Many-body correlations: the relative nature of their definition and the non-observable character of their value

五Vittorio Somà
CEA Saclay

ESNT workshop
27 February 2017

Outline

© Part I: Relative nature of many-body correlations

- Introduction: quasiparticles, correlations \& many-body methods
- Examples in nuclei and nuclear matter
- Nuclear Hamiltonians \& similarity renormalisation group techniques
- Correlations and resolution scale
© Part II: Non-observable character of the nuclear shell structure
\bigcirc Single-nucleon shells \leftrightarrow correlated nucleon dynamics
- Definition \& properties of effective single-particle energies
- Scale dependence \& non-observability of effective single-particle energies
- Fermi gaps \& spectroscopic factors
\odot Conclusions

Part I

Relative nature of many-body correlations

Physical systems as a many-body problem

\bigcirc Quantum/mesoscopic system as many-body problem
\odot Choice of degrees of freedom

Physical system in terms of correlations between d.o.f.
\odot Many-body Schrödinger equation

- Exact solution for $A=2,3,4$
- Approximated solution for $A \gtrsim 5$

Accuracy / difficulty depend on correlations
\odot At a given A, how to minimise correlations?
\odot When increasing A, how to monitor the accuracy?

Quasiparticles

\odot Difficulty as the number of particles increases \rightarrow how to picture/model many-body correlations?
\odot Easy to deal with independent particles \rightarrow reformulate in terms of $A \times$ one-body problems
\odot Can we change the (nature of the) chosen degrees of freedom \& eliminate many-body correlations?
๑ Concept of (Landau) quasiparticles

Entities with modified (in-medium, renormalised, ...) properties w.r.t. the bare d.o.f.

Many-body problem of interacting particles \rightarrow one-body problem of (independent) quasiparticles

Interacting quasiparticles

○ In some cases, quasiparticles can be constructed explicitly
© In most cases, quasiparticles-like excitations emerge from the many-body dynamics

- Spectral function $A(k, \omega)$ embodies quasiparticle features \& many-body correlations
- For free particles $A(k, \omega)=\delta\left(\omega-k^{2} / 2 m\right)$

Infinitely-lived (=independent) quasiparticle

Decaying (=interacting) quasiparticle
\bigcirc Quasiparticles with finite lifetime \rightarrow departure from independent (quasi)particle picture
© Many-body correlations as residual interactions between quasiparticles

Particle-hole expansions

\odot Independent-particles as $0^{\text {th }}$-order tenet of numerous many-body methods

- Perturbation theory
- Density functional theory
- Nuclear shell model
\odot Hartree-Fock method as an optimised independent-particle description
- (Many-body) correlations: everything beyond Hartree-Fock

๑ Beyond-Hartree-Fock methods as expansions in particle-hole excitations

- Simplest: MBPT
- Exact (= whole expansion): Configuration interaction / No-core shell model
- Freedom to choose the interaction such that HF is the closest to the exact solution?

Different schemes for different correlations

© Methods based on particle-hole expansions face severe scaling

\odot Why don't include some correlation in the interaction itself? \rightarrow effective interactions

- One aims at limiting the complications of ph expansions
- Interaction traditionally phenomenological, possible to derive one ab initio?
\odot Why don't limit ourselves to part of the Hilbert space \rightarrow valence space methods
- One aims at the exact solution in the limited Hilbert space
- Interaction traditionally phenomenological, recently also ab initio

Correlations via symmetry breaking \& restoration

\odot Correlations can be grasped by exploiting (breaking \& restoration of) symmetries

- For near-degenerate systems essential to expand around a symmetry-breaking reference - In nuclear physics: $\mathrm{U}(1) \leftrightarrow$ pairing correlations; $\mathrm{SU}(2) \leftrightarrow$ quadrupole correlations
- Can the two types be related?
- Correlations included via symmetry breaking might be very hard to get via ph expansion
- And viceversa
\odot Can the two types be combined?
- Gorkov Green's functions [Somà, Duguet, Barbieri 2011]
- Multi-reference IM-SRG [Hergert et al. 2013]
- Symmetry broken \& restored MBPT and CC [Duguet 2015, Duguet, Signoracci 2016]
- Many-body driven EDF [Duguet et al. 2015]
- Symmetry breaking \& restoration + truncated CI [Ripoche et al. 2017]

Nuclear Hamiltonians

○ Early Hamiltonians (60's \& 70's)

- Soft core
- Could not reproduce nuclear saturation
© Phenomenological Hamiltonians (80 's \& 90's)
- Hard core

○ Three-body forces?

○ Chiral EFT interactions (from 00's)

- Softer core
- Three-body forces consistent
- SRG techniques
- Unitary transformation of the Hamiltonian
- Trade hard core for higher-body forces

Coester band

- Universality at low energy scales

Long- vs short-range correlations

\bigcirc Hard core induces strong short-range correlations

- Sophisticated many-body methods needed
- Strong correlations fragmentation of s.p. strength \circ pp/ph excitation \leftrightarrow short-/long-range physics

Long-range

Fragmentation of single-particle strength in nuclei

Dyson $1^{\text {st }}$ order (HF)

Dyson $2^{\text {nd }}$ order

Gorkov $1^{\text {st }}$ order (HFB)

Fragmentation

Static pairing
\longrightarrow

Gorkov 2 ${ }^{\text {nd }}$ order
Dynamical fluctuations

Fragmentation of single-particle strength in infinite matter

- Spectral function depicts correlations

- Broad peak signals depart from
- Well-defined (long-lived) quasiparticles at the Fermi surface
- Long mean free path for $\mathrm{E}<\mathrm{E}_{\mathrm{F}}$

Renormalisation-group techniques for nuclear forces

- SRC generated by couplings between low and high momenta
\circ Large model spaces needed to converge \rightarrow applicability limited to light nuclei
\odot Are high momenta, i.e. high resolution, necessary to compute low-energy observables?

- Interested in long-wavelength information
- Small-distance details irrelevant
\circ Change the resolution \rightarrow "integrate out" unnecessary information

Low-momentum evolutions

© (Unitary) transformation to change the resolution scale of the Hamiltonian
© Two main types of transformation

Example: deuteron binding energy

\odot Performing RG changes weights of different parts of the Hamiltonian

- Observable binding energy remains unchanged
\odot High momenta not needed for softened interactions
๑ Simply cutting off high momenta doesn't work

$$
E_{d}\left(k<k_{\max }\right)=\int_{0}^{k_{\max }} d \mathbf{k} \int_{0}^{k_{\max }} d \mathbf{k}^{\prime} \psi_{d}^{\dagger}(\mathbf{k} ; \lambda)\left(k^{2} \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)+V_{s}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\right) \psi_{d}\left(\mathbf{k}^{\prime} ; \lambda\right)
$$

Short-range correlations \& momentum distribution

© Short-range correlations change drastically with resolution scale

\odot How to explain the momentum distribution "extracted" from experiment?

- Separation between structure and reaction is scale-dependent
- Operators \& currents have to evolved consistently with the Hamiltonian
- E.g. what is a one-body current at one scale, gets shifted in two-body currents at another

Benefits in many-body systems

\odot Improved convergence of many-body calculations

- Smaller model spaces \& less refined many-body truncations needed

\odot Drawback: additional many-body forces generated through unitary transformation

[Hergert et al. 2016]

From free space to in medium

\odot Why don't evolve to the point where correlations have disappeared?

However, if done step by step keeping normal-ordered parts at each step..

In-medium Similarity Renormalisation Group
© Unpractical to evolve in medium every operator we are interested in
\odot Combine with another many-body method (e.g. NCSM) to access wide range of observables

Part II
 Non-observable character of the nuclear shell structure
 T. Duguet, H. Hergert, J.D. Holt, V. Somà, Phys. Rev C 92034313 (2015)

Single-nucleon shell structure

\bigcirc Correlated many-body system \leftrightarrow description in terms of independent particles

- Can a one-to-one correspondence be established?

\bigcirc Concept of single-nucleon shells
- Basic pillar of the shell model
- Provides interpretation of nuclear (low-energy) observables
- Leads to considering a single-particle spectrum (magicity, shell evolution, ...)

Single-nucleon shell structure

© Quantum mechanical nuclear many-body problem

- Many-body Schrödinger equation \rightarrow one-nucleon addition/removal energies

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle \quad \quad E_{k}^{ \pm} \equiv \pm\left(E_{k}^{\mathrm{A} \pm 1}-E_{0}^{\mathrm{A}}\right)
$$

To what extent the single-particle energy spectrum relates to low-energy observables?

\bigcirc In the following:

- Reminder of Green's function theory
\circ Is there a proper/unique definition of single-particle energy? \rightarrow Baranger ESPEs
- Scale dependence of the above partitioning, i.e. of ESPEs
- Illustration of the scale dependence form ab initio calculations

Self-consistent Green's function approach

\odot Solution of the \boldsymbol{A}-body Schrödinger equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$ achieved by

1) Rewriting it in terms of 1-, 2-, \ldots. A-body objects $G_{1}=G, G_{2}, \ldots G_{\mathrm{A}}$ (Green's functions)
2) Expanding these objects in perturbation (in practise only $\mathbf{G} \rightarrow$ one-body observables)
\rightarrow Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions

\odot Here we employ the Algebraic Diagrammatic Construction (ADC) method

- Systematic, improvable scheme for the one-body Green's functions, truncated at order n
$\circ \operatorname{ADC}(1)=$ Hartree-Fock(-Bogolyubov); $\operatorname{ADC}(\infty)=$ exact solution
\circ At present $\operatorname{ADC}(\mathbf{1}), \operatorname{ADC}(2)$ and $\operatorname{ADC}(3)$ are implemented and used
\odot Extension to open-shell nuclei: (symmetry-breaking) Gorkov scheme
- Developed at Saclay \& Surrey 2010-today

Spectral representation

© Numerator contains spectroscopic information

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{A}\right| a_{a}\left|\Psi_{\mu}^{A+1}\right\rangle\left\langle\Psi_{\mu}^{A+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{A}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{A-1}\right\rangle\left\langle\Psi_{\nu}^{A-1}\right| a_{a}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

spectroscopic amplitudes
$U_{\mu}^{b} \equiv\left\langle\Psi_{0}^{A}\right| a_{b}\left|\Psi_{\mu}^{A+1}\right\rangle$
$V_{\nu}^{b} \equiv\left\langle\Psi_{0}^{A}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{A-1}\right\rangle$

$$
\begin{gathered}
\text { spectral function } \\
\mathbf{S}(z) \equiv \sum_{\mu \in \mathcal{H}_{A+1}} \mathbf{S}_{\mu}^{+} \delta\left(z-E_{\mu}^{+}\right)+\sum_{\nu \in \mathcal{H}_{A-1}} \mathbf{S}_{\nu}^{-} \delta\left(z-E_{\nu}^{-}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { spectroscopic probabilities matrices } \\
& \qquad \begin{array}{c}
S_{\mu}^{+a b} \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| a_{a}\left|\Psi_{\mu}^{\mathrm{A}+1}\right\rangle\left\langle\Psi_{\mu}^{\mathrm{A}+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
S_{\nu}^{-a b} \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| a_{a}^{\dagger}\left|\Psi_{\nu}^{\mathrm{A}-1}\right\rangle\left\langle\Psi_{\nu}^{\mathrm{A}-1}\right| a_{b}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{array}
\end{aligned}
$$

spectroscopic factors

$$
\begin{aligned}
S F_{\mu}^{+} & \equiv \operatorname{Tr}_{\mathcal{H}_{1}}\left[\mathbf{S}_{\mu}^{+}\right]=\sum_{a \in \mathcal{H}_{1}}\left|U_{\mu}^{a}\right|^{2} \\
S F_{\nu}^{-} & \equiv \operatorname{Tr}_{\mathcal{H}_{1}}\left[\mathbf{S}_{\nu}^{-}\right]=\sum_{a \in \mathcal{H}_{1}}\left|V_{\nu}^{a}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { spectral strength distribution } \\
\mathcal{S}(z) \equiv & \operatorname{Tr}_{\mathcal{H}_{[}}[\mathbf{S}(z)] \\
= & \sum_{\mu \in \mathcal{H}_{A+1}} S F_{\mu}^{+} \delta\left(z-E_{\mu}^{+}\right)+\sum_{\nu \in \mathcal{H}_{A-1}} S F_{\nu}^{-} \delta\left(z-E_{\nu}^{-}\right)
\end{aligned}
$$

Spectral representation

\odot Combine numerator and denominator of Lehmann representation

$$
G_{a b}(z)=\sum_{\mu} \frac{U_{a}^{\mu}\left(U_{b}^{\mu}\right)^{*}}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left(V_{a}^{\nu}\right)^{*} V_{b}^{\nu}}{z-E_{\nu}^{-}-i \eta}
$$

denominator

$$
\begin{aligned}
& E_{\mu}^{+} \equiv E_{\mu}^{N+1}-E_{0}^{N} \\
& E_{\nu}^{-} \equiv E_{0}^{N}-E_{\nu}^{N-1}
\end{aligned}
$$

+ numerator
spectral strength distribution
$\mathcal{S}(z)=\sum_{\mu \in \mathcal{H}_{A+1}} S F_{\mu}^{+} \delta\left(z-E_{\mu}^{+}\right)+\sum_{\nu \in \mathcal{H}_{A-1}} S F_{\nu}^{-} \delta\left(z-E_{\nu}^{-}\right)$

[figures from J. Sadoudi]

-

$$
=
$$

spectroscopic factors

Spectral strength distribution

Dyson $1^{\text {st }}$ order (HF)

Dyson $2^{\text {nd }}$ order

Gorkov $1^{\text {st }}$ order (HFB)

Gorkov $2^{\text {nd }}$ order

Spectral strength in experiments

- Spectroscopy via knock-out reactions

Target (N-body)

By measuring $\mathrm{e}_{\text {in }}, \mathrm{e}_{\text {out }}$ and $p_{\text {out }}$ get information on $p_{\text {in }}$

Results from (e, ép) on ${ }^{16} O$ (ALS in Saclay)

[Mougey et al. 1980]

SCGF calculations

[Cipollone et al. 2015]

Effective Single-Particle Energies (ESPEs)

Spectroscopic probability matrices

$$
\begin{aligned}
S_{\mu}^{+p q} & \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| a_{p}\left|\Psi_{\mu}^{\mathrm{A}+1}\right\rangle\left\langle\Psi_{\mu}^{\mathrm{A}+1}\right| a_{q}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
S_{v}^{-p q} & \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| a_{q}^{\dagger}\left|\Psi_{v}^{\mathrm{A}-1}\right\rangle\left\langle\Psi_{v}^{\mathrm{A}-1}\right| a_{p}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

[Baranger 1970]

$$
\begin{gathered}
\text { Centroid one-body Hamiltonian } \\
\mathbf{h}^{\text {cent }} \equiv \sum_{\mu} \mathbf{S}_{\mu}^{+} E_{\mu}^{+}+\sum_{\nu} \mathbf{S}_{v}^{-} E_{\nu}^{-}=\mathbf{T}+\Sigma(\infty)
\end{gathered}
$$

Effective single-particle energies

$$
\mathbf{h}^{\mathrm{cent}} \psi_{p}^{\mathrm{cent}}=e_{p}^{\mathrm{cent}} \psi_{p}^{\mathrm{cent}}
$$

$$
\downarrow
$$

$$
e_{p}^{\mathrm{cent}} \equiv \sum_{\mu \in \mathcal{H}_{A+1}} S_{\mu}^{+p p} E_{\mu}^{+}+\sum_{\nu \in \mathcal{H}_{A-1}} S_{\nu}^{-p p} E_{\nu}^{-}
$$

Spectroscopic factors

$$
\begin{aligned}
S F_{\mu}^{+} & \equiv \operatorname{Tr}\left[\mathbf{S}_{\mu}^{+}\right] \\
S F_{v}^{-} & \equiv \operatorname{Tr}\left[\mathbf{S}_{v}^{-}\right]
\end{aligned}
$$

Self-energy

Energy-independent part of the self-energy

Baranger ESPEs

- Defined solely from Schrödinger eq.
- Computable in any many-body scheme
- Relate to the average dynamics of nucleons
- Reduce to HF SPEs in HF approximation

Inverting ESPEs

\odot Baranger ESPEs in the basis associated to $h^{\text {cent }}$

$$
\begin{gathered}
e_{p}^{\text {cent }} \equiv \sum_{\mu \in \mathcal{H}_{A+1}} S_{\mu}^{+p p} E_{\mu}^{+}+\sum_{\nu \in \mathcal{H}_{A-1}} S_{\nu}^{-p p} E_{\nu}^{-} \\
\text {invert } \downarrow \quad \text { (same for } E_{\nu}^{-} \text {) } \\
E_{\mu}^{+}=\sum_{p} s_{\mu}^{+p p} e_{p}^{\text {cent }}+\sum_{p q} s_{\mu}^{+p q} \sum_{q p}^{\mathrm{dyn}}\left(E_{\mu}^{+}\right)
\end{gathered}
$$

with $\quad \mathbf{s}_{\mu}^{+} \equiv \mathbf{S}_{\mu}^{+} / S F_{\mu}^{+} \quad \& \quad \boldsymbol{\Sigma}^{\mathrm{dyn}}(\omega) \equiv \boldsymbol{\Sigma}(\omega)-\boldsymbol{\Sigma}(\infty)$

\odot Rigorous partitioning into independent-particle + correlation contributions

- Exact result, no approximations so far
- A given one-nucleon addition energy does not relate to a single ESPE
- Connection between the two spectra is of matrix character

Partitioning \& scale dependence

© Nuclear Hamiltonian carries an intrinsic scale resolution $\Lambda_{\text {init }}$
© One can further apply a unitary transformation $U(\lambda)$ over Fock space

$$
\begin{aligned}
H(\lambda) & \equiv U(\lambda) H U^{\dagger}(\lambda) \\
\left|\Psi_{\mu}^{A}(\lambda)\right\rangle & \equiv U(\lambda)\left|\Psi_{\mu}^{A}\right\rangle
\end{aligned} \quad H(\lambda)\left|\Psi_{\mu}^{A}(\lambda)\right\rangle=E_{k}^{A}\left|\Psi_{\mu}^{A}(\lambda)\right\rangle
$$

© Any other operator transforms accordingly

$$
O(\lambda) \equiv U(\lambda) O U^{\dagger}(\lambda) \equiv O^{1 N}(\lambda)+O^{2 N}(\lambda)+O^{3 N}(\lambda)+\cdots
$$

\bigcirc Spectroscopic amplitudes defined at any value of λ

$$
\begin{aligned}
U_{\mu}^{p}(\lambda) & \equiv\left\langle\Psi_{0}^{A}(\lambda)\right| a_{p}\left|\Psi_{\mu}^{A+1}(\lambda)\right\rangle \\
V_{v}^{p}(\lambda) & \equiv\left\langle\Psi_{0}^{A}(\lambda)\right| a_{p}^{\dagger}\left|\Psi_{v}^{A-1}(\lambda)\right\rangle
\end{aligned}
$$

© Generator of the transformation

$$
\eta(\lambda) \equiv \frac{d U(\lambda)}{d \lambda} U^{\dagger}(\lambda)
$$

Partitioning \& scale dependence

© Spectroscopic probabilities / factors are scale-dependent

$$
\begin{aligned}
\frac{d}{d \lambda} V_{v}^{p}(\lambda) & =-\left\langle\Psi_{v}^{A-1}(\lambda)\right|\left[\eta(\lambda), a_{p}\right]\left|\Psi_{0}^{A}(\lambda)\right\rangle^{*} \\
\frac{d}{d \lambda} U_{\mu}^{p}(\lambda) & =-\left\langle\Psi_{\mu}^{A+1}(\lambda)\right|\left[\eta(\lambda), a_{p}^{\dagger}\right]\left|\Psi_{0}^{A}(\lambda)\right\rangle^{*}
\end{aligned}
$$

© ESPEs acquire scale dependence via spectroscopic probabilities

$$
e_{p}^{\mathrm{cent}} \equiv \sum_{\mu \in \mathcal{H}_{A+1}} S_{\mu}^{+p p} E_{\mu}^{+}+\sum_{\nu \in \mathcal{H}_{A-1}} S_{\nu}^{-p p} E_{\nu}^{-}
$$

- A convenient choice of λ maximises the ESPE component
- However, correlations with observables are not absolute
- Scale must be fixed / specified prior to theoretical/experimental comparisons

SRG transformation \& ab initio calculations

\odot SRG transformations $\mathrm{U}(\lambda)$ applied to the starting Hamiltonian $\mathrm{H}\left(\Lambda_{\text {init }}\right)$ \circ Limited range of variation: $\boldsymbol{\lambda} \in\{\mathbf{1 . 8 8}, \mathbf{2 . 0}, 2.24\} \mathrm{fm}^{-1}$

๑ Two different ab initio methods

- Gorkov-Green's functions [Somà, Barbieri, Duguet 2011, ...]
- In-medium SRG [Tsukiyama, Bogner, Schwenk 2010, Hergert et al. 2013, ...]

[Hergert et al. 2013]
[Cipollone et al. 2013]
[Jansen et al. 2014]
[Lähde et al. 2014]

Breaking of unitarity

\odot Unitarity artificially broken

- Omission of A-body operators with $A>3$
- Many-body truncations
- Breaking can be estimated
- Omitting 3-body operators
- Degrading the many-body truncation
\bigcirc Breaking for total energy
- Around 1 MeV for GGF
- Around 100 keV for IM-SRG

Scale (in)dependence of separation energies \& ESPEs

Scale (in)dependence of separation energies \& ESPEs

Scale (in)dependence of separation energies \& ESPEs

Residuals

- Spread of sep. en. reduced significantly
- Spread of ESPEs unchanged
- ESPEs less sensitive to correlations

Shell gaps

- Gaps across the Fermi energy (equal in the HF limit)
\circ (Observable) two-neutron shell gap $\quad \delta_{2 n}(N, Z) \equiv \frac{1}{2}[E(N+2, Z)-2 E(N, Z)+E(N-2, Z)]$
\circ (Non-observable) ESPE Fermi gap $\quad \Delta e_{\mathrm{F}}^{\text {cent }}(N, Z) \equiv e_{p}^{\text {cent }}(N, Z)-e_{h}^{\text {cent }}(N, Z)$

- HFB level: ESPE \& 2N gaps similar, the former well captures the latter
- Correlated calculation: scale dependence of ESPE gaps is systematically large

Spectroscopic factors

© Compilation of SF for one-neutron addition/removal on ${ }^{14-24} \mathrm{O}$
\circ Limited running with $\lambda \in\{1.88,2.0,2.24\} \mathrm{fm}^{-1}$!

HFB

- Independent (quasi-)particle picture
- SFs ~ 1
- Spread is horizontal

Correlated

- Horizontal spread minimised
- Spectroscopic strength now fragmented
- Some scale dependence of SFs appears

SRG \& correlations in infinite matter

\odot Larger range of scales can be explored in infinite nuclear matter

- Momentum tails in spectral function depend on the interaction
- Variance depicts amount of correlations

$$
\begin{aligned}
\sigma_{k}^{2} & =\int_{-\infty}^{+\infty} \frac{d \omega}{2 \pi}\left[\omega-m_{k}^{(1)}\right]^{2} \mathcal{A}_{k}(\omega)=m_{k}^{(2)}-\left(m_{k}^{(1)}\right)^{2} \\
& =-\int_{-\infty}^{+\infty} \frac{d \omega}{\pi} \operatorname{Im} \Sigma_{k}(\omega)
\end{aligned}
$$

[Rios, Carbone, Polls 2017]

Summary

\odot Part I

- Correlations are scheme and scale dependent
- What balance between different ways of accounting for correlations?
- Similarity renormalisation group as a knob for (short-range) correlations
\odot Part II
- Non-observability of shell structure formally revisited
- Ab initio calculations corroborate formal analysis
- Correlations between observables \& shell structure depend on the resolution scale
- Scale/scheme dependence should be explicit \& consistent
\odot Perspectives
- Quantification of scale dependence interesting from a pragmatic point of view
- Focus should be on consistency to combine structure \& reactions

