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Outline:	
Combining	Many-Body	perturbation	theory	and	symmetry-breaking

Outlooks:	projected	QRPA	theory	+	CI,	deformation

New	development:	CI	based	on	projected	quasi-particle	states	+	variation



Introduction:	First	technique	for	pairing	- symmetry	breaking	and	its	restoration
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Testing	ideas	with	the	pairing	model	
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Step	1:	introduce	symmetry	breaking	
Quasi-particle	vacuum	

Mean-Field

�hQP |H|QP i = 0

�hQP |PNHPN |QP i = 0
Variation	After	Projection

Solve	the	problem	but	is	rather	involved.	
(full	VAP,	Restricted	VAP…)

Projection	
After	Variation		
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threshold	problem
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Step	2:	Use	projection	technique
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Introduction:	Second	technique-Shell-Model	approach	and	MBPT
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Testing	ideas	with	the	pairing	model	

H0 Vres
Treated	as	a	
perturbation

|�0
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X
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Simplification:	perturbative	approach	to	pairing	at	weak	coupling	

Normal	phase:	standard	perturbation	theory
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ī
aj̄aj

E
/∆

ε

g/∆ε

Pert.	Theory

Exact

BCS

J

L

Direct	diagonalization

Introduce	a	many-body	basis	

Perform	direct	diagonalization	in	a	restricted	or	full	space	
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Gives	eventually	the	exact	solution	(with	help	of	symmetries,	ex:	seniority)		
Gives	access	to	excited	states	

perturbative non-perturbative



MBPT	with	symmetry	breaking:	Perturbative	approach	based	on	quasi-particle
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Step	1:	Perturbation	theory

|�0
0i = |QP i +

X
c4QP|�4QPi

From	particles	to	quasi-particles

E
/∆

ε

g/∆ε

Pert.	Theory

Exact

Pert.	With	QP

Step	2:	Projection	on	particle	number

E0 =
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(PAV	like	method)
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Pert.	With	QP
And	projection

Exact

Lacroix	and	Gambacurta PRC86,	(2012).Very	nice	surprise



Second	order	MBPT	with	symmetry-breaking	for	pairing:	Excited	states

Scales nicely with particle number

Lacroix	and	Gambacurta PRC86,	(2012).

Exact
HFB
PAV

SB-MBPT

Single-particle occupancy

g/�✏ = 0.4

g/�✏ = 0.8



Second	order	MBPT	with	symmetry-breaking	for	pairing:	some	success

Result	of	perturbation	+	projection	technique	

Perturbation
+	projection

More	precise comparisons

hN |H|Ni
hN |Ni

Ripoche et	al,	PRC	(2017)	

Alternative	Many-body	technique	with	symmetry	breaking

Coupled-Cluster

Henderson	et	al,	PRC	(2014)	

N=16

Degroote et	al,	PRB	(2016)	

~1-2%	error	!

Recent	improvement



Current	Goals,	Strategies,	…

Current	Goals:	Explore	the	possibility	to	combine	many-body	technique	and	symmetry	breaking	

Provide	new	accurate	tools	for	ab-initio	approaches
Provide	competitive	and	versatile	many-body	techniques

E

(order	parameter)

Strategy Use	vertical or	horizontal approach	or	a	transverse approach

horizontal
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l
How	far	can	we	push?	Competiveness?

Perform	diagonalization	in	a	very	
restricted	space

Redundancy	and	non-orthogonality
Of	many-body	states?

Application	to	other	symmetries?	

From	MBPT	to	CI	approach
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Configuration-Interaction	solver	with	Symmetry	breaking

Symmetry
Breaking	case	

Symmetry
preserving	case	

Up	to	now…

Apply	MBPT	with	Slater	or	QP	states
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Solve	BCS,	HFB
Generate	

GS,	2QP,4QP,	…

Projected	
(non-orthogonal)
GS,	2QP,4QP,	…

Project
Ortho-

normalize
New	N-body

Basis
(strongly	
entangled	
state)

Diag
H

Diag.	the	
Norm	matrix.

Reject	redundant	states

Compute	matrix	
elements

Diagonalization
Generate	states

Now	
Use	the	projected	QP	states	as	a	basis	for	diagonalization
Similar	idea	was	used	in	Gambacurta, Lacroix	PRC(2014)



First	test	on	the	pairing	Hamiltonian
Vertical	technique
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Our	reference	
curve

{GS, 2QP, 4QP}
{GS, 2QP}

{GS, 4QP}

{4QP}

{GS, 4QP}

2QP	are	redundant

GS	is	essential

Error	is	below	2%	in	
Symmetry	Breaking
phase

Ripoche,	Lacroix,	Gambacurta,	Ebran,	Duguet PRC	(2017)	



First	test	on	the	pairing	Hamiltonian

Comparison	with	state	of	the	art	coupled	cluster

Ripoche,	Lacroix,	Gambacurta,	Ebran,	Duguet PRC	(2017)	

Degroote et	al,	PRB	(2016)	
{GS, 2QP, 4QP}

Highly	truncated	CI	is	competitive

Discontinuity

normal superfluid

Discussion	on	the	
discontinuity

g < gc nst = 1 + n2p2h = 1 + ⌦2/4

⌦ = 16 65	states

g > gc nst = 1 + n4QP = 1 + ⌦(⌦� 1)/2

121	states⌦ = 16

?
QP(g0)	states	
with	g0 different	
from	g	can	be	used
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Combining	Symmetry	Breaking,	CI	and	Restricted	Variation
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The	idea	is	to	use	some	parameters	to	vary	the	Hilbert
space	of	states	(ex.	the	interaction	strength)

Similar	spirit	as	the	Restricted	VAP

Rodriguez,	Egido,	Robledo,	PRC	(2005)

Illustration	of	the	standard	Restricted	VAP
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Combining	Symmetry	Breaking,	CI	and	Restricted	Variation
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opt



Combining	Symmetry	Breaking,	CI	and	Restricted	Variation

Number	of	states:	comparison	with	
symmetry-conserving	CI	

mp-mh from	Pillet et	al,	PRC	(2005)



Combining	Symmetry	Breaking,	CI	and	Restricted	Variation

Different	particle/Model	space



Combining	Symmetry	Breaking,	CI	and	Restricted	Variation

Effective	Gap One-body	entropy

Other	observables



Combining	Symmetry	Breaking,	CI	and	Restricted	Variation

Without	restricted	variation

Excited	states

With	restricted	variation



Similar	method	applied	
to	two	nucleon	pair	transfer



Generalities
transfer	and	break-up	reactions		

2n-transfer	reactions
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Description

2n-break-up	reactions



Pair	transfer:	the	nuclear	structure	perspective

Nuclear structure	input

Assuming	a	pair	transfer	excitation	operator:
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īiaīai)
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Bes and	Broglia,	NPA	80	(1966),	Ripka and	R.	Padjen,	NPA132	(1969).

|0, Ni

|0, N + 2i

|⌫, N + 2i

Transfer	from	Ground	state	(GS)	to	GS	:	the	mean-field	strategy	based	on	quasi-particles
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Surface	interaction
Mixed	interaction

Grasso,	Lacroix,	Vitturi,	PRC85	(2012)

Sn	isotopes



Improving	the	description	of	transfer:	particle	number	restoration

|0, Ni

|0, N + 2i

|⌫, N + 2i Particle	number	non-conservation
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Projection	After Variation	applied to	pair	transfer
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Surface interaction

Grasso,	Lacroix,	Vitturi,	PRC85	(2012)

HFB

Projected
HFB

Pb:	collapse	of	pair	
Transfer	around magicity!



Benchmark	of	QRPA	for	pair	transfer
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QRPA	applied	to	pair	transfer

|⌫i = Q†
⌫ |0i

Q†
⌫ =

X

i

(X⌫
j ↵†

i↵
†
ī
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,Normal	phase:

ppRPA very	good

QRPA	is	globally good
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Role	of	particle	number	non-conservation?
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Gambacurta and	Lacroix,	PRC86	(2012).



Improved	QRPA	description	for	pair	transfer
Including	particle	number	conservation

Recipe:

|�ki = P̂N+2↵
†
k↵†

k̄
|0, QP i

Take	all	2QP	states	+	GS

orthonormalization

Diagonalize H	in	the	reduced
space

Gambacurta and	Lacroix,	PRC86	(2012).

Confirms	the	role	of	U(1)	sym.	breaking

Directly	applicable	in	existing	HFB	codes

Improve	the	QRPA



Summary	of	our	recent	work	on	pair	transfer
The	nuclear	structure	point	of	view

|0, Ni

|0, N + 2i

|⌫, N + 2i

Improved	description	of	ground	state
(QP	perturbation	theory)

Improved	description	pair	transfer	to	excited	
states.
(Projected	QRPA	like)

Directly	applicable	on	existing	HFB	codes

Present	status:

Application	to	nuclei

Need	to	couple	to	reactions	codes	

Other	strategy:

Perform	nuclear	structure	and	reaction	in	a	unique	framework



Summary/Discussion:

CI	combined	with	symmetry	breaking	+	restoration	
has	some	potentialities	

Application	to	the	pairing	model	is	quite	encouraging

Excited	states:	still	to	be	explored	is	the	possibility	to	use	
RPA,	QRPA	states	

Current	development	(J.	Ripoche PhD)	

Implementation	in	HFB	code	with	bare	interaction	

Exploring	now	the	use	with	other	symmetries	

Compare	with	other	techniques	(MBPT,	CC,	…)


