

NN CORRELATIONS AND MEC IN ELECTRON SCATTERING

Carlotta Giusti Università and INFN Pavia

Two-body current contributions in neutrino-nucleus scattering. Saclay 18-22 April 2016

nuclear response to the electromagnetic probe

nuclear response to the electromagnetic probe

QE-peak dominated by one-nucleon knockout

(e,e'p) one-nucleon knockout

(e,e'p) one-nucleon knockout

missing momentum

ONE-HOLE SPECTRAL FUNCTION

$S(\vec{p_{1}}, \vec{p_{1}}; E_{m}) = \langle \Psi_{i} | a_{\vec{p_{1}}}^{+} \delta(E_{m} - H) a_{\vec{p_{1}}} | \Psi_{i} \rangle$

joint probability of removing from the target a nucleon p_1 leaving the residual nucleus in a state with energy $E_{\rm m}$

 $\vec{p_1} = \vec{\bar{p}}_1$

ſ

ONE-HOLE SPECTRAL FUNCTION

 $S(\vec{p_1}, \vec{p_1}; E_m) = \langle \Psi_i | a_{\vec{p_1}}^+ \delta(E_m - H) a_{\vec{p_1}} | \Psi_i \rangle$

$$\int S(\vec{p_1}, \vec{p_1}; E_m) dE_m = \rho(\vec{p_1}, \vec{p_1}) \quad \text{inclusive reaction : one-body density}$$

$$\vec{p_1} = \vec{p_1} \quad \longrightarrow \quad \rho(\vec{p_1}, \vec{p_1}) = F(\vec{p_1})$$

$$MOMENTUM \text{ DISTRIBUTION}$$

$$F(\vec{p_1}) = \int |\Psi_i(\vec{p_1}, \vec{p_2}, ..., \vec{p_A}|^2 d\vec{p_2}...d\vec{p_A} \quad \text{probability of finding in the target} \\ a \text{ nucleon with momentum } p_1$$

 $\sigma = K L^{\mu\nu} W_{\mu\nu}$

$$\sigma = KL^{\mu\nu} W_{\mu\nu}$$

hadron tensor

 $\sigma = K L^{\mu\nu} W_{\mu\nu}$

hadron tensor

$$W^{\mu\nu} = \overline{\sum_{i,f}} J^{\mu}(\vec{q}) J^{\nu*}(\vec{q}) \delta(E_{i} - E_{f})$$
$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \langle \Psi_{f} \mid \hat{J}^{\mu}(\vec{r}) \mid \Psi_{i} \rangle d\vec{r}$$

 $\sigma = K L^{\mu\nu} W_{\mu\nu}$

hadron tensor

$$W^{\mu\nu} = \overline{\sum_{i,f}} J^{\mu}(\vec{q}) J^{\nu*}(\vec{q}) \delta(E_{i} - E_{f})$$
$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \Psi_{f} \mid \hat{J}^{\mu}(\vec{r}) \mid \Psi_{i} d\vec{r}$$

(e,e'p)

- exclusive reaction n
- DKO mechanism: the probe interacts through a one-body current with one nucleon which is then emitted the remaining nucleons are spectators
- impulse approximation IA

(e,e'p)

- exclusive reaction n
- DKO mechanism: the probe interacts through a one-body current with one nucleon which is then emitted the remaining nucleons are spectators

impulse approximation IA

PLANE-WAVE IMPULSE APPROXIMATION

PWIA

factorized cross section

$$\sigma = K \sigma_{\rm ep} S(E_{\rm m}, -\vec{p}_{\rm m})$$

spectral function

$$S(E_{\rm m}, -\vec{p}_{\rm m}) = \sum_{n} \lambda_n(E_{\rm m}) |\phi_n(-\vec{p}_{\rm m})|^2$$

spectroscopic factor

overlap function

For each E_m the mom. dependence of the SF is given by the mom. distr. of the quasi-hole states n produced in the target nucleus at that energy and described by the normalized OVF

The spectroscopic factor gives the probability that n is a pure hole state in the target.

IPSM

There are correlations and the strength of the quasi-hole state is fragmented over a set of s.p. states $0 \le \lambda_n \le 1$

Direct knockout DWIA (e,e'p)

$$\lambda_n^{1/2} \langle \chi^{(-)} \mid j^\mu \mid \phi_n \rangle$$

- j^µ one-body nuclear current
- $\chi^{(-)}$ s.p. scattering w.f. $H^+(\omega + E_m)$
- ϕ_n s.p. bound state overlap function $H(-E_m)$
- λ_n spectroscopic factor
- $\ensuremath{\textcircled{}^{(-)}}$ and $\ensuremath{\varphi}$ consistently derived as eigenfunctions of a Feshbach optical model Hamiltonian

DWIA calculations

phenomenological ingredients usually adopted

 $\stackrel{\label{eq:constraint}}{=} \chi^{(-)}$ phenomenological optical potential

 $\Rightarrow \phi_n$ phenomenological s.p. wave functions WS, HF (some calculations including correlations are available)

 λ_n extracted in comparison with data: reduction factor applied to the calculated c.s. to reproduce the magnitude of the experimental c.s.

DWIA calculations excellent description of (e,e'p) data

Experimental data: E_m and p_m distributions

Experimental data: p_m distribution

NIKHEF data & CDWIA calculations 1993

Experimental data: p_m distribution

SPECTROSCOPIC FACTORS and NN CORRELATIONS

- depletion due to NN correlations
- SRC Short-Range Correlations:
 short-range repulsion of NN interaction pp pairs
- TC Tensor Correlations: tensor component of NN interaction pn pairs
- LRC Long-Range Correlations: long-range part of NN interaction collective excitations of nucleons at the nuclear surface

SPECTROSCOPIC FACTORS and NN CORRELATIONS

- from different independent investigations our calculations with correlated w.f. + C. Barbieri PRL 103 202502 (2009)
- SRC account for only a few % of the depletion, up to 10-15 % with TC
- LRC give the main contribution to the depletion

- account for only a small part of the depletion
- depletion compensated by the admixture of highmomentum components of the s.p. w.f.
- SRC effects on (e,e'p) cross sections at high p_m are small for low-lying states
- calculations of the 1BDM and of the momentum distribution indicate that the missing strength due to SRC is found at large p_m and E_m , beyond the continuum threshold, where many processes are present and a clear-cut identification of SRC appears very difficult
- in exclusive (e,e'p) one does not measure the mom. distrib. but only the SF at specific (low) values of E_m

SRC

(e,e'p) at high E_m

TWO-NUCLEON KNOCKOUT

SRC

TWO-NUCLEON KNOCKOUT

TWO-NUCLEON KNOCKOUT

DKO:

restricted kinematic conditions between the QE and Δ peak back to back kinematics exclusive reactions low values of E_x

$$E_{\rm m} = \omega - \frac{{p'_1}^2}{2m} - \frac{{p'_2}^2}{2m} - \frac{{p_{\rm B}}^2}{2m(A-1)} = W_B^* - W_A \qquad \text{missing energy}$$

$$ec{p_{
m m}} = ec{q} - ec{p'}_1 - ec{p'}_2 = -ec{P} = -(ec{p_1} + ec{p_2}) = ec{p_B}$$
 missing momentum

$$\begin{split} \hline E_m & \text{exclusive reaction} \\ \hline \text{TWO-HOLE SPECTRAL FUNCTION} \\ S(p_1, p_2, \bar{p}_1, \bar{p}_2; E_m) = \langle \Psi_i | a_{\bar{p}_2}^+ a_{\bar{p}_1}^+ \delta(E_m - H) a_{\bar{p}_1} a_{\bar{p}_2} | \Psi_i \rangle \\ \hline \bar{p}_1 = p_1, \bar{p}_2 = p_2 & \text{ [joint probability of removing from the target a pair of nucleons p_1 p_2 leaving the residual nucleus in a state with energy E_m } \\ \hline \text{inclusive reaction :} \\ \hline \text{TWO-BODY DENSITY} & \int S(p_1, p_2, \bar{p}_1, \bar{p}_1; E_m) dE_m = \rho_2(p_1, p_2; \bar{p}_1, \bar{p}_2) \\ \hline \text{PAIR CORRELATION} \end{split}$$

$$\rho_2(r_1, r_2, r_1, r_2) = \int |\Psi_i(r_1, r_2, r_3, \dots, r_A)|^2 dr_3 \dots dr_A = C(r_1, r_2)$$

PAIR CORRELATION FUNCTION

probability of finding in the target a nucleon at r_1 if another nucleon is known to be at r_2

TWO-NUCLEON KNOCKOUT

1-body current OB NN correlations
TWO-NUCLEON KNOCKOUT

TWO-NUCLEON KNOCKOUT

1-body current OB NN correlations

TWO-NUCLEON KNOCKOUT

1-body current OB NN correlations

correlations affect also the reaction process due to TB currents

 $\sigma = K L^{\mu\nu} W_{\mu\nu}$

 $|\Psi_{
m f}
angle$ B (A-2)

 $|\Psi_{
m i}
angle$

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \langle \Psi_{f} \mid \hat{J}^{\mu}(\vec{r}) \mid \Psi_{i} \rangle d\vec{r}$$

• exclusive reaction
• DKO mechanism

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \chi^{(-)*}(\vec{r}_{1},\vec{r}_{2}) J^{\mu}(\vec{r}_{1},\vec{r}_{2},\vec{r}) \phi(\vec{r}_{1},\vec{r}_{2}) d\vec{r} d\vec{r}_{1} d\vec{r}_{2}$$

J^µ=J^{(1) µ}+J^{(2)µ} nuclear current

- [■] $\chi^{(-)}$ (r₁,r₂)=<Φ_B r₁ r₂ |Ψ_f> two nucleon scattering w.f. H⁺(ω+Em)
- $\phi(r_1, r_2) = \langle \Phi_B r_1 r_2 | \Psi_i \rangle$ two-nucleon overlap function H(-Em)
- ${\ensuremath{\,\,}} \chi^{(-)}$ and ϕ consistently derived as eigenfunctions of a Feshbach-type optical model Hamiltonian

TWO-BODY CURRENTS

 Δ isobar current

TWO-BODY CURRENTS

 Δ isobar current

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}}\chi^{(-)*}(\vec{r_1},\vec{r_2})J^{\mu}(\vec{r_1},\vec{r_2},\vec{r})\phi(\vec{r_1},\vec{r_2})d\vec{r}d\vec{r_1}d\vec{r_2}$$

2N and residual nucleus : 3-body problem

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}}\chi^{(-)*}(\vec{r_1},\vec{r_2})J^{\mu}(\vec{r_1},\vec{r_2},\vec{r})\phi(\vec{r_1},\vec{r_2})d\vec{r}d\vec{r_1}d\vec{r_2}$$

2N and residual nucleus : 3-body problem V= V_{1B} + V_{2B} + V_{12}

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}}\chi^{(-)*}(\vec{r_1},\vec{r_2})J^{\mu}(\vec{r_1},\vec{r_2},\vec{r})\phi(\vec{r_1},\vec{r_2})d\vec{r}d\vec{r_1}d\vec{r_2}$$

2N and residual nucleus : 3-body problem V= $V_{1B} + V_{2B} + V_{12}$ DW

phenomenological optical potential $\chi^{(-)}(r_1,r_2)=\chi^{(-)}(r_1)\chi^{(-)}(r_2)$ DW

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}}\chi^{(-)*}(\vec{r_1},\vec{r_2})J^{\mu}(\vec{r_1},\vec{r_2},\vec{r})\phi(\vec{r_1},\vec{r_2})d\vec{r}d\vec{r_1}d\vec{r_2}$$

phenomenological optical potential $\chi^{(-)}(\mathbf{r}_1,\mathbf{r}_2)=\chi^{(-)}(\mathbf{r}_1)\chi^{(-)}(\mathbf{r}_2)$ DW

NN-FSI perturbative approach based on 3-body scattering theory M. Schwamb, S. Boffi, C. Giusti, F.D. Pacati Eur. Phys. J. A17 (2003) 7; A20 (2004) 233

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}}\chi^{(-)*}(\vec{r_1},\vec{r_2})J^{\mu}(\vec{r_1},\vec{r_2},\vec{r})\phi(\vec{r_1},\vec{r_2})d\vec{r}d\vec{r_1}d\vec{r_2}$$

phenomenological optical potential $\chi^{(-)}(r_1,r_2)=\chi^{(-)}(r_1)\chi^{(-)}(r_2)$ DW

NN-FSI perturbative approach based on 3-body scattering theory M. Schwamb, S. Boffi, C. Giusti, F.D. Pacati Eur. Phys. J. A17 (2003) 7; A20 (2004) 233

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \chi^{(-)*}(\vec{r}_1,\vec{r}_2) J^{\mu}(\vec{r}_1,\vec{r}_2,\vec{r}) \phi(\vec{r}_1,\vec{r}_2) d\vec{r} d\vec{r}_1 d\vec{r}_2$$

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \chi^{(-)*}(\vec{r}_1,\vec{r}_2) J^{\mu}(\vec{r}_1,\vec{r}_2,\vec{r}) \phi(\vec{r}_1,\vec{r}_2) d\vec{r} d\vec{r}_1 d\vec{r}_2$$

IPSM correlations neglected:

 $\Phi_{\rm B}$ 2h state in the SM

 J^{π} (n₁ l₁ j₁,n₂,l₂,j₂)⁻¹

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \chi^{(-)*}(\vec{r}_1,\vec{r}_2) J^{\mu}(\vec{r}_1,\vec{r}_2,\vec{r}) \phi(\vec{r}_1,\vec{r}_2) d\vec{r} d\vec{r}_1 d\vec{r}_2$$

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \chi^{(-)*}(\vec{r}_1,\vec{r}_2) J^{\mu}(\vec{r}_1,\vec{r}_2,\vec{r}) \phi(\vec{r}_1,\vec{r}_2) d\vec{r} d\vec{r}_1 d\vec{r}_2$$

IPSM correlations neglected: Φ_{B} 2h state in the SM J^{π} $(n_{1} l_{1} j_{1}, n_{2}, l_{2}, j_{2})^{-1}$ $\phi_{JMT}^{SM}(r_{1} \sigma_{1} \tau_{1}, r_{2} \sigma_{2} \tau_{2})$ SM pair function

 $\phi_{JMT}^{SM}(r_1 \sigma_1 \tau_1, r_2 \sigma_2 \tau_2) F^{SRC}(|r_1 - r_2|)$ SM-SRC $F^{SRC}(|r_1 - r_2|)$ Jastrow corr. function central state-independent SRC

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \chi^{(-)*}(\vec{r}_1,\vec{r}_2) J^{\mu}(\vec{r}_1,\vec{r}_2,\vec{r}) \phi(\vec{r}_1,\vec{r}_2) d\vec{r} d\vec{r}_1 d\vec{r}_2$$

IPSM correlations neglected: Φ_B 2h state in the SM J^{π} $(n_1 l_1 j_1, n_2, l_2, j_2)^{-1}$ $\phi_{JMT}^{SM}(r_1 \sigma_1 \tau_1, r_2 \sigma_2 \tau_2)$ SM pair function

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \chi^{(-)*}(\vec{r}_1,\vec{r}_2) J^{\mu}(\vec{r}_1,\vec{r}_2,\vec{r}) \phi(\vec{r}_1,\vec{r}_2) d\vec{r} d\vec{r}_1 d\vec{r}_2$$

more complete and sophisticated approach:

- obtained from microscopic calculations of the NN spectral function of ¹⁶O include consistently different types of correlations SRC, TC, LRC
- C. Giusti, F.D. Pacati, K. Allaart, W. Geurts, H. Muether, W.H. Dickhoff, PRC 54 (1996) 1144
- C. Barbieri, C. Giusti, F.D. Pacati, W.H. Dickhoff PRC 70 (2004) 014606

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}}\chi^{(-)*}(\vec{r}_1,\vec{r}_2)J^{\mu}(\vec{r}_1,\vec{r}_2,\vec{r})\phi(\vec{r}_1,\vec{r}_2)d\vec{r}d\vec{r}_1d\vec{r}_2$$

more complete and sophisticated approach:

- obtained from microscopic calculations of the NN spectral function of ¹⁶O include consistently different types of correlations SRC, TC, LRC
- C. Giusti, F.D. Pacati, K. Allaart, W. Geurts, H. Muether, W.H. Dickhoff, PRC 54 (1996) 1144
- C. Barbieri, C. Giusti, F.D. Pacati, W.H. Dickhoff PRC 70 (2004) 014606

 ^{16}O suitable target due to the presence of discrete final states in the E_x spectrum of ^{14}C and ^{14}N well separated in energy

experimental data available for pp and pn knockout off ¹⁶O

$$J^{\mu}(\vec{q}) = \int e^{i\vec{q}\cdot\vec{r}} \chi^{(-)*}(\vec{r}_1,\vec{r}_2) J^{\mu}(\vec{r}_1,\vec{r}_2,\vec{r}) \phi(\vec{r}_1,\vec{r}_2) d\vec{r} d\vec{r}_1 d\vec{r}_2$$

more complete and sophisticated approach:

- obtained from microscopic calculations of the NN spectral function of ¹⁶O include consistently different types of correlations SRC, TC, LRC
- C. Giusti, F.D. Pacati, K. Allaart, W. Geurts, H. Muether, W.H. Dickhoff, PRC 54 (1996) 1144
- C. Barbieri, C. Giusti, F.D. Pacati, W.H. Dickhoff PRC 70 (2004) 014606

The two-nucleon overlap is obtained from a selfconsistent calculation of the 2hGF, where the coupling of nucleons and collective excitations of the system is calculated with realistic NN forces employing the Faddeev RPA method

SETUP TO INCLUDE SRC AND LRC

2p_{1/2} 2p_{2/3} 1f_{5/2} 1f_{7/2} 1d_{3/2} 2s_{1/2} 1d_{5/2} 1d_{5/2} 1p_{1/2} 1p_{3/2} 1s_{1/2}

LRC and the LR part of TC computed using the self-consistent Green's function formalism in a 10 shell h.o. basis large enough to account for the main collective features that influence the pair removal amplitudes

SETUP TO INCLUDE SRC AND LRC

SRC due to the central and tensor part at high momenta added by defect functions obtained from the Bethe-Goldstone equation where the Pauli operator considers only configurations outside the model space where LRC are calculated

2p_{1/2} 2p_{2/3} 1f_{5/2} 1f_{7/2} 1d_{3/2} 2s_{1/2} 1d_{5/2} 1p_{1/2} 1p_{3/2}

^{1s}1/2

SRC

Q space

LRC and the LR part of TC computed using the self-consistent Green's function formalism in a 10 shell h.o. basis large enough to account for the main collective features that influence the pair removal amplitudes

SETUP TO INCLUDE SRC AND LRC

SRC due to the central and tensor part at high momenta added by defect functions obtained from the Bethe-Goldstone equation where the Pauli operator considers only configurations outside the model space where LRC are calculated

2p_{1/2} 2p_{2/3} 1f_{5/2} 1f_{7/2} 1d_{3/2} 2s_{1/2} 1d_{5/2} 1p_{1/2} 1p_{3/2}

^{1s}1/2

SRC

Q space

LRC and the LR part of TC computed using the self-consistent Green's function formalism in a 10 shell h.o. basis large enough to account for the main collective features that influence the pair removal amplitudes

Bonn-C NN interaction

 $\langle {}^{14}{
m C}(J^{\pi})\vec{r}\vec{R} \mid {}^{16}O_{\rm g.s.} \rangle \ \langle {}^{14}{
m N}(J^{\pi})\vec{r}\vec{R} \mid {}^{16}O_{\rm g.s.} \rangle$ $c_{nlNl\lambda SJ'}^{\alpha_1\alpha_2 J} \Phi_{NL}(\vec{R}) (\phi_{nlSJ'}(\vec{r}) + D_{lsJ'}(\vec{r}))$

¹⁶O(e,e'pp)¹⁴C: NIKHEF data

R. Starink, Ph.D thesis 1999

¹⁶O(e,e'pp)¹⁴C: NIKHEF data

g.s. 0+

R. Starink, Ph.D thesis 1999

¹⁶O(e,e'pp)¹⁴C_{g.s.} NIKHEF data

Pavia

R. Starink et al. PLB 474 33 (2000)

¹⁶O(e,e'pp)¹⁴C_{g.s.} NIKHEF data

R. Starink et al. PLB 474 33 (2000)

¹⁶O(e,e'pp)¹⁴C: MAMI data

super-parallel kinematics

15

20

25

30

excitation energy $E^{*}({}^{14}C) / MeV$

35

0

-5

D

5

10

G. Rosner, Prog. Part. Nucl. Phys. 44 (2000) 99

¹⁶O(e,e'pp)¹⁴C: comparison to MAMI data

exp. data : G. Rosner, Prog. Part. Nucl. Phys. 44 (2000) 99
super-parallel kinematics ${}^{16}O(e,e'pp){}^{14}C_{g,s}$ O⁺

results very sensitive to correlations and to their treatment

M Makek et al. 2016 (MAMI)

M Makek et al. 2016 (MAMI)

¹⁶O(e,e'pn)¹⁴N: MAMI data

D. Middleton et al., EPJA 29 (2006) 261

¹⁶O(e,e'pn)¹⁴N: comparison to MAMI data

super-parallel kinematics ¹⁶O(e,e'pn)¹⁴N

MEC in one-nucleon emission

CAN THIS WORK BE USEFUL FOR NEUTRINO-NUCLEUS SCATTERING?