rothut rufional de phyaique naolbaire ef da physiqua des particules

Combining symmetry breaking and restoration with configuration interaction: application to the pairing problem

Denis Lacroix (IPN-Orsay)

Outline:

- Combining Many-Body perturbation theory and symmetry-breaking
- New development: Cl based on projected quasi-particle states + variation
- Outlooks: projected QRPA theory +Cl , deformation

Coll: T. Duguet, J.-P. Ebran
D. Gambacurta, J. Ripoche

Testing ideas with the pairing model

$$
H=\sum_{i=1}^{\Omega} \varepsilon_{i} a_{i}^{\dagger} a_{i}+\sum_{i \neq j}^{\Omega} v_{i j} a_{i}^{\dagger} a_{\bar{i}}^{\dagger} a_{\bar{j}} a_{j}
$$

Step 1: introduce symmetry breaking Quasi-particle vacuum

$$
|Q P\rangle=\Pi \beta_{i}|-\rangle
$$

Step 2: Use projection technique

$$
P^{N}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{i \varphi(\hat{N}-N)} \quad|N\rangle=P_{N}|Q P\rangle
$$

Mean-Field

$$
\delta\langle Q P| H|Q P\rangle=0 \quad \square \begin{gathered}
\text { Projection } \\
\text { After Variation }
\end{gathered}
$$

Does not solve the

threshold problem
Variation After Projection

Coupling strength

Testing ideas with the pairing model

$$
H=\sum_{i=1}^{\Omega} \varepsilon_{i} a_{i}^{\dagger} a_{i}+\sum_{i \neq j}^{\Omega} v_{i j} a_{i}^{\dagger} a_{\bar{i}}^{\dagger} a_{\bar{j}} a_{j}
$$

Direct diagonalization

- Introduce a many-body basis $\left\{\left|\Psi_{i}\right\rangle\right\}$
- Perform direct diagonalization in a restricted or full space

$$
|\Phi\rangle=\sum_{i} c_{i}\left|\Psi_{i}\right\rangle \quad H|\Phi\rangle=E|\Phi\rangle
$$

Gives eventually the exact solution (with help of symmetries, ex: seniority)
Gives access to excited states

Simplification: perturbative approach to pairing at weak coupling

Normal phase: standard perturbation theory

$$
H=\frac{\sum_{i=1}^{\Omega} \varepsilon_{i} a_{i}^{\dagger} a_{i}}{H_{0}} \frac{g \sum_{i \neq j}^{\Omega} a_{i}^{\dagger} a_{i}^{\dagger} a_{j} a_{j}}{V_{\text {res }}} \begin{aligned}
& \text { Treated as a } \\
& \text { perturbation }
\end{aligned}
$$

$$
\left|\Phi_{0}^{\prime}\right\rangle=\left|\Phi_{0}\right\rangle+\sum c_{2 \mathrm{ph} 2}\left|\Phi_{2 \mathrm{p} 2 \mathrm{~h}}\right\rangle
$$

From particles to quasi-particles

$H \Longleftrightarrow H_{0}=E_{0}+\sum E_{i} \beta_{i}^{\dagger} \beta_{i}$
$H|Q P\rangle=\left(H_{0}-\frac{\sum_{i \neq j} v_{i j} U_{i}^{2} V_{j}^{2} \beta_{i}^{\dagger} \beta_{i}^{\dagger} \beta_{j}^{\dagger} \beta_{j}^{\dagger}}{V}\right)$$|Q P\rangle$

$$
\left|\Phi_{0}^{\prime}\right\rangle=|Q P\rangle+\sum c_{4 \mathrm{QP}}\left|\Phi_{4 \mathrm{QP}}\right\rangle
$$

Step 2: Projection on particle number

$$
E_{0}=\frac{\left\langle\Phi_{0}^{\prime}\right| P_{N} H P_{N}\left|\Phi_{0}^{\prime}\right\rangle}{\left\langle\Phi_{0}^{\prime}\right| P_{N}\left|\Phi_{0}^{\prime}\right\rangle} \quad \text { (PAV like method) }
$$

Lacroix and Gambacurta PRC86, (2012).

Scales nicely with particle number

Lacroix and Gambacurta PRC86, (2012).

Result of perturbation + projection technique

More precise comparisons

Alternative Many-body technique with symmetry breaking

Coupled-Cluster

Recent improvement

Current Goals: Explore the possibility to combine many-body technique and symmetry breaking
Provide competitive and versatile many-body techniques
Provide new accurate tools for ab-initio approaches
Strategy Use vertical or horizontal approach or a transverse approach

\Rightarrow From MBPT to Cl approach
\Rightarrow Perform diagonalization in a very restricted space
\Rightarrow How far can we push? Competiveness?
\Rightarrow Redundancy and non-orthogonality Of many-body states?
\Rightarrow Application to other symmetries?

Up to now...

Symmetry
preserving case

\Rightarrow Apply MBPT with Slater or QP states

$$
\begin{aligned}
& \Rightarrow\left|\Phi_{\alpha}\right\rangle=c_{\alpha}^{0}|0\rangle+\sum_{4 Q P} c_{\alpha}^{4 Q P}|4 Q P\rangle \\
& \Rightarrow E_{\alpha}=\frac{\left\langle\Phi_{\alpha}\right| P_{N} H P_{N}\left|\Phi_{\alpha}\right\rangle}{\left\langle\Phi_{\alpha}\right| P_{N}\left|\Phi_{\alpha}\right\rangle}
\end{aligned}
$$

Now

\Rightarrow Use the projected QP states as a basis for diagonalization Similar idea was used in Gambacurta, Lacroix PRC(2014)

Vertical technique

$$
H=\sum_{i=1}^{\Omega} \varepsilon_{i} a_{i}^{\dagger} a_{i}+\sum_{i \neq j}^{\Omega} v_{i j} a_{i}^{\dagger} a_{\bar{i}}^{\dagger} a_{\bar{j}} a_{j}
$$

Comparison with state of the art coupled cluster

The idea is to use some parameters to vary the Hilbert space of states (ex. the interaction strength)

Similar spirit as the Restricted VAP
Rodriguez, Egido, Robledo, PRC (2005)

Combining Symmetry Breaking, Cl and Restricted Variation

Number of states: comparison with

symmetry-conserving Cl

$N=16$	$n_{\text {st }}$	$g=0.18$	$g=0.54$	$g=0.66$
2p-2h	65	0.64%	20.92%	29.37%
$4 \mathrm{p}-4 \mathrm{~h}$	849	0.01%	5.22%	9.59%
$6 \mathrm{p}-6 \mathrm{~h}$	3985	0.00%	0.60%	1.66%
$8 \mathrm{p}-8 \mathrm{~h}$	8885	0.00%	0.03%	0.12%
$(0+2) \mathrm{qp}_{N, g}$	17	100%	3.52%	1.70%
$(0+4) \mathrm{qP}_{N, g}$	121	0.64%	0.07%	0.04%
$(0+2+4) \mathrm{qp}_{N, g}$	137	0.64%	0.07%	0.04%
$(0+2) \mathrm{qp}_{N, g \text { got }}$	17	9.20%	3.34%	1.66%
$(0+4) \mathrm{qP}_{N, g_{\text {pot }}}$	121	0.07%	0.07%	0.03%
$(0+2+4) \mathrm{qp}_{N, g \text { opt }}$	137	0.07%	0.07%	0.03%
Exact	12870	0.00%	0.00%	0.00%

mp-mh from Pillet et al, PRC (2005)

Combining Symmetry Breaking, Cl and Restricted Variation

Different particle/Model space

Other observables

Effective Gap

$\Delta_{\mathrm{eff}}(g)=g \sum_{k=1}^{\Omega} \sqrt{\left\langle a_{k}^{\dagger} a_{k}^{\dagger} a_{k} a_{k}\right\rangle-\frac{1}{4}\left\langle\left(a_{k}^{\dagger} a_{k}+a_{k}^{\dagger} a_{k}\right)\right\rangle^{2}}$

One-body entropy

Excited states

Without restricted variation

With restricted variation

Similar method applied to two nucleon pair transfer
transfer and break-up reactions

2n-transfer reactions

2n-break-up reactions

Description

$$
\begin{aligned}
|\Psi(t)\rangle=e^{-i t E_{0}^{N} / \hbar} & \left\{\sum_{\nu} c_{\nu}^{N} e^{-i t\left(E_{\nu}^{N}-E_{0}^{N}\right) / \hbar}|\nu, N\rangle\right. \\
& +\sum_{\nu} c_{\nu}^{N-2} e^{-i t\left(E_{\nu}^{N-2}-E_{0}^{N}\right) / \hbar}|\nu, N-2\rangle \\
& \left.+\sum_{\nu} c_{\nu}^{N+2} e^{-i t\left(E_{\nu}^{N+2}-E_{0}^{N}\right) / \hbar}|\nu, N+2\rangle\right\}
\end{aligned}
$$

Assuming a pair transfer excitation operator:

Bes and Broglia, NPA 80 (1966), Ripka and R. Padjen, NPA132 (1969).

$$
\begin{aligned}
& \hat{T}=\sum_{i}\left(T_{i \bar{i}} a_{i}^{\dagger} a_{\bar{i}}^{\dagger}+T_{i \bar{i}}^{*} a_{\bar{i}} a_{i}\right) \\
&|\Psi(t)\rangle \square S(E)\left.=\sum_{\nu}|\langle N+2, \nu| \hat{T}| N, 0\right\rangle\left.\right|^{2} \delta\left(E-\Delta E_{\nu}^{N+2}\right) \\
&+\sum_{\nu} \frac{|\langle N-2, \nu| \hat{T}| N, 0\rangle\left.\right|^{2}}{\square} \delta\left(E-\Delta E_{\nu}^{N-2}\right) \\
& \text { Nuclear structure input }
\end{aligned}
$$

Transfer from Ground state (GS) to GS : the mean-field strategy based on quasi-particles

$$
\begin{gathered}
|0, N\rangle \simeq|Q P\rangle=\prod_{i>0}\left(U_{i}+V_{i} a_{i}^{\dagger} a_{\hat{i}}^{\dagger}\right)|0\rangle \\
|\langle N+2,0| \hat{T}| N, 0\rangle\left.\left.\right|^{2}|\simeq|\langle Q P| \hat{T}|Q P\rangle\right|^{2}
\end{gathered}
$$

Grasso, Lacroix, Vitturi, PRC85 (2012)

$$
|N\rangle=P_{N}|Q P\rangle
$$

$$
P^{N}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{i \varphi(\hat{N}-N)}
$$

Particle number non-conservation

Projection After Variation applied to pair transfer

Grasso, Lacroix, Vitturi, PRC85 (2012)

$$
H=\sum_{i=1}^{\Omega} \varepsilon_{i} a_{i}^{\dagger} a_{i}+g \sum_{i \neq j}^{\Omega} a_{i}^{\dagger} a_{\bar{i}}^{\dagger} a_{\bar{j}} a_{j}
$$

Gambacurta and Lacroix, PRC86 (2012).

Take all 2QP states + GS

$$
\left|\Phi_{k}\right\rangle=\hat{P}_{N+2} \alpha_{k}^{\dagger} \alpha_{\bar{k}}^{\dagger}|0, Q P\rangle
$$

orthonormalization

Diagonalize H in the reduced

 space
(a) $G / \Delta \varepsilon=0.5$, (b) 0.7 , (c) 0.9

Improve the QRPA

Directly applicable in existing HFB codes

Present status:

Directly applicable on existing HFB codes

Application to nuclei

Need to couple to reactions codes

Other strategy:
Perform nuclear structure and reaction in a unique framework

Cl combined with symmetry breaking + restoration has some potentialities

Application to the pairing model is quite encouraging
Excited states: still to be explored is the possibility to use RPA, QRPA states

Current development (J. Ripoche PhD)

\square
Implementation in HFB code with bare interaction

\square
Compare with other techniques (MBPT, CC, ...)Exploring now the use with other symmetries

