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GENERAL OVERVIEW
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1) Prerequisite : Existence of a mean-field as rich as possibl e (HF for example)

• From phenomenological effective interaction (Gogny)

• From effective interaction derived from bare interactions (MPMH)

Strongly repulsive core has been avoided/treated

2)   MPMH configuration mixing :  nuclear long range corre lations

• Mean-field and beyond

• Ab initio

Multifaceted approach

Strongly interacting system Emergence of a mean-field
(hard core absorbed)

Two step method:



GENERAL OVERVIEW
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Symmetries and Conservations

• Many-body wave function
• N+Z nucleons
• J conserved
• π conserved
• Fully antisymmetrized (Pauli)

Mixing coefficients
(α : proton&neutron

dependencies)

Slater determinants
α : MPMH configurations
N+Z nucleons
m-scheme: Jz, Tz
π conserved

Additional properties

• Even-even, odd and odd-odd nuclei
• All types of nuclear long range correlations, deformations

Applications 

• Structure : Excitation energies, transition probabilities, masses, radii, …
• Reactions : Inelastic nucleon and electron scattering, resonances
• Tool to test effective interactions and generate effective interactions from bare/chiral forces



GENERAL OVERVIEW

Hamiltonian (extension to three-body straightforward)

Many-body wave function

• Full Hilbert space
• Truncated Hilbert space

Variational principal on the total energy

6

Mixing coefficients determined

What about orbitals?



GENERAL OVERVIEW

Link with Green’s functions : Exact solution

• One and two-body Green’s functions

• Equation of motion of the one-body propagator

• Equal time limit �� → ��

7

Getting of the orbital equation



GENERAL OVERVIEW

Link with Green’s functions : Orbital equation
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Particular cases: Resummation of 
ladder and ring diagrams in G2N(σ)

General mean-field h(ρ)
Diagrammatic expansion of G2N(σ)

with

Source term
General mean-field

Correlated one-body density

Connected part of the two-body density

Equation automatically satisfied in the case of exact solution!



GENERAL OVERVIEW
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Link with the self-energy

• Self-energy

• Average potential and static part of the self-energy

• Source term and dynamic part of the self-energy

static dynamic

Cluster expansion:



GENERAL OVERVIEW

Optimization of Orbitals : Truncated solution

• Minimization of the total energy

First order variation (unitary transformation): Brillouin condition

Orbital equation similar to the one derived with the exact solution but not satisfied

automatically!

Need to establish the consistency between one- and two-b ody properties by
solving explicitly the orbital equation 10

Caroline Robin
PhD at CEA/DAM/DIF

Postdoc at WMU



Truncations and Symmetries

• Truncations compatible with the conservation of the a dvantages of the method

� Conservation of desired symmetries
� All types of nuclear long range correlations, deformations
� Even-even, odd and odd-odd nuclei
� Full antisymmetrization (Pauli)

• Different possible truncations Flexibility of the MPMH  configuration mixing

� Core+valence space
� Excitation order of the configurations
� Excitation energy of the configurations

Ideally, a combination of the truncations with the preservation of desired symmetries
Systematically improvable method

• Symmetries

� Unitary operator such that:

� Transformed single-particle states:

� General mean field

GENERAL OVERVIEW
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� General mean-field

The summation on transformed states can be replaced by a summation on the states k and l. Hence,

If                             or equivalently , then

Of course, the equality will depend on the mixing intro duced in the N-body wave function!

GENERAL OVERVIEW
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GENERAL OVERVIEW

Importance of the consistency between correlations and mean-field description

• Most microscopic N-body methods are based on the concept of an existing underlying independent-particle
picture

• The inclusion of correlations arising from the residual interaction is accomplished in a second separate stage

The MPMH configuration mixing allows to generate an optimized single-particle picture which reflects
and encapsulates part of the correlations content of the system

Contrary to the HF approximation, both particle and hole states participate to the definition of h.

• Average potential from M-body forces: folding of the N-body interactions with the full (n-1)-body densities
(0<n<M+1)

The average potential absorbs the mean effect of correlations and partly shields their influence

The influence of the residual interaction is then minimized and the independent-particle system
governed by h should be a better approximation to the exact solution than the HF state.



GENERAL OVERVIEW
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• Expression of such a potential extensively discussed by Baranger and more recently by Duguet et al. in the
context of definition of single-particle energies ε .

Eigenvalues of the general mean-field: « Universal » unambiguous definition of the single-particle
energies which also coincides with the « experimentalist » definition.

Indeed:

Using the closure relations

Then,

One-nucleon addition and separation energies

Spectroscopic factors
Centroids of the observable 

separation energies



GENERAL OVERVIEW
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• Theory of the most general mean-field from the point of view o f perturbation theory

The density ρ used to calculate the potential Γ(ρ) must be fully consistent with the correlations σ of the system

More precisely, on can always divide ρ into an uncorrelated part and a correlated part

Using graph expansion of ρ and the total energy E, it can be shown that the variational condition

is realized if Γ(ρ) is calculated with ρ(1) satisfying:

The results stay true in the case where one truncates the infinite summation ∆ in the expansion of the
energy E, or limits this summation to a certain subclass of diagrams as long as the same graphs are used to
calculate ρ(1)

Although the variational principle applied in the MPMH configuration mixing approach is different (explicit
expression of the wave function), consistency between the one-body density ρ and the correlation matrix σ is
achieved by the fact that they are calculated from the same nuclear state



GENERAL OVERVIEW
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Role of the self-consistency on N-body configuratio ns

• Variation of the many-body state induced by the var iation of single-particle states

• Variation of the total energy

Couplings between P- and Q-subspaces introduced through                      and 

Propagation into the Q-subspace through                        is ignored with a first order variation

Optimal selection criterion of the P-subspace
14

Coupling to the Q-subspaceCoupling to the Q-subspace



GENERAL OVERVIEW
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• Role of the orbital equation

Starting from a certain set of single-particle states (a+), the orbital equation lead to a new set (b+):

where

Under this transformation, the N-body configurations vary as

Optimization of orbitals: Creation of MPMH excitations on top of the existing configurations
The MPMH excitations extend to the whole single-particle basis one is considering
Since     is a one-body operator, they are always built as product of 1P1H excitations 

The configurations belonging to the new P’-subspace should take into account the effect of Slater determinants 
built from the entire starting single-particle basis

or

Compensation for the truncations made on the wave functionCompensation for the truncations made on the wave function
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NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Global iterative procedure

1. Start with the standard HF calculation which
assumes a single-configuration wave function|Ψ � � = |
 � �	so that no correlations are present,�(�) = 0 and �(�) = 
� �� 
� = �� = ��� . Solve
the corresponding equation ℎ �(�) , �(�) = 0.
2. Construct the many-body configurations
�(�) on these initial orbitals and solve 1st

equation to obtain a first set of ground state

components ��(�) (shell model technique). The

matrix density �(�) can then be calculated.

3. Keeping �(�)	fixed, solve 2nd equation, to
obtain the one-body density �(�). The new single-

particle states ��(�) 	 are taken as eigenvectors

of the solution �(�).
4. Go back to step 2. using the new orbitals,
and repeat the procedure until convergence is
reached.

19



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Solution of the orbital equation: adopted algorithm

Main idea: ��� � = � �, � , �

20

The orbital equation in an homogeneous form

• Natural basis      

 (!")#���$!$% = &#'#(�$
• Orbital equation in the natural basis

ℎ#( &% − &# = *#(
� No degenracy&( = &#⟹ , = - ⟹ *#( = *## = 0
� Degeneracies

- symmetries

- core+valence space+empty orbital⟹*#( = 0
• Correlation field: .�/ �, � = 0123(4)53652 		78	&� ≠ &/ 						0							:;ℎ<=>7?<

Solution of the orbital equation

1. Start from an initial correlated one-body density� = ��5�@ and diagonalize it to obtain occupation
numbers &� .
2. Calculate and diagonalize ℎ(�, �) − .(�, �). The
resulting eigenvectors constitutes new single-
particle states.

3. Redistribute the particles on this new basis to
obtain a new density �.
4. Go back to step 2. …, and so on until the �
matrix has convergedin a given basis at the desired
accuracy



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

12C test nucleus

Two types of truncation schemes tested:

4He core + 0ħω valence space

- 38 configurations

- Natural max. excitation order: 4P4H

Nħω space

- Truncation at 4P4H

- 26 401 700 configurations 21



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Two-body correlation matrix �BCDE

22

Proton Neutron Proton-neutronpairing

55 150

150000 700000

σijij

particle-vibration RPA-type

pairing



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION
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0.45

1.6

Source term G( �)BC
Proton Neutron



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION
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Evolution of the one-body density: Representation of  ∆ρ=|ρHF-ρcorrelated| in HF basis
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Convergence of the one-body density matrix
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NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Modifications of the single-particle energies

40

21

-2

Eigenvalues ε of compared to εHF.

-6

● Spectrum compressed by ~2.5 MeV
● 0s increased by ~2 MeV
● Gap 0p3/2-0p1/2 (8.15 MeV) reduced by ~870 keV.

1
●Spectrum compressed by ~6 MeV
●0s increased by ~6 MeV
●Gap 0p3/2-0p1/2 (8.15 MeV) reduced by ~2 MeV.

2



Gain 770 keV

NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

41

• Correlation energy:

• Clear overbinding in 12C!
• What is happening with the interaction, related to the 

truncation scheme?

21

Hartree-Fock statecorrelated state

Effect on the ground state

Gain 340 keV

• HF binding energy:  E(HF)= -92.9 MeV

• Experimental binding energy:  E(HF)= -92.16 MeV

1 2



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Effect on the ground state

• 0P0H component

• Weight of   in the final state  

42

2

1

Need to find balance between explicit configuration s and effect of orbital equation

1



NUMERICAL ALGORITHM WITH ORBITAL OPTIMIZATION

Study of the first 2+ excited state

43

1 0ℏω space
• Precise description of energy
• Lack of collectivity

Nℏω space
• bad description of energy
• collectivity much improved

2

Systematic improvement of results by orbital equati on
Need to find optimal truncation scheme
Interaction ?

(W.u.)

(W
.u

.)
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VARIOUS APPLICATIONS WITH THE GOGNY FORCE
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Framework:

• Even-even nuclei 10≤(Z,N)≤18
• Truncation scheme: core of 16O (non frozen) + valence

• N0=9 major oscillator shells

Description of ground state and spectroscopic prope rties

• Binding and separation energies, charge radii
• Excitation energies
• Magnetic dipole moments µ and quadrupole spectroscopic moments Qs
• Transition probabilities B(E2) and B(M1)
• Inelastic electron and proton scattering on discrete states

How are these observables affected by the optimization of orbitals?

Ex:28Si → 12P12H



VARIOUS APPLICATIONS WITH THE GOGNY FORCE
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MPMH configuration mixing calculations done at 3 le vels:

• Level 1
Without any self-consistency, i.e. after one single diagonalization of the many-body matrix G �HI = J +LM�N �HI in the $sd$-shell of pure Hartree-Fock (HF) orbitals

• Level 2
With partial self-consistency, i.e. after solving the full 1st equation alone, on HF orbitals, including the
correlated density in the interaction and the rearrangement terms. This is achieved by diagonalizing
iteratively, until convergence. In this work, convergence is said to be reached when the difference
between any element of the one-body density matrix between two iterations $N-1$ and $N$ is less than
10-5.

• Level 3
With full self-consistency, i.e. when both equations are solved together and consistency between
correlations and orbitals is reached. This is achieved using the doubly-iterative procedure described
previously. The convergence criteria on the density matrix is also set to 10-5 for both types of iterations.



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

Ground state properties

• Binding energy

49

• Correlation energy

Average difference
• Level 1: 8.91 MeV
• Level 3: 9.84 MeV

Standard deviation
• Level 1: 0.793 MeV
• Level 3: 0.789 MeV
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• 0P0H components in the ground states



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

• Single-particle states – Energies/Spectrum



VARIOUS APPLICATIONS WITH THE GOGNY FORCE
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• Single-particle states – Radial part

20Ne 28Ne 24Mg

28Si 32S



VARIOUS APPLICATIONS WITH THE GOGNY FORCE
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• Charge radii

Average difference
• Level 1: 0.021 fm
• Level 3: 0.018 fm

Standard deviation
• Level 1: 0.017 fm
• Level 3: 0.018 fm



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

54

• Radial proton and neutron densities
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55

First 2 + excited state and B(E2) transition probabilities towa rd the ground state

Average difference
• Level 1: 373 keV
• Level 3: 235 keV

Standard deviation
• Level 1: 517 keV
• Level 3: 323 keV

Average difference
• Level 1: 226 keV
• Level 3: 142 keV

Standard deviation
• Level 1: 214 keV
• Level 3: 122 keV

Excluding 30Si and 30S

• Experimental trends globally well
reproduced but...

• Clear lack of collectivity due to the
restricted valence space

• Little but positive effect from optimization
of orbitals

T=0 residual
interaction



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

56

Inelastic electron scattering between discrete states: F orm factor
From MPMH:

Level 1: 
• Factor 4 needed to reach experiment
• Good trend except toward high q

Level 3: 
• Factor 2.5 needed to reach experiment
• Improvement of the trend at the tail



VARIOUS APPLICATIONS WITH THE GOGNY FORCE
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Inelastic electron scattering between discrete states: F orm factor

Increasing the valence space…



VARIOUS APPLICATIONS WITH THE GOGNY FORCE
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Inelastic proton scattering between discrete states

• Transition amplitudes calculated in the DWBA  
framework

• Equations related to the distorted wave and  

• Transition and optical potentials
and

From MPMH:

Marc Dupuis
CEA/DAM/DIF



VARIOUS APPLICATIONS WITH THE GOGNY FORCE

Level 1 description of odd nuclei (also feasable for odd -odd)

59

• Example: Na isotopic chain

• Spin of ground states

Right: Theory

Left: Experiment

19F - 19N cases: 

� Inversion between the ground state and the first 
excited state.

� Opening of the core allows to recover the 
experimental data

Importance of core polarization

• First excited states

T=0 residual
interaction
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CONCLUSION AND PERSPECTIVES – WORK IN 
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Guillaume Hupin
Postdoc at CEA/DAM/DIF

Derivation of an effective interaction

In medium 
effective interaction

Hartree-Fock
solution

Standard entry
HF solution 

obtained with
Gogny interaction

New entry
Renormalized

chiral/bare
NN+3N forces

Self-contained HF solver
at spherical point

MPMH configurations introduced at a given order of excitation
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The complex scaling and the resonance states

Underlying Aguilar-Balslev-Combes theorem : the resonant states of the original Hamiltonian are
invariant and the non-resonant scattering states are rotated and distributed on a 2θ ray that cuts the
complex energy plane with a corresponding threshold being the rotation point.

Complex scaling

Solve the Schrödinger equation in a L2 basis (i.e. HO, MPMH orbitals…)

Demi-vieEnergieEn pratique

Analytic for Gaussian

U(θ) is a non-unitary
operator of the rotation
in the complex plane
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Collaboration with R. Lazauskas and J. Carbonell

N3LOMalfliet-Tjon

Generalization of the 
MPMH configuration 
mixing approach to 

symmetric non-hermitian
complex matrices !

Schematic case: the deuteron

• Use of an HO basis in Jacobi coordinates
• Diagonalization in the deuteron channel
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Rémi Bernard
Postdoc at CEA/DAM/DIF

• D1 family

• D2 family

• DG family

� Collaboration with M. Anguiano, G. Cò and M. Martini
� Finite range spin-orbit
� Finite range tensor

Toward a generalized Gogny interaction

(F. Chappert et al., PRC91, 034312(2015))

Use of results obtained from the effective interaction  derived from
bare/chiral interaction + MPMH renormalization
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Caroline Robin
PhD at CEA/DAM/DIF

Postdoc at WMU
Building of effective operators

• Collaboration with Caroline Robin

• How to take into account the propagation in the Q-subspace within the MPMH
configuration mixing?

Interplay between the N-body method and the effective interaction


