Two-body current contributions in neutrino-nucleus scattering

SUMMARY/THEORY (rather a starting point for discussion)

Maria Barbaro

University of Turin and INFN, ITALY

ESNT, Saclay, April 18-22, 2016

Goals of the workshop

Discuss and compare different models

Benchmark models against electron scattering data

Compare results for neutrino scattering observables

Discuss best strategies to implement models in generators

2p2h models

Microscopic 2p2h models:

- Argonne/Los Alamos/Jlab
- Ghent
- Granada/MIT/Sevilla/Torino
- Lyon/Saclay
- Rome
- Valencia

(Lovato et al.)
(Ryckebusch et al.)
(Amaro et al.)
(Martini et al.)
(Rocco et al.)
(Nieves et al.)

2p2h models

Microscopic 2p2h models:

- Argonne/Los Alamos/Jlab
- Ghent
- Granada/MIT/Sevilla/Torino
- Lyon/Saclay
- Rome
- Valencia

Phenomenological models:

GIBUU

(Lovato et al.)
(Ryckebusch et al.)
(Amaro et al.)
(Martini et al.)
(Rocco et al.)
(Nieves et al.)

(Mosel et al.)

Models for the QEP

Each model is associated to a specific treatment of the **1-body part of the problem**:

- RPA
- spectral function
- superscaling / RMF
- Green's Function Monte Carlo
- HF
- Relativistic Green's Function

Models for the QEP

Each model is associated to a specific treatment of the **1-body part of the problem**:

- RPA
- spectral function
- superscaling / RMF
- Green's Function Monte Carlo
- HF
- Relativistic Green's Function
- **Correlations (SRC and LRC)**
- **Final state interactions**

Models for the QEP

Each model is associated to a specific treatment of the **1-body part of the problem**:

- RPA
- spectral function
- superscaling / RMF
- Green's Function Monte Carlo
- HF
- Relativistic Green's Function
- **Correlations (SRC and LRC)**
- **Final state interactions**

CONSISTENCY?

Comparison between models

Some models are similar, some very different from each other

Comparison between models

Some models are similar, some very different from each other

Different ingredients:

- underlying Lagrangian
- relativistic content
- correlations
- basis wave functions

Comparison between models

Some models are similar, some very different from each other

Different ingredients:

- underlying Lagrangian
- relativistic content
- correlations

- ...

- basis wave functions

Different approximations:

- selection of diagrams
- numerical approximations
- exchange terms

- ...

- longitudinal vs. transverse
- treatment of the Δ propagator
- inclusion of the axial response

When compared to **neutrino** data

- similar models give sometimes different results
- different models give sometimes similar results

When compared to neutrino data

- similar models give sometimes different results
- different models give sometimes similar results

Models must be tested against other data:

- electron scattering (superscaling)
- hadronic probes

When compared to neutrino data

- similar models give sometimes different results
- different models give sometimes similar results

Models must be tested against other data:

- electron scattering (superscaling)
- hadronic probes

Any code predicting neutrino scattering can be very easily converted into a code for electron scattering

When compared to neutrino data

- similar models give sometimes different results
- different models give sometimes similar results

Models must be tested against other data:

- electron scattering (superscaling)
- hadronic probes

Any code predicting neutrino scattering can be very easily converted into a code for electron scattering

Several groups showed detailed comparison with electron scattering data Every group is encouraged to do the same, possibly at the same conditions The **range of validity** of each model should be assessed

When compared to neutrino data

- similar models give sometimes different results
- different models give sometimes similar results

Models must be tested against other data:

- electron scattering (superscaling)
- hadronic probes

Any code predicting neutrino scattering can be very easily converted into a code for electron scattering

Several groups showed detailed comparison with electron scattering data Every group is encouraged to do the same, possibly at the same conditions The **range of validity** of each model should be assessed

It would be great if all generators could be adapted to electron scattering (some already are and some are working on it)

How can theorists help experimentalists?

- Provide the 2p2h hadronic tensor as a function of q and ω
- Provide parametrizations of the results
- Separate contributions of pn, pp and nn pairs
- Provide the two nucleons kinematics

How can theorists help experimentalists?

- Provide the 2p2h hadronic tensor as a function of q and ω
- Provide parametrizations of the results
- Separate contributions of pn, pp and nn pairs
- Provide the two nucleons kinematics
- What else?

How can theorists help experimentalists?

- Provide the 2p2h hadronic tensor as a function of q and ω
- Provide parametrizations of the results
- Separate contributions of pn, pp and nn pairs
- Provide the two nucleons kinematics
- What else?
- Warning: each model has a limited kinematical range of validity: extrapolations are dangerous

- Summary table, shared by all groups, with ingredients, approximations and range of validity of all models

- Summary table, shared by all groups, with ingredients, approximations and range of validity of all models

- Choose some kinematics for both (e,e') and $(\nu_{_l},l)$ and put predictions of different models on the same figure

- Summary table, shared by all groups, with ingredients, approximations and range of validity of all models

- Choose some kinematics for both (e,e') and (v_{l} ,I) and put predictions of different models on the same figure

- More suggestions are welcome

- Summary table, shared by all groups, with ingredients, approximations and range of validity of all models

- Choose some kinematics for both (e,e') and (v_{l} ,I) and put predictions of different models on the same figure

- More suggestions are welcome

DISCUSSION!