5/2 5.16 4.95 4.56±0.40 4.96 4.24 3.83±0.40

⌫0g
9/2 4.65 4.84 6.48±0.30 3.92 4.10 5.80±0.30

⌫1d
5/2 0.54 0.83 — 0.26 0.86 —

⌫0g
7/2 0.16 0.24 — 0.19 0.31 —

⌫1d
3/2 0.04 0.07 — 0.04 0.10 —

⌫2s
1/2 0.03 0.09 — 0.02 0.12 —

⇡0f
7/2 7.46 7.19 — 7.41 6.94 —

⇡1p 2.11 2.17 1.77±0.15 3.29 2.69 2.08±0.15

⇡0f
5/2 2.16 2.30 2.04±0.25 2.98 2.63 3.16±0.25

⇡0g
9/2 0.17 0.19 0.23±0.25 0.21 1.16 0.84±0.25

⇡1d
5/2 0.03 0.05 — 0.04 0.25 —

⇡0g
7/2 0.06 0.09 — 0.08 0.15 —

⇡1d
3/2 0.02 0.03 — 0.02 0.05 —

⇡2s
1/2 0.01 0.01 — 0.01 0.03 —

Table 3. Occupation numbers of spherical orbits for the ground state of 76Ge and 76Se
computed with axial and triaxial approximations. Experimental values are extracted
from Refs. [53, 54].

The comparison with the experimental data is rather good when triaxial deformations

are included in the calculation. Hence, the triaxial calculations are able to reproduce

qualitatively the appearance of �-bands in 76Ge and 76Se, the more �-rigid character

of 76Ge and the more transitional character of 76Se and the correct spectroscopic

quadrupole moments of the 2+
1

states in both nuclei. However, the transition

probabilities are systematically larger than the experimental ones, probably because of

the overestimation of the deformation with the Gogny D1S interaction when the angular

momentum projection is taken into account. A more quantitative agreement both in

the energies and in the transition probabilities is expected if other degrees of freedom

are included in the present SCCM framework, especially cranking terms [64, 69]. Some

work is progress in this direction.

The role of the pf and gds spherical single-particle orbits has been also analyzed by

computing the occupation numbers with the ground state wave functions. This study

has shown that the filling in of the quadrupole partner and the spin-orbit partner of the

g
9/2 orbit, i.e., the d5/2 and g

7/2 orbits, and the removal of protons in the f
7/2 orbit, are

small but not completely negligible. Therefore, LSSM calculations including some -or

all- of these orbits in the active valence space would be of interest for the computation

of 0⌫�� NMEs.

T. R. R., J. Phys. G 44, 034002 (2017)
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Summary

๏ Experimental data are already able to constrain very long lower 
limit half-lives (we cross fingers for a positive signal soon!). 

๏ 0νββ preferred mechanism is the exchange of a light Majorana 
neutrino but some other mechanisms are being considered too. 

๏ NMEs differ a factor of three between the different methods but 
we need to understand which are the pros/cons of each method 
to provide reliable numbers (precision vs. accuracy). 

๏ Nuclear physics aspects like deformation, pairing, shell effects, 
etc., are understood similarly within different approaches.  

๏ Systematic comparisons between ISM/EDF methods have been 
performed but… we need more!!
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Open questions

๏ Isospin mixing and restoration have to be done in the future. Why 
is it so difficult (perhaps impossible) with the current Gogny 
EDFs? 

๏ Triaxiality has to be taken into account in A=76 and A=100 decays 
(at least). 

๏ How relevant is the proper description of the spectra in 0νββ 
NMEs? 

๏ Occupation numbers with EDF to define physically sound 
valence spaces. 

๏ Odd-odd nuclei is still a major challenge for GCM calculations. 

๏ Computational time?!?
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Proton-neutron pairing with 
Gogny EDF

In all of the Gogny codes, a factorization of the HFB-like wave function is assumed:

|�i = |�ip ⇥ |�in

Therefore, the HFB transformation is block-diagonal in isospin:

�†
a =

X

b

Ubac
†
b + Vbacb ! U =

✓
Upp 0
0 Unn

◆
V =

✓
Vpp 0
0 Vnn

◆

and, consequently, the density matrix and pairing tensor are also block-diagonal in isospin:

⇢ =

✓
⇢pp 0
0 ⇢nn

◆
 =

✓
pp 0
0 nn

◆
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Given a two-body Hamiltonian:

The HFB energy is given by:

Ĥ =
X

ab

tabc
†
acb +

1

4

X

abcd

v̄abcdc
†
ac

†
bcdcc

EHFB = Tr (t⇢) +
1

2
Tr (�⇢)� 1

2
Tr (�⇤)

HF field�ac =
X

bd

v̄abcd⇢db !

�ab =
1

2

X

cd

v̄abcdcd ! Pairing field

Which parts of the interaction are 
explored by these fields?

v̄abcd !

2

4
v̄apbpcpdp

v̄anbncndn

v̄apbncpdn

Proton-neutron pairing with 
Gogny EDF
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Proton-neutron pairing with 
Gogny EDF

Hartree-Fock field

�ac !

2

666666664

�apcp =
P

bd v̄apbpcpdp⇢dpbp + v̄apbncpdn⇢dnbn

�ancn =
P

bd v̄anbpcndp⇢dpbp + v̄anbncndn⇢dnbn

�ancp =
P

bd v̄anbpcpdn⇢dnbp

�apcn =
P

bd v̄apbncndp⇢dpbn

Pairing field

�ab !

2

666666664

�apbp = 1
2

P
cd v̄apbpcpdpcpdp

�anbn = 1
2

P
cd v̄anbncndncndn

�anbp = 1
2

P
cd v̄anbpcndpcndp + v̄anbpcpdncpdn

�apbn = 1
2

P
cd v̄apbncndpcndp + v̄apbncpdncpdn
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Proton-neutron pairing with 
Gogny EDF
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pp/nn only are 
taken into account
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We have to go beyond 

to include pn pairing.

|�i = |�in ⇥ |�in
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Proton-neutron pairing with 
Gogny EDF

On top of this, Gogny parametrizations are chosen to cancel out the pairing part coming 
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hab|V̂ DD|cdi = t3I
DD
abcd (SacSbd + x0SadSbc) �⌧

a

⌧
c

�⌧
b

⌧
d

hab|V̂ DD|dci = t3I
DD
abcd (SadSbc + x0SacSbd) �⌧

a

⌧
d

�⌧
b

⌧
c

(2)

con lo que se tiene para el elemento de matriz antisimetrizado:

v̄DD
abcd = t3I

DD
abcd [SacSbd (�⌧

a

⌧
c

�⌧
b

⌧
d

� x0�⌧
a

⌧
d

�⌧
b

⌧
c

) +
SadSbc (x0�⌧

a

⌧
c

�⌧
b

⌧
d

� �⌧
a

⌧
d

�⌧
b

⌧
c

)] (3)

donde hemos definido las siguientes cantidades:

IDD
abcd =

Z
�a(~r)�b(~r)⇢↵

H(~r)�c(~r)�d(~r)d3~r (4)

que es la parte espacial, con �a(~r) siendo las funciones de onda de oscilador
tridimensional en la base cartesiana. Además Sab corresponde a la parte de
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→ To compute the HF field:
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pondiente al témino de dependiente de la densidad (DD) de la interacción
de Gogny. El potencial correspondiente se expresa como:

V̂ DD(~r1,~r2) = t3(1 + x0P�)�(~r1 � ~r2)⇢↵
H

✓
~r1 + ~r2

2

◆
(1)

Los elementos de matriz asociados a este término se pueden escribir como:
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→ density-dependent term

→ two-body matrix elements

→ To compute the HF field:

→ To compute the pairing field:
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→ density-dependent term

→ two-body matrix elements

→ To compute the HF field:

→ To compute the pairing field:

→ in all parametrizations
x0 = 1
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Si se escoge la parametrización habitual x0 = 1 se tiene necesariamente que
⌧ 6= ⌧ 0 ya que de otro modo el elemento de matriz anterior se anula.

Si Pairing) ⌧a = ⌧b ⌘ ⌧ ; ⌧c = ⌧d ⌘ ⌧ 0

v̄DD
abcd = t3I

DD
abcd [SacSbd (1� x0) + SadSbc (x0 � 1)] �⌧⌧ 0 (6)

Si se escoge la parametrización habitual x0 = 1 se tiene necesariamente que
no hay contribución de este término a la enerǵıa de apareamiento.

2 Densidad espacial

En esta sección vamos a calcular la densidad espacial que aparece en
el término del potencial. Para ello utilizamos la prescripción mixta en el
momento angular y la proyectada para el número de part́ıculas, es decir:
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(7)

El operador densidad se puede expresar en la base de part́ıcula independiente
como:
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con la matriz (%)ab en la base triaxial:
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→ density-dependent term

→ two-body matrix elements

→ To compute the HF field:

→ To compute the pairing field:

→ in all parametrizations

→ it does not hold in the general case!!

x0 = 1


