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Introduction

The analysis of current and future neutrino oscillation experiments requires having under
control the nuclear effects, inherent to any ν-nucleus scattering event, in order to reduce
systematic errors to the level of a few percent.

The topic of 2-body current contributions to neutrino-nucleus scattering has attracted
much interest from both the theoretical and experimental sides since the publication of
the double differential CCQE cross section measurement by MiniBooNE1 collaboration.

From the theoretical side it is important to understand the origin of the quantitative
discrepancies between different calculations, taking into account the involved
approximations in each of them and checking their accuracy or theoretical justification.

A very important objective for this kind of calculations is being fast enough to be
incorporated in the Monte Carlo codes used by the experimental collaborations. For this
purpose, reasonable approximations will be necessary in order to reduce their
computational time, but still yielding an accurate enough result. In this context, we will
propose the frozen nucleon approximation.

We also want to show the equivalence between the isotropic two-nucleon angular
distribution in the center-of-mass (CM) frame and in the LAB one2, in order to
understand properly some difficulties that arise in this last frame of reference.

1A. A. Aguilar-Arevalo et al. Phys. Rev. D 81 (2010) 092005.
2I. Ruiz Simo et al. Phys. Rev. D 90 (2014) no.3, 033012; I. R. Simo et al. Phys.

Rev. D 90 (2014) no.5, 053010.
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2p-2h phase space in the RFG

The hadron tensor for the 2p-2h channel is given by:

W
µν
2p2h =

V

(2π)9

∫

d3p′1d
3p′2d

3h1d
3h2

m4
N

E1E2E
′
1E

′
2

rµν(p′1,p
′
2,h1,h2)

δ(E ′
1 + E ′

2 − E1 − E2 − ω)Θ(p′1, p
′
2, h1, h2)

δ3(p′1 + p′2 − h1 − h2 − q) (1)

where we have defined the product of step functions,

Θ(p′1, p
′
2, h1, h2) ≡ θ(p′1 − kF )θ(p

′
2 − kF )θ(kF − h1)θ(kF − h2) (2)

and rµν(p′1,p
′
2,h1,h2) is the elementary “hadron” tensor for the transition

of a nucleon pair with given initial (h1,h2) and final (p′1,p
′
2) momenta,

summed up over spin and isospin.

rµν =
1

4

∑

σ,τ

jµ∗(p′i , s
′
i , t

′
i ;hi , si , ti ) j

ν(p′i , s
′
i , t

′
i ;hi , si , ti ) (3)

where jν(p′i , s
′
i , t

′
i ;hi , si , ti ) is the electroweak current matrix element

between plane wave nucleon states.
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Frozen nucleon approximation

The frozen nucleon approximation is just a particular case of the mean-value
theorem in several variables.

Mean-value theorem

∫ b

a

f (x)dx = f (c)(b − a) with c ∈ [a, b] (4)

∫

V

f (r)dnr = f (c)

∫

V

dnr = f (c)V with c ∈ V (5)

In our case, we would have:

W
µν
frozen

(ω, q) =

∫

d3h1d
3h2d

3p′1 f
µν(h1, h2, p

′

1) =

=

(

4

3
πk3

F

)2 ∫

d3p′1 f
µν(〈h1〉, 〈h2〉, p

′

1) (6)

where (〈h1〉, 〈h2〉) are two unknown hole momenta inside the Fermi sphere. For
high enough transferred momentum q >> kF > hi the nucleons can be regarded
at rest and then we can take (〈h1〉, 〈h2〉) = (~0,~0).
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Nucleon angular distribution in LAB

If we write the complete expression for f µν(~0,~0, p′
1), we get:

W
µν
frozen

(ω, q) =

(

4

3
πk3

F

)2 ∫

d3p′1 δ(E
′

1 + E ′

2 − ω − 2mN)Θ(p′1, p
′

2, 0, 0)

×
m2

N

E ′
1E

′
2

rµν(p′

1, p
′

2,
~0,~0) (7)

where now p′
2 = q− p′

1.

The Dirac delta function on energies allows to perform analytically the integral over p′
1

and then we have reduced the 7D integration problem to 1D integration over the polar

angle θ′1 if we can demonstrate that this approximation is good enough.

W
µν
frozen

(ω, q) =

(

4

3
πk3

F

)2

2π

∫ π

0

dθ′1 Φ
µν(θ′1) (8)

where the emission angle distribution is:

Φµν(θ′1) = sin θ′1

∫

dp′1 p
′ 2
1 δ(E ′

1 + E ′

2 − ω − 2mN)Θ(p′1, p
′

2, 0, 0)

×
m2

N

E ′
1E

′
2

rµν(p′

1, p
′

2,
~0,~0) (9)
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Nucleon angular distribution in the two-nucleon CM frame

In general, Φµν(θ′1) will have two contributions which come from solving
the Dirac delta function for p′1, which in general has two different
momenta (p′1)± that fulfill the condition of vanishing the argument of the
δ-function. We will denote them by Φµν

± (θ′1) and we can write:

Φµν(θ′1) = Φµν
+ (θ′1) + Φµν

− (θ′1) (10)

In Monte Carlo event generators the angular distribution is obtained from
an isotropic (as pure phase space considerations require) two-nucleon
distribution in the CM frame of them, and then transformed back to the
LAB frame. Here we want to show that the LAB distribution is recovered
with this procedure as well.
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Nucleon angular distribution in the two-nucleon CM frame

First we fix in the LAB frame the kinematics of the leptons, which
completely determines (ω, q), and that of the two initial nucleons in the
Fermi gas (h1,h2), which for simplicity we will take at rest (frozen nucleon
approximation) h1 = h2 = 0. Therefore, the total final momentum in LAB
is p′ = q = p′1 + p′2.
Now we have to perform a Lorentz boost along the direction of q (Z-axis)
that keep the two final nucleons in the condition of their momenta sum up
to zero, i.e, (p′1 + p′2)cm = 0.
The total final energy in the CM frame can be determined from invariance
of the squared final four-momentum. And this final energy in the CM
frame is shared equally between both nucleons because of their equal
masses.

(E ′)cm =
√

E ′2 − p′2 where (E ′,p′) = (ω + 2mN ,q) (11)

(E ′
1)cm = (E ′

2)cm =
1

2
(E ′)cm (12)
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Nucleon angular distribution in the two-nucleon CM frame

By carrying out the Lorentz boost from the CM frame back to the LAB
one, we can relate the kinematic variables (emission angles and momenta)
in the LAB frame with their counterparts in the CM frame:

p′1 =

√

γ2
[

(E ′
1)cm + v (p′1)cm cos (θ′1)cm

]2
−m2

N (13)

cos θ′1 =
γ
[

v (E ′
1)cm + (p′1)cm cos (θ′1)cm

]

√

γ2
[

(E ′
1)cm + v (p′1)cm cos (θ′1)cm

]2
−m2

N

(14)

where v = p′

E ′ and γ = 1√
1−v2

are the parameters of the Lorentz boost,

and (θ′1)cm is the emission angle of the first nucleon in the CM frame with
respect to the direction of q, and thus (θ′1)cm ∈ [0, π]
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ω = 2 GeV

q = 3 GeV/c
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Figure: Correspondence between LAB variables (emission

angle θ′1 and momentum p′1) and CM nucleon emission angle

(called θ′′1 in the figure). The momentum and energy transfers

are q = 3 GeV/c and ω = 2 GeV.

It can be seen in the figure that two
different emission angles in the CM
frame correspond to the same angle
θ′1 in the LAB frame, although with
different momentum p′1.

Therefore we can say that for a given
LAB angle, there are two different
and possible values of p′1 and these
correspond to the two possible
solutions of the energy conservation,
which were previously called (p′1)±.

Thus there are two branches which

run over the same range of LAB

angle, but correspond to different

ranges of CM angle. And these two

branches can be identified with the

previously defined two contributions

to the angular distribution Φµν
+ (θ′1)

and Φµν
−

(θ′1).
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Transformation of the angular distribution

Assuming an isotropic angular distribution in the CM frame, as two-particle phase
space requires, it can be shown that the LAB angular distribution is retrieved
after performing the Lorentz boost back to the LAB, and another easy
interpretation of the divergence of the angular distribution is obtained.

Indeed, let me assume that the angular distribution in the CM frame is

independent of the emission angle (θ′1)cm and, not considering Pauli blocking we

can thus write:

n′cm
[

(θ′1)cm
]

= C (15)

The above function is such that n′
cm

[(θ′1)cm] (dΩ
′
1)cm gives the number of

nucleons emitted within an elementary solid angle (dΩ′
1)cm in the CM frame.

And we impose this quantity to be equal to the number of nucleons emitted

within an elementary solid angle dΩ′
1 in the LAB frame, by virtue of conservation

of probability. Therefore, we can write:

n′(θ′1)dΩ
′
1 = n′cm

[

(θ′1)cm
]

(dΩ′
1)cm (16)
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Transformation of the angular distribution

As the boost is performed along the q direction, the orthogonal directions are

preserved and so the azimuthal angles, dφ′
1 = (dφ′

1)cm, and we only have to

transform the polar angles between both frames:

n′(θ′1) d(cos θ
′
1) = n′cm

[

(θ′1)cm
]

d(cos θ′1)cm (17)

By differentiation of Eq. (14), we obtain

d(cos θ′1) = γ (p′1)cm
p′1 − v E ′

1 cos θ
′
1

(p′1)
2

d(cos θ′1)cm (18)

Thus resulting

n′(θ′1) =
C

∣

∣

∣

d(cos θ′1)
d(cos θ′1)cm

∣

∣

∣

= n′+(θ
′
1) + n′−(θ

′
1) (19)

where in the last step of the above expression we have explicitly separated the
two branches of the distribution, the one with negative derivative and the other
one with positive derivative. The problem of the divergence in the LAB angular

distribution occurs for the CM angle where
d(cos θ′

1)
d(cos θ′

1)cm
= 0.
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Angular distribution
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Figure: The two angular distributions Φ±(θ′1) and the total, in the LAB frame, for two-nucleon emission in the frozen

nucleon approximation. The momentum transfer corresponds to q = 3 GeV/c and three different values of ω = 1800, 2000 and

2200 MeV are shown. (See I. R. Simo et al, Phys. Rev. D 90 (2014) no.5, 053010).
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Model for Meson-exchange currents
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Figure: Feynman diagrams for the meson-exchange currents model: seagull (a)
and (b), pion-in-flight (c), pion-pole (d) and (e), ∆-forward (f) and (g), and
finally ∆-backward (h) and (i).
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Angular distribution (preliminary results)
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Figure: Angular distribution for the transverse T (left) and T′ (right) response functions in the ”frozen nucleon

approximation” for different values of the transferred energy ω, where the elementary contributions have been singled out.
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Figure: Angular distribution for the CC (left) and CL (right) response functions in the ”frozen nucleon approximation” for

different values of the transferred energy ω, where the elementary contributions have been singled out. These results are

preliminary.
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Figure: Angular distribution for the LL response function in

the ”frozen nucleon approximation” for different values of the

transferred energy ω. The results are preliminary.

∆ is the dominant contribution in all responses,
except on CC and CL responses, where in
addition a significant interference with seagull
occurs.

π-pole current is proportional to Qµ and,
therefore, its only non-vanishing components are
the longitudinal (L) and time-like components,
with exactly zero contribution to the transverse T
and T ′ responses.

Pion-in-flight current is purely of vector type, so
in T ′ response gives exactly zero contribution
because only the V-A interference contributes to
it.

Only in the transverse responses the peak of the
angular distribution is a bit shifted towards larger
emission angles with respect to the phase space
alone result (with constant rµν ).

In the CC and the CL responses, for the
pion-in-flight contribution there are some
emission angles in which the response is zero, but
this is due to the frozen approximation
(h1, h2)=(~0,~0) and also to the fact that the
pion-in-flight current is proportional to the
difference of momenta of the two exchanged
pions, ∝ (k

µ

1 − k
µ

2 ). And when µ = 0 (as it is
the case for the CC (00th component) or CL
(03-component), there will be some angles for

the nucleon emission where k01 = k02 and the
response will vanish.

2p-2h excitations in neutrino scattering April 20th, 2016 17 / 21



Frozen nucleon approximation for the integrated responses
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Figure: Comparison between frozen nucleon approximation (one-dimensional integration) and full integration (7D) for

different weak response functions at q = 800 MeV/c in 12C. The results are preliminary.
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Figure: Comparison between frozen nucleon approximation

and full integration for different weak response functions (T, LL

and CL from top to bottom) at q = 800 MeV/c in 12C. These

results are still preliminary.

The frozen nucleon approximation (with only one
integration over θ′1 is an excellent approximation
to the 7D integral except when the ∆ current is
considered, either alone or with the rest of
contributions. This is because of the ∆-pole
propagator, which can be placed on-shell for the
∆-resonance at some ω value for a given q, when
(h1 + Q)2 = M2

∆ or (h2 + Q)2 = M2
∆.

For other ω values, the on-shellness condition for
the ∆ is reached at other values of h1 or h2,
which will be picked when performing the full
integration and these points will be one
contribution among thousands of others.
Meanwhile, in the frozen approximation all the
points (h1, h2) are assigned the same weight or
contribution to the full integral, and if it is the
case that for that ω value, the point
(h1, h2) = (~0,~0) hits the pole, then the only
thing what prevents the ∆ propagator from being
completely divergent is the ∆ width.

Therefore, the net effect of the full integration
around the ∆ peak is a kind of smearing of the
sharp ∆ peak obtained with the frozen nucleon
approximation.

One of our next objectives is trying to put an
effective width to the ∆ propagator (maybe a
parameterized one) that despite having no
physical interpretation, we expect it to be useful
to get accurate enough results to keep using the
frozen approximation because of its simplicity
and its extremely short time of computation.
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Separate isospin channels for electron scattering

(preliminary)
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Figure: Separate isospin transverse response functions for (e, e′) scattering in the frozen

approximation scheme.
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Conclusions and future plans

We have improved our previous study of the 2p-2h phase-space by including now the
square of the current matrix elements, but still keeping our final goal of finding a way to
obtain accurate enough results without calculating the 7D integral.

The frozen nucleon approximation (1D integral) seems to be a quite promising approach
to achieve it, except when the ∆ contribution is taken into account. We want to extend
the approach in order to get an unified treatment of all the contributions within this
approximation.

We have obtained the correspondence between the CM angular distribution and the LAB
one and we have understood in other way the origin of the divergence in the LAB angular
distribution.

We have given preliminary results for the angular distribution in the frozen approximation
where the effects of different contributions have been isolated.

We have also given preliminary results to test the validity of the frozen approximation for
the integrated responses.

We can give responses for separate isospin channels with neutrinos, antineutrinos and
electrons.

One of our next steps will be to extend the present model to give results for nuclei with
N 6= Z , to be used to calculate nuclei such as 40Ar, 56Fe or 208Pb.

...

2p-2h excitations in neutrino scattering April 20th, 2016 21 / 21


