Configuration mixing of symmetry-restored odd-quasiparticle excitations for the description of odd-mass nuclei

Benjamin Bally

ESNT - March 2nd 2017

1 Introduction

- 2 Few details on the formalism
- **3** First calculation on ²⁵Mg
- **4** Going heavy with ^{251}Md
- **5** Impressions and interrogations

1 Introduction

Pew details on the formalism

3 First calculation on ²⁵Mg

④ Going heavy with ²⁵¹Md

5 Impressions and interrogations

• Aim: description of the low-energy structure of odd-mass nuclei

- Aim: description of the low-energy structure of odd-mass nuclei
- Method: config. mixing of symmetry-restored odd-qp excitations
 - $\diamond~$ Configuration mixing \rightarrow in the spirit of GCM
 - $\diamond~$ Symmetry restoration \rightarrow projection technique

- Aim: description of the low-energy structure of odd-mass nuclei
- Method: config. mixing of symmetry-restored odd-qp excitations
 - $\diamond~$ Configuration mixing \rightarrow in the spirit of GCM
 - $\diamond~$ Symmetry restoration \rightarrow projection technique

- Targeted accuracy: no idea yet ...
 - \ldots but present generation of functionals is too limited

- Aim: description of the low-energy structure of odd-mass nuclei
- Method: config. mixing of symmetry-restored odd-qp excitations
 - $\diamond~$ Configuration mixing \rightarrow in the spirit of GCM
 - $\diamond~$ Symmetry restoration \rightarrow projection technique

- Targeted accuracy: no idea yet ...
 - ... but present generation of functionals is too limited
- Closely related to the talks given by J.L. Egido and M. Bender

Degrees of freedom

- Degrees of freedom treated
 - ◊ Pairing
 - Triaxial deformations
 - ◊ One-quasiparticle excitations

Degrees of freedom

- Degrees of freedom treated
 - ◊ Pairing
 - Triaxial deformations
 - One-quasiparticle excitations

- Next degrees of freedom to be included?
 - Cranking (possible with the actual code)
 - Octupole deformation
 - Three-quasiparticle excitations (possible with the actual code)

Introduction

2 Few details on the formalism

3 First calculation on ²⁵Mg

4 Going heavy with ²⁵¹Md

5 Impressions and interrogations

$$\mathcal{E}_{\mathsf{nuc}}[\rho,\kappa,\kappa^*]^{ab} = \frac{\langle \Phi_a | H | \Phi_b \rangle}{\langle \Phi_a | \Phi_b \rangle}$$
$$\rho^{ab} = \frac{\langle \Phi_a | c^{\dagger} c | \Phi_b \rangle}{\langle \Phi_a | \Phi_b \rangle} \qquad \kappa^{ab} = \frac{\langle \Phi_a | cc | \Phi_b \rangle}{\langle \Phi_a | \Phi_b \rangle} \qquad \kappa^{ba^*} = \frac{\langle \Phi_a | c^{\dagger} c^{\dagger} | \Phi_b \rangle}{\langle \Phi_a | \Phi_b \rangle}$$

• $|\Phi_i\rangle$ Bogoliubov quasiparticle state

$$\begin{pmatrix} \beta_i \\ \beta_i^{\dagger} \end{pmatrix} = \begin{pmatrix} U_i^{\dagger} & V_i^{\dagger} \\ V_i^{T} & U_i^{T} \end{pmatrix} \begin{pmatrix} c \\ c^{\dagger} \end{pmatrix}$$

• \mathcal{E}_{nuc} directly and uniquely determined by H \Rightarrow no density-dependent interaction

$$H = K + V_{\rm Coul} + V_{\rm Sky}$$

- K: kinetic energy (+ center of mass corr.)
- V_{Coul}: Coulomb interaction
 All terms taken into account exactly
 Computationally most time-consuming part of the calculation
- V_{Sky}: Skyrme pseudopotential Highly schematic

$$H = K + V_{\rm Coul} + V_{\rm Sky}$$

- K: kinetic energy (+ center of mass corr.)
- V_{Coul}: Coulomb interaction
 All terms taken into account exactly
 Computationally most time-consuming part of the calculation
- V_{Sky}: Skyrme pseudopotential Highly schematic

SLyMR0 and SLyMR1 parametrizations

Sadoudi et al. Physica Scripta T154 014013 (2013) Sadoudi et al. Phys. Rev. C 88, 064326 (2013) R. Jodon, PhD thesis, Université Lyon 1 (2014)

• Calculations on 3d Lagrange mesh in Cartesian coordinates D. Baye and P.-H. Heenen, J.Phys.A:Math.Gen. 2041 (1986)

- Impose symmetries of a subgroup of D_{2h}^{TD}
 - x-signature parity y-time simplex

Minimization
$$\delta \mathcal{E}_{nuc}[\rho, \kappa, \kappa^*]^{aa} = 0$$

Constraints

- Neutron number $\langle \Phi_a | N | \Phi_a \rangle = N_0$
- Proton number $\langle \Phi_a | Z | \Phi_a \rangle = Z_0$
- Quadrupole deformation $\langle \Phi_a | Q | \Phi_a \rangle = Q_0$
- Blocking structure $|\Phi_a\rangle = \beta_1^{\dagger} \dots \beta_n^{\dagger} |\tilde{0}\rangle$

Minimization
$$\delta \mathcal{E}_{nuc}[\rho, \kappa, \kappa^*]^{aa} = 0$$

Constraints

- Neutron number $\langle \Phi_a | N | \Phi_a \rangle = N_0$
- Proton number $\langle \Phi_a | Z | \Phi_a \rangle = Z_0$
- Quadrupole deformation $\langle \Phi_a | Q | \Phi_a \rangle = Q_0$
- Blocking structure $|\Phi_a\rangle = \beta_1^{\dagger} \dots \beta_n^{\dagger} |\tilde{0}\rangle$

Solved for different values of $Q_0 \& \beta_1^{\dagger} \dots \beta_n^{\dagger}$

Introduction

Pew details on the formalism

3 First calculation on ^{25}Mg

④ Going heavy with ²⁵¹Md

5 Impressions and interrogations

- Interests
 - Proof of principle
 - ◊ Light nucleus (sd shell) with a simple structure
 - Bally et al. PhysRevLett 113, 162501 (2014)
- Theoretical calculations with
 - SLyMR0 parametrization
 - ◊ LN to enforce pairing
 - Triaxially deformed one-quasiparticle states
 - ♦ Projection on J, N, Z + triaxial & 1qp configuration mixing

Strategy at the single-reference level

• Select a discretization of triaxial deformations (β, γ)

Strategy at the single-reference level

• Select a discretization of triaxial deformations (β, γ)

• Calculate "false vacuum" at each deformation

Strategy at the single-reference level

• Select a discretization of triaxial deformations (β, γ)

- Calculate "false vacuum" at each deformation
- Block self-consistently many one-quasiparticle states those which appeared to be of lowest energy
 - \approx 600 positive parity states
 - \approx 200 negative parity states

• Pick a sparser discretization of triaxial deformations

- Pick a sparser discretization of triaxial deformations
- At least the lowest one at each deformation

- Pick a sparser discretization of triaxial deformations
- At least the lowest one at each deformation
- Then from energy & structure of projected states

- Pick a sparser discretization of triaxial deformations
- At least the lowest one at each deformation
- Then from energy & structure of projected states
- How many CPU hours do I have?

- Pick a sparser discretization of triaxial deformations
- At least the lowest one at each deformation
- Then from energy & structure of projected states
- How many CPU hours do I have?
- Total number of states selected
 - 100 positive parity states
 - ◊ 60 negative parity states

	J^{π}	Binding energy	Q_s	μ
		(MeV)	$(e \mathrm{fm}^2)$	(μ_N)
Experiment	$\frac{5}{2}^{+}$	-205.587	20.1(3)	-0.85545(8)
MR EDF	$\frac{5}{2}^{+}$	-221.875	23.25	-1.054

• Experiment: Nuclear Data Sheets 110 1691 (2009)

Rotational bands

Ground-state band

• States added by increasing order of non-projected energy

ESNT - 02/03/2017

Benjamin Bally

ESNT - 02/03/2017

Benjamin Bally

ESNT - 02/03/2017

Introduction

Pew details on the formalism

3 First calculation on ²⁵Mg

4 Going heavy with ^{251}Md

5 Impressions and interrogations

- (MR) EDF only microscopic method for heavy and superheavy nuclei
- Experimental progress in spectroscopy of transactinides \rightarrow soon S^3 at GANIL
- Theoretical calculations with
 - SLyMR1 (include three-body gradients)
 - ♦ Projection on J, N, Z of one-qps with axial deformations
 - No GCM yet as just a test of the interaction & code
 P.-H. Heenen *et al.* EPJ Web of Conferences 131, 02001 (2016)

Going heavy with $^{251}_{101}Md$

Going heavy with $^{251}_{101}Md$

• Experiment: A. Chatillon et al. Phys. Rev. Lett. 98, 132503 (2007)

Introduction

Pew details on the formalism

3 First calculation on ²⁵Mg

4 Going heavy with ^{251}Md

5 Impressions and interrogations

• Calculations of odd nuclei are possible ... but painful

- Calculations of odd nuclei are possible ... but painful
- Not yet sure of the best strategy for qp excitations
 - ◊ All self-consistent or adiabatic + perturbative on top?
 - o How to determine most important qp exictations?
 - ♦ How many needed?

- Calculations of odd nuclei are possible ... but painful
- Not yet sure of the best strategy for qp excitations
 - ◊ All self-consistent or adiabatic + perturbative on top?
 - o How to determine most important qp exictations?
 - ♦ How many needed?
- Need to improve moments of inertia → cranking?

- Calculations of odd nuclei are possible ... but painful
- Not yet sure of the best strategy for qp excitations
 - ◊ All self-consistent or adiabatic + perturbative on top?
 - o How to determine most important qp exictations?
 - ♦ How many needed?
- Need to improve moments of inertia → cranking?
- Projection & GCM cannot overcome large deficiencies of EDF
 → single-particle spectrum

Present and past contributors

ipnl

M. Bender W. Ryssens K. Bennaceur

P.-H. Heenen

T. Duguet

B. AvezA. PastoreJ. SadoudiD. LacroixR. JodonK. WashiyamaV. HellemansP. BoncheJ.-M. YaoH. Flocard