Physics program with SCRIT -- motivation of the project and results of commissioning --

KYO TSUKADA ELPH, TOHOKU UNIVERSITY

SCRIT co	llaboration	
	Tohoku Univ.	T. Suda, T. Tamae, K. Tsukada
	RIKEN	M. Hara, T. Hori, S.Ichikawa, T. Ohnishi, M. Wakasugi,
		M. Watanabe
	Rikkyo Univ.	K. Adachi, A. Enokizono, T. Fujita, M. Hori, K. Kurita,
		M. Togasaki, K. Yamada
	Shandong Univ.	Wang Shuo

Introduction

Electron scattering

Direct and unambiguous structure information of atomic nuclei

- structureless particle
- well known electromagnetic interaction
 - \blacktriangleright charge and current coupling \rightarrow EM structure
 - weak coupling \rightarrow probing whole volume without serious modification

valid for perturbation theory

Nuclei studied by electron scattering

Electron scattering is so powerful to investigate the nuclear structure information. But ...

- Strictly limited to stable nuclei
- Almost no data of unstable nuclei
 (a four executions: 3H 14C)

(a few exceptions: ³H,¹⁴C,,,)

Elastic electron scattering

- Relatively large cross section
- Doorway to various electron scattering experiments

Nuclear radii with EM probe

- X-ray from muonic atom (2P-1S)
 - <r²> with assumption of the shape
 - Stable nuclei
- Isotope shift of optical transition
 - δ<r²>
 - Relative change among isotopes
 - Stable and unstable nuclei
- Electron scattering
 - Charge density distribution
 - Stable nuclei so far

Only electron scattering can determine the nuclear shape.

The first goal of the project

Isotope chain of Sn $^{112-124}$ Sn : stable $^{126-132}$ Sn : unstable 126 Sn : 10⁵ year 128 Sn : 59 msec 130 Sn : 3.7 msec 132 Sn : 39 sec 134 Sn : 1.2 sec

¹³²Sn

- unstable
- double magic (50+82)
- important roles for nuclear structure study

Luminosity required for elastic electron scattering

Assumptions:

Spectrometer acceptance (d Ω ~80 msr, d θ :30-55 deg) Cross section calculated by DREPHA code

Luminosity required for ...

- elastic : charge density distribution
 - inelastic : transition density
- quasi-elastic : momentum density dist., S-factor, ...

Present Status of the facility and experimental study

SCRIT electron scattering facility

Commissioning experiments

2015-2016

The purposes are

- A) to achieve stable operations and higher luminosity by tuning the accelerator and ion transportation system,
- B) to study the spectrometer acceptance by measuring the angular distributions of stable nuclear targets,
- C) to establish the absolute luminosity measurement.
- Targets
 - Metal wire : Tungsten mounted at the center of the target region
 - Point source
 - Simple optics and acceptance
 - Gas ion : ¹³²Xe separated by the ERIS
 - Stable nucleus
 - ▶ Natural abundance is 26.9 %
 - No impurity of other isotopes due to good mass resolution of the ERIS

SCRIT electron scattering facility

Schematic of **SCRIT** system

SCRIT electron scattering facility

WISES (Window-frame Spectrometer for Electron Scattering)

WiSES

(Window-frame Spectrometer for Electron Scattering)

FDC (Front drift chamber) XX'XX' Cell size : 18 mm

Gas : $He+C_2H_6$ (80:20) Resolution : 150um

RDC (Rear drift chamber) UU'VV'XX'UU'VV' Cell size : 10 mm Gas : $He+C_2H_6$ (80:20) Resolution : 130um

Trigger hodoscope two scintillation counter

Helium bag Vinyl, 30µm thick Volume : 2000 I

Momentum resolution

A Drift chamber between the target and the magnet.

- ▶ in order to cover the long target, ~50 cm
- Materials on the trajectory of scattered electron
 - ▶ Be window : 5.7x10⁻³ X₀
 - ► FDC+HeBag+RDC : 1.3x10⁻³ X₀

The momentum resolutions ($\delta p/p$) are

- ▶ ~1.5x10⁻³ for Ee=300 MeV
- ~2x10⁻³ for Ee=200 MeV
- ~3x10⁻³ for Ee=150 MeV
 with 150 um resolution of DCs
 if we know the mag. field very well.

Commissioning data for WiSES

- Targer : ¹³²Xe
- Electron beam energy
 - ▶ 150 MeV : 5 days, irradiation time = 55,000 sec (Jan,Feb/2016) st Monday

(IN+OUT)

- irradiation time = $278,000 \sec (Apr/2016)$ 200 MeV : 8 days,
- 300 MeV : 1.5 days, irradiation time = 32,000 sec (Apr/2016)
- Electron beam current : 150 250 mA

Acceptance of WiSES

- Geant4 simulation
 - Generation
 - ▶ Ee : 150, 200, 300 MeV
 - ▶ Vz : -200 ~ 200 mm
 - Distribution is taken into account.
 - Radiative tail
 - Considering the Schwinger contribution
 J. Friedrich, Nucl.Instr.Meth.129 (1975) 505

75 [msr] in total

Angular distributions

► BG : L ~ 2x10²⁷ [/cm²/s]

(assuming oxygen calculated by DREPHA code)

Background evaluation

▶ Beam current : ~200 mA \rightarrow 10¹⁸ [e⁻/s]

Residual gases in the SCRIT : ~5x10⁻⁸ Pa
 → 6x10⁸ [particles/cm²]
 → L ~ 0.6x10²⁷ [/cm²/s]
 for neutral gas

Residual gases are ionized by the beam.

Amount is similar to the neutral ones.

Other materials

Beam halo hits the structures of SCRIT

and generate BG.

a few % of residual gas

L~2x10²⁷ [/cm²/s] for the BG is reasonable and unavoidable. We assume that the BG contribution can be removed by subtraction,

IonIN-IonOUT.

Angular distribution after BG subtraction

Angular distribution after BG subtraction

Data

- Analysis efficiency : $80\pm5\%$
 - Improvement and evaluation ongoing ...
- Systematic errors are not considered.
- Calculation
 - DREPHA code : a DWBA calc.
 - 2 parameters fermi (2PF) distribution is assumed.
 - ▶ C= 5.646 [fm]
 - ▶ t = 2.30 [fm]
- Distributions are well reproduced.
- Luminosities are estimated by fitting.
- Luminosity reach 10²⁷ [/cm²/s] on average.

Excited states of ¹³2Xe

Excited state

- ▶ 2+:667 keV
- ▶ 2+: 1297.9 keV

132Xe

The ground state and1st/2nd excited states could not be distinguished due to the momentum resolution of WiSES.

The ground state density and the transition density to the first 2⁺ state.

The influence of the excited states in the angular distribution will be studied.

Private communication with Theor. Group, Tohoku Univ.

Charge radius of ¹³²Xe

- No electron scattering data for xenon isotopes
- ▶ μ -X ray → <r²>^{1/2} = 4.787 [fm] assuming 2PF and t=2.30 [fm] <u>G. Fricke *et al.*, Atom.Nucl.Data Tables **60**, 177 (1995)</u>

А	124	126	128	129	130	131	132	134	136
r _{rms} [fm]	4.762	4.770	4.776	4.776	4.783	4.781	4.787	4.792	4.799

Very simple analysis for consistency check

- Analysis with same procedure as μ-X ray
 - ▶ t = 2.30 [fm] fixed

• $< r^2 >^{1/2}$ dependence of χ^2

 $< r^2 > 1/2 = 4.68 + 0.23 - 0.30$ $< r^2 > 1/2 = 4.92 + 0.23 - 0.22$

Analysis for diffuseness is ongoing by using large angle data.

unstable nuclei targets

in one year

- ¹³⁸Xe with L~10²⁶ [/cm2/s]
- ¹³²Sn with L~10²⁵ [/cm2/s]
- after beam power upgrade
 ¹³²Sn with L~10²⁷ [/cm2/s]

what is the next? (under discussion)

- ► Sn(Z=50) isotopes
- Xe(Z=54) isotopes
- N=82 isotones
 - ¹³²Sn-¹³³Sb-¹³⁴Te-¹³⁵I-¹³⁶Xe
 - how important or interesting?

Summary and outlook

- Electron scattering is so powerful for nuclear structure study.
- We have been developed the SCRIT electron scattering facility to realize electron scattering off unstable nuclei target.
 - ▶ The first goal of a target is ¹³²Sn.
 - Luminosity of 10^{27} cm⁻²s⁻¹ or more is necessary.

In 2015-2016, commissioning experiments have been carried out.

- Luminosity improvement
 - ▶ For ¹³²Xe target, 10²⁷ [/cm²/s] was achieved.
 - Also for Residual gas, L is larger than 10²⁷ [/cm²/s]
- Acceptance study
 - > Angular distribution of ¹³²Xe was consistent with the past measurement of μ X-ray.
- Electron scattering off unstable nucleus (¹³⁸Xe,¹³²Sn) will be performed near future.