DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr Irfu.cea.fr

ETIC: ELECTRON TRAPPED ION COLLISIONS FOR 10²⁹ LUMINOSITY

Antoine CHANCE On behalf of Jacques PAYET

ESNT workshop 25-27 April 2016 Electron-radioactive ion collisions: theoretical and experimental challenges

« ELECTRONS: PIÈGES À IONS! » SLOGAN REVISITÉ, MAI 68, A. GILLIBERT

SUMMARY

- Introduction
- Circular Accelerator for ETIC
- Parameters
- Optics
- **Space Charge tune shift**
- **—** Touschek lifetime
- Intra-Beam Scattering growth
- ERL for ETIC
- Advantages of ERL
- Challenges of ERL
- ERL Parameters
- Beam Breakup cure
- **ERL Preliminary lattices**
- ERL Magnets parameters

SCRIT -> ETIC

- Kyoto prototype confirmed the feasibility of SCRIT
 - Luminosity of 10²⁶ cm⁻²s⁻¹ achieved for 10⁶ ions of stable ¹³³Cs
 - Injection-trap-ejection and detection systems tested
 - Elastic scattering from Cs ions unambiguously observed
- SCRIT operative at RIKEN
 - Physics runs in 2015-2016
 - Luminosity limited to 10²⁷⁻²⁸ cm⁻²s⁻¹ → mainly elastic scattering of mid/heavy nuclei
- T. Suda *et al.,* Phys. Rev. Lett. **102**, 102501 (2009).

ETIC (Electron-Trapped Ion Collider)

- Working group started at CEA/IRFU within GANIL2025 discussions on a possible electron-ion collider started at CEA/IRFU
- SCRIT concept matches well GANIL settings (continuous injection / low energy)
- ETIC goal: gain a factor > 100 in luminosity w.r.t. SCRIT
 - Sreatly expand accessible types of reactions and reach in N/Z

Geometric Luminosity

$$L_{geom} = \frac{n_{bunch} N_{RI} N_{e,bunch}}{4\pi \sigma_x \sigma_y t_{rev}} = \frac{I_{beam} N_{RI}}{4\pi \sigma_x \sigma_y q_e} = \frac{N_{RI}}{4\pi q_e \kappa \sqrt{\beta_x \beta_y}} \frac{I_{beam}}{\varepsilon_x}$$
$$\kappa = \frac{\varepsilon_y}{\varepsilon_x}$$

To reach the luminosity one can play on:

Geometric Luminosity

$$L_{geom} = \frac{n_{bunch} N_{RI} N_{e,bunch}}{4\pi \sigma_x \sigma_y t_{rev}} = \frac{I_{beam} N_{RI}}{4\pi \sigma_x \sigma_y q_e} = \frac{N_{RI}}{4\pi q_e \kappa \sqrt{\beta_x \beta_y}} \frac{I_{beam}}{\varepsilon_x}$$
$$\kappa = \frac{\varepsilon_y}{\varepsilon_x}$$
To reach the luminosity one can play on:

The trapped ions number N_{RI}.

•

٠

Geometric Luminosity

$$L_{geom} = \frac{n_{bunch} N_{RI} N_{e,bunch}}{4\pi \sigma_x \sigma_y t_{rev}} = \frac{I_{beam} N_{RI}}{4\pi \sigma_x \sigma_y q_e} = \frac{N_{RI}}{4\pi q_e \kappa \sqrt{\beta_x \beta_y}} \frac{I_{beam}}{\varepsilon_x}$$

$$\kappa = \frac{\varepsilon_y}{\varepsilon_x}$$
To reach the luminosity one can play on:
• The trapped ions number N_{RI}.
• The electron beam intensity I_{beam}.

•

•

Geometric Luminosity

$$L_{geom} = \frac{n_{bunch} N_{RI} N_{e,bunch}}{4\pi \sigma_x \sigma_y t_{rev}} = \frac{I_{beam} N_{RI}}{4\pi \sigma_x \sigma_y q_e} = \frac{N_{RI} I_{beam}}{4\pi q_e \kappa \sqrt{\beta_x \beta_y} \varepsilon_x}$$

$$\kappa = \frac{\varepsilon_v}{\varepsilon_x}$$
To reach the luminosity one can play on:
• The trapped ions number N_{RI}.
• The electron beam intensity I_{beam}.
• The electron beam optics κ , β_x , β_y .

•

۲

٠

ullet

Geometric Luminosity

$$L_{geom} = \frac{n_{bunch} N_{RI} N_{e,bunch}}{4\pi \sigma_x \sigma_y t_{rev}} = \frac{I_{beam} N_{RI}}{4\pi \sigma_x \sigma_y q_e} = \frac{N_{RI}}{4\pi q_e \kappa \sqrt{\beta_x \beta_y}} \frac{I_{beam}}{\varepsilon_x}$$

$$\kappa = \frac{\varepsilon_y}{\varepsilon_x}$$
To reach the luminosity one can play on:
• The trapped ions number N_{RI}.
• The electron beam intensity I_{beam}.
• The electron beam optics κ , β_x , β_y .
• The electron beam emittance ε_x .

DE LA RECHERCHE À L'INDUSTRI

ORDER OF MAGNITUDE

$$I_{beam}$$
=200 mA, L_{geom} =10²⁹ cm⁻²s⁻¹, κ =0.5

MAIN FEATURES

- Luminosity goal 10²⁹ 10³⁰ cm⁻²s⁻¹
- Working energy range 0.5-0.7 GeV
- 6 m long free space, at least, for e-lons collisions
- Collider Interaction Region (like LHC, ILC)
- Racetrack shape, two long straight sections
- The experiment is located in one long straight section.
- Circular Accelerator
 - Adjustable equilibrium emittance from 4 nm down to 0.5 nm
 - Coupling 50%
 - Multiple Bend Achromat arc lattice
- Energy Recovery Linac
 - 1 nm emittance at working energy
 - Low emittance return arcs

CIRCULAR ACCELERATOR

DE LA RECHERCHE À L'INDUSTR

cea

MBA LATTICE V28, LAYOUT

- The arcs are composed by **12 cells** which form a **Multiple Bend Achromat**.
- The arc cell is composed by one dipole surrounded by four quadrupoles.
- Two arc quadrupole families allow to **adjust the** equilibrium emittance.
- Chromaticity corrected by 2 sextupole families.
- Additional dipolar windings in the sextupoles allow to correct the orbit.
- The first and last cells of the arcs are dispersion suppressors.

Element	Length (m)	#nb
Dipole	0.4033 + 0.2	24
Quadrupole 1	0.12 + 0.10	88
Quadrupole 2	0.26 + 0.13	24
Sextupole	0.15 + 0.10	94
BPM	0.15	56
t, Bellow kshop 25-27 Aj	or 1020115	26 PAGE 12

MBA LATTICE V28, 2.0 NM OPTICS

The focusing is reverted from either side of the straight section centers in order to balance the horizontal and vertical chromaticity.

MBA LATTICE V28, TUNING PARAMETERS

Tuning	1 nm @	700 MeV	1.5 nm @ 700 MeV		2 nm @	700 MeV	
Circumference (m)			108	.176			
Ec (MeV)	500	700	500	700	500	700	
ϵ_x (nm.rad)	0.59	1.16	0.76	1.49	1.09	2.14	
к Coupling (%)			5	0			
$\beta_{x,y}$ @ IP (m)	0.3,	0.3	0.2,	0.2	0.15, 0.15		
σ _{x,y} @ IP (μm)	13.4, 9.4	18.7, 13.2	12.3, 8.7	17.3, 12.2	12.8, 9.1	17.9, 12.7	
σ _δ (%)	0.0344	0.0482	0.0344	0.0481	0.0343	0.0481	
σ _s (mm)	4.43	5.80	4.46	5.88	4.52	6.02	
V _{RF} (kV)	58	94	68	108	87	135	
Q _{x,y}	11.702	, 6.685	11.300, 6.308		10.702, 6.703		
Chromaticity x,y	-4.41,	-2.59	-3.73, -3.17		-3.50, -3.53		
D _x max (m)	0.2	200	0.205		0.221		
I _{beam} (mA)	254	499	217	423	233	458	

- The 10²⁹ cm⁻²s⁻¹ luminosity goal is reached with 10⁶ trapped ions

Antoine Chance, ETIC project, ESNT workshop 25-27 April 2016

The particles undergo a repulsive force due to the Coulomb interaction with the beam. Due to this force, the betatron tunes of the particles are dispersed over a certain range.

Linear approximation

$$E_x \approx \frac{q_e \lambda}{2\pi\varepsilon_0} \frac{x}{\sigma_x(\sigma_x + \sigma_y)}, E_y \approx \frac{q_e \lambda}{2\pi\varepsilon_0} \frac{y}{\sigma_y(\sigma_x + \sigma_y)}$$
 q_e λ is the longitudinal charge density

SC Tune Shift

$$\Delta Q_{x,y\,SC} = \frac{\mp 1}{2\pi} \oint \beta_{x,y} k_{x,y} ds, \qquad k_{x,y} = -\frac{2 r_e \lambda}{\beta^2 \gamma^3 \sigma_{x,y} (\sigma_x + \sigma_y)}$$

For a Gaussian bunch of N_{e,bunch} particles and rms bunch length σ_s the SC tune shift is given by:

$$\Delta Q_{x,y\,SC} = \frac{2r_e N_{e,bunch}}{(2\pi)^{3/2} \sigma_s \beta^2 \gamma^3} \oint \frac{\beta_{x,y}}{\sigma_{x,y} \left(\sigma_x + \sigma_y\right)} ds$$

SC TUNE SHIFT : LASLETT TUNE SIFT

SC Laslett Tune Shift

$$\Delta Q_{x,y\,SC} = \frac{3\,r_e\,R_0N_{e,bunch}}{4\beta^2\,\gamma^3\varepsilon_{x,y}\,l_{bunch}} = \frac{3\,r_e\,R_0t_{rev}}{4\beta^2\,\gamma^3\,q_en_{bunch}l_{bunch}}\frac{I_{beam}}{\varepsilon_{x,y}}$$

The RF voltage, V_{RF} , is set in order to obtain the same momentum acceptance. Then, the bunch lengths are comparable for all equilibrium emittances.

The luminosity and the space charge tune shift remains constant when $I_{beam}/\epsilon_{x,y}$ is constant.

Cez

ε _x =1.16 nm, δ _{RF} =0.0	02, h=123, β _{x,y} =0.30	0 m, N _{RI} =10 ⁶ , L ₀ = 1	0 ²⁹ cm ⁻² s ⁻¹					
E _c (MeV)	500	600	700	750				
N _{e,bunch} (10 ⁹)	4.527	6.523	8.822	10.105				
$\Delta Q_{x,y}$ (10 ⁻²)	-2.88, -4.88	-1.54, -2.49	-1.01, -1.58	-0.83, -1.29				
$\Delta Q_{x,y}$ Laslett (10 ⁻²)	-2.16, -4.31	-1.08, -2.15	-0.60, -1.20	-0.46, -0.93				
ε _x =1.49 nm, δ _{RF} =0.0	ε _x =1.49 nm, δ _{RF} =0.02, h=123, β _{x,y} =0.20 m, N _{RI} =10 ⁶ , L ₀ = 10 ²⁹ cm ⁻² s ⁻¹							
E _c (MeV)	500	600	700	750				
N _{e,bunch} (10 ⁹)	3.868	5.579	7.539	8.644				
∆Q _{x,y} (10 ⁻²)	-1.85, -3.37	-0.98, -1.71	-0.34, -0.67	-0.22, -0.44				
$\Delta Q_{x,y}$ Laslett (10 ⁻²)	-1.43, -2.86	-0.71, -1.42	-0.39, -0.79	-0.30, -0.61				
ε _x =2.16 nm, δ _{RF} =0.0	02, h=123, β _{x,y} =0.1	5 m, N _{RI} =10 ⁶ , L ₀ = 1	0 ²⁹ cm ⁻² s ⁻¹					
E _c (MeV)	500	600	700	750				
N _{e,bunch} (10 ⁹)	4.206	6.06	8.198	9.393				
∆Q _{x,y} (10 ⁻²)	-0.77, -1.60	-0.42, -0.84	-0.24, -0.46	-0.19, -0.36				
$\Delta Q_{x,y}$ Laslett (10 ⁻²)	-1.07, -2.13	-0.53, -1.05	-0.29, -0.58	-0.22, -0.45				

Touschek effect is a loss mechanism:

Large angle Coulomb collisions in the bunch

- \Rightarrow **Momentum transfers** into the **longitudinal** plane.
- \Rightarrow Change of the betatron amplitudes if occurs in dispersive areas.
- \Rightarrow Loss of the particles if:
 - \Rightarrow the momentum exceeds the RF acceptance or
 - \Rightarrow if the transverse extensions exceed the acceptance (physical or dynamic).

The half life at a location s is given by

$$\frac{1}{\tau_{1/2}(s)} = \frac{c r_e^2 N_{e,bunch}}{8 \pi \sigma_x \sigma_y \sigma_s} \frac{D(\xi)}{\gamma^2 \delta_{RF}^2}$$

$$D(\xi) = \sqrt{\xi} \left\{ -\frac{3}{2} e^{-\xi} + \frac{\xi}{2} \int_{\xi}^{\infty} \frac{\ln(u)}{u} e^{-u} du + \frac{3\xi - \xi \ln(\xi) + 2}{2} \int_{\xi}^{\infty} \frac{e^{-u}}{u} du \right\} \quad \xi = \left(\frac{\delta_{RF} \beta_x}{\gamma \sigma_x}\right)^2$$

The total half life is the average around the ring

$$\frac{1}{\tau_{1/2}} = \frac{1}{C} \oint \frac{ds}{\tau_{1/2}(s)}$$

TOUSCHEK LIFETIME

ϵ_x =1.16 nm, δ_{RF} =0.02, h=123, $\beta_{x,y}$ =0.30 m, N _{RI} =10 ⁶ , L ₀ = 10 ²⁹ cm ⁻² s ⁻¹								
E _c (MeV)	500	600	700	750				
I _{beam} (mA)	254	366	495	567				
N _{e,bunch} (10 ⁹)	4.527	6.523	8.822	10.105				
τ _{Touschek} (h)	0.95	1.15	1.46	1.66				
ε _x =1.49 nm, δ _{RF} =	ϵ_x =1.49 nm, δ_{RF} =0.02, h=123, $\beta_{x,y}$ =0.20 m, N _{RI} =10 ⁶ , L ₀ = 10 ²⁹ cm ⁻² s ⁻¹							
E _c (MeV)	500	600	700	750				
I _{beam} (mA)	217	313	423	485				
N _{e,bunch} (10 ⁹)	3.868	5.579	7.539	8.644				
τ _{Touschek} (h)	1.25	1.54	2.01	2.31				
ε _x =2.16 nm, $δ_{RF}$ =	:0.02, h=123, β _{x,y} =	0.15 m, N _{RI} =10 ⁶ , L	- ₀ = 10 ²⁹ cm ⁻² s ⁻¹					
E _c (MeV)	500	600	700	750				
I _{beam} (mA)	236	340	460	527				
N _{e,bunch} (10 ⁹)	4.206	6.060	8.198	9.393				
τ _{Touschek} (h)	1.35	1.74	2.38	2.79				

Intra-beam scattering: multiple Coulomb scattering

- \Rightarrow Diffusion in all three directions
- \Rightarrow Changes the beam dimensions.
- \Rightarrow We get the growth rates for the 3 degrees of freedom by computing the momentum variation by scattering in between the beam particles.

$$\begin{cases} \frac{d\varepsilon_{x,y}}{dt} = -\frac{2}{\tau_{x,y}} \left(\varepsilon_{x,y} - \varepsilon_{x,y,0} \right) + \frac{2\varepsilon_{x,y}}{T_{x,y} \left(\varepsilon_{x}, \varepsilon_{y}, \sigma_{\delta} \right)} \\ \frac{d(\sigma_{\delta}^{2})}{dt} = -\frac{2}{\tau_{\delta}} \left(\sigma_{\delta}^{2} - \sigma_{\delta 0}^{2} \right) + \frac{2\sigma_{\delta}^{2}}{T_{\delta} \left(\varepsilon_{x}, \varepsilon_{y}, \sigma_{\delta} \right)} \end{cases}$$

where $\begin{cases} T_{x,y,\delta}(\varepsilon_x, \varepsilon_y, \sigma_\delta) \text{ are the IBS growth rates} \\ \tau_{x,y,\delta} \text{ are the synchrotron radiation damping times} \\ \varepsilon_{x,y,0}, \sigma_{\delta 0} \text{ are the zero current emittances and momentum spread} \end{cases}$

Equilibrium emittance is reached when the SR damping counterbalances the emittance growing.

$$\frac{d\varepsilon_{x,y}}{dt} = 0, \frac{d(\sigma_{\delta}^2)}{dt} = 0$$

DE LA RECHERCHE À L'INDUSTR

INTRA-BEAM SCATTERING : W/O BUNCH LENGTHENING

$N_{RI}=10^{6}, L_{0}=10^{29} \text{ cm}^{-2} \text{ s}^{-1}$										
Ec (MeV)		500			600			700		
Approximation	Bane	MAX IV	CIMP	Bane	MAX IV	CIMP	Bane	MAX IV	CIMP	
1.0 nm tuning	ε _{x,0} = 0.5	59 nm, σ _{δ,0} =	3.4 10 -4	ε _{x,0} = 0 .	86 nm, σ _{δ,0} =	4.1 10 ⁻⁴	ε _{x,0} = 1.1	$\epsilon_{\mathrm{x},0}$ = 1.16 nm, $\sigma_{\delta,0}$ = 4.8 10		
T _{x,y} (ms)	X	X	X	X	X	X	140	138	108	
T_{δ} (ms)	X	X	X	X	X	X	50	49	46	
ε _{x,y} (nm)	X	X	X	X	X	X	1.58, 0.79	1.59, 0.80	1.78, 0.58	
σ _δ (10 ⁻⁴)	X	X	X	X	X	X	6.0	6.1	6.2	
1.5 nm tuning	$\epsilon_{\rm x,0}$ = 0.76 nm, $\sigma_{\delta,0}$ = 3.4 10 ⁻⁴			$\epsilon_{x,0}$ = 1.10 nm, $\sigma_{\delta,0}$ = 4.1 10 ⁻⁴			$\epsilon_{\rm x,0}$ = 1.49 nm, $\sigma_{\delta,0}$ = 4.8 10 ⁻⁴			
T _{x,y} (ms)	X	X	X	X	X	X	218	221	166	
T_{δ} (ms)	X	X	X	X	X	X	62	62	58	
ε _{x,y} (nm)	X	Х	X	X	X	X	1.80, 0.90	1.79, 0.90	1.92, 0.75	
σ _δ (10 ⁻⁴)	X	X	X	X	X	X	5.7	5.7	5.8	
2.0 nm tuning	ε _{x,0} = 1.0	09 nm, σ _{δ,0} =	3.4 10 ⁻⁴	ε _{x,0} = 1.	$\epsilon_{\rm x,0}$ = 1.57 nm, $\sigma_{\delta,0}$ = 4.1 10 ⁻⁴		ε _{x,0} = 2.14 nm, σ		4.8 10 ⁻⁴	
T _{x,y} (ms)	X	X	X	231	236	175	381	404	286	
T_{δ} (ms)	X	X	X	57	58	54	75	79	73	
ε _{x,y} (nm)	X	X	X	2.12, 1.06	2.11, 1.05	2.38, 0.79	2.38, 1.19	2.36, 1.18	2.47, 1.07	
σ _δ (10 ⁻⁴)	X	X	X	5.8	5.8	6.0	5.5	5.5	5.5	

Antoine Chance, ETIC project, ESNT workshop 25-27 April 2016

| PAGE 21

With 10⁶ trapped ions, the 10²⁹ cm⁻²s⁻¹ **luminosity goal is reached** with a conventional electron circular accelerator.

For **500-600 MeV** working energy range, a good compromise between optics and equilibrium emittance seems the lattice "**2.0 nm tuning**", which leads to the lowest space charge tune shift and the lowest IBS growth.

The Touschek life time remains short, but compatible with the experiments.

The **IBS is an issue** and we have to consider a bunch lengthening with harmonic cavities, this will have a positive effect on the SC tune shift and on the Touschek life time.

An **increase of the number of trapped ions** will allow to reduce the electron beam intensity :

- **____** the IBS growth will decrease,
- the Touschek life time will increase,
- the SC tune shift will decrease.

ENERGY RECOVERY LINAC

ADVANTAGES OF AN ERL

Advantage of ERL vs Storage Ring

- Non-equilibrium conditions (IBS, Touschek life-time,...)
- All of this is particularly important at low energy (300-500 MeV)
- Beam characteristics determined by injector
- Small emittance, Ultra short bunches
- The difficulties inherent to the circular machines have no more place
- Dynamic aperture, Resonances crossing

Advantage of ERL vs Linacs

- Improvement in efficiency
- An ERL is less expensive in exploitation cost
- Increase in average current (CW)
- Reduced beam dump activation

CHALLENGES

- High current & low emittance beam production
 - Source, injector
- Emittance control
 Emittance growth due to SR
- Beam/orbit stability
- Sub-micro stability (rms) is required
- 10⁻⁴ energy stability is needed
- SRF issues
- HOM damping
- RF cavity design, high Q₀ cavity
- Collective effects
 - Beam break-up (BBU) instability

Instrumentation & diagnostics

DE LA RECHERCHE À L'INDUSTR

Many challenges

 $\varepsilon_{\rm N} = \beta \gamma \varepsilon({\sf E}_{\rm c})$

Injector Parameters	
Energy (MeV)	10
Charge per bunch (pC)	77
Normalized Emittance (mm.mrad)	1
Bunch length rms (ps)	2
Repetition Rate (CW, MHz)	1300
I _{beam} (mA)	100

		_					
ERL, IR Parameters							
Injection/Extraction energy (MeV)	10						
Beam dump power (MW)	1						
Energy max. (MeV)	530						
Beam power @ 530 MeV (MW)	53						
Emittance @ 500 MeV (nm.rad)	1.02						
β _{x,y} @ IP (m)	0.048		V	With N _F	With N _{RI} =10 ⁶	With $N_{RI} = 10^6 \Rightarrow L_0 =$	With $N_{RI} = 10^6 \Rightarrow L_0 = 10^{29} c$
Beam size @ IP (µm)	7						

DE LA RECHERCHE À L'INDUSTRI

SCHEMATIC LAYOUT

530 MEV ETIC PRELIMINARY LAYOUT

ETIC 530 MeV: -4 accelerator modules -interaction region @ 530 MeV -return optic not yet considered -dogleg is not yet considered

	Circumference (m)	147.85
	Footprint (m x m)	70 x 12
	E _c (MeV)	530
	N _{RI} (10 ⁶)	1
	Emittance @ 530 MeV (nm.rad)	0.96
>	β _{x,y} @ IP (m)	0.05 — 0.025
₹	Size @ IP (μm)	6.9 — 4.9
	L ₀ /IP @ 530 MeV (10 ²⁹ cm ⁻² s ⁻¹)	1.03 — 2.06

Antoine Chance, ETIC project, ESNT workshop 25-27 April 2016

DE LA RECHERCHE À L'INDUSTR

140 MEV DEMONSTRATOR PRELIMINARY LAYOUT

With 10⁶ trapped ions, the 10²⁹ cm⁻²s⁻¹ luminosity goal can be **reached** with a **530 MeV ERL** accelerator.

An ERL is an interesting solution because it does not have the circular machines related issues. This is particularly important at low energy.

However an increase of the trapped ions will be greatly appreciated.

When the needed electron beam intensity becomes lower

 \Rightarrow The electron source parameters can be relaxed.

A 140 MeV ERL demonstrator can be a first step.

GENERAL CONCLUSIONS

The aim of ETIC is to push the luminosity to 10²⁹ by using a scheme a la SCRIT (circulating electron bunch which collided with trapped ions).

Two options were explored:

- A circular collider, which can work up to 700 MeV. A first optics was delivered. The main limitation comes from the intra beam scattering. At low energy (less than 700 MeV), the **IBS becomes an issue**. It limits the stored intensity and thus the luminosity. A solution is to use harmonic cavities to make RF gymnastics. That is a more expensive and needs more studies.
- An electron recirculating linac (ERL). The IBS is not anymore a problem and we can work at lower energy. A first layout has been shown at 530 MeV. A special effort must be performed on the **electron source quality**.
- In both cases, a key point is the **ion capture efficiency**. The more efficient the capture is, the less intensity we need. The parameters can be then relaxed.
- That is why a proposal of an intermediary step was made with a 140 MeV demonstrator to validate some of the key points of such a machine.

Thank you for your attention.

MBA LATTICE V28, MAGNETS

2 quadrupole types

Quadrupoles @ 750 MeV					
#nb	24				
Bore Diameter \varnothing (mm)	100				
Magnetic length (m)	0.26				
Gradient G (T/m)	13.8				
#nb	88				
Bore Diameter \varnothing (mm)	56				
Magnetic length (m)	0.12				
Gradient G (T/m)	32.6				

Bend @ 750 MeV#nb24Bore Diameter Ø (mm)56Magnetic length (m)0.4033Field B (T)1.625Gradient G (T/m)0

2 sextupole families					
Sextupoles @ 750 MeV					
#nb 94					
Bore Diameter \varnothing (mm)	56				
Magnetic length (m)	0.15				
1/2 d ² B _y /dx ² (T/m ²)	305.5				

MBA LATTICE V28, 1.0 NM PARAMETERS

Circumference (m)	108.176	E _c (MeV)	500	700
L bend (m)	0.4033	B field (T)	1.0846	1.5167
ρ bend (m)	1.5407	ε _x (nm)	0.59	1.16
n bend=-p/B ₀ dB _y /dx	0	σ _x @ IP (μm)	13.35	18.68
eta_{x} , eta_{y} @ IP (m)	0.3, 0.3	σ _y @ IP (μm) κ=.50	9.44	13.21
D _x max (m)	0.200	V _{RF} (kV)	58	94
Q _x , Q _y	11.702,6.685	δ _{RF} (%)	2.	2.
Q_x , Q_y arc cell	0.440, 0.257	σ _δ (%)	0.0344	0.0482
$\xi_{x,y}=1/Q_{x,y} dQ_{x,y}/d\delta$	-4.41, -2.59	σ _s (mm)	4.43	5.80
l/(2Bρ) d ² B _y /dx ² (m ⁻²)	10.82,-15.37	τ _x (ms)	102.05	37.19
t _{rev} (ns)	360.8	τ _s (ms)	49.91	18.19
RF frequency (MHz)	352	I _{beam} (mA)	254	499
h, n _{bunch}	127, 127	(∆Q _x SC)	0.0221	0.0062
α _c	1.31 10 ⁻³	(∆Q _y SC)	0.0441	0.0124
N _{RI} (10 ⁶)	1	L ₀ (cm ⁻² s ⁻¹ 10 ²⁹)	1	1

MBA LATTICE V28, 1.0 NM OPTICS

 $\sqrt{\beta_x (m^{1/2})} \sqrt{\beta_y (m^{1/2})} D_x (m)$ 5 4 3 2 1 <u>AHANLÖLAHAN ÖLAHAN ÖLAHAN Ö</u>LAHAN 0 Quarter ring (injection) optics 25 (m)

60

80

OPTICAL FUNCTIONS

1st 0.000E+00

1st 0.000E+00

E1/Pi=

E2/Pi=

0.000E+00

4.817E-04

PAGE 35

(m)

E3/Pi= 0.000E+00 DP/P =

BETA-LNS V8.32 /16/08/15/ 2015/08/27 14:29:3

MBA LATTICE V28, 1.5 NM PARAMETERS

Circumference (m)	108.176	E _c (MeV)	500	700
L bend (m)	0.4033	B field (T)	1.0846	1.5167
ρ bend (m)	1.5407	ε _x (nm)	0.76	1.49
n bend=-p/B ₀ dB _y /dx	0	σ _x @ IP (μm)	12.34	17.27
β_x , β_y @ IP (m)	0.2, 0.2	σ _y @ IP (μm) κ=.50	8.72	12.21
D _x max (m)	0.205	V _{RF} (kV)	68	108
Q _x , Q _y	11.300,6.308	δ _{RF} (%)	2.	2.
Q_x , Q_y arc cell	0.420, 0.237	σ _δ (%)	0.0344	0.0481
$\xi_{x,y}=1/Q_{x,y} \ dQ_{x,y}/d\delta$	-3.73, -3.17	σ _s (mm)	4.46	5.88
l/(2Bρ) d ² B _y /dx ² (m ⁻²)	12.14,-16.80	τ _x (ms)	102.33	37.29
t _{rev} (ns)	360.8	τ _s (ms)	49.84	18.16
RF frequency (MHz)	352	I _{beam} (mA)	217	423
h, n _{bunch}	127, 127	(∆Q _x SC)	0.0146	0.0040
α _c	1.56 10 ⁻³	(∆Q _y SC)	0.0293	0.0081
N _{RI} (10 ⁶)	1	L ₀ (cm ⁻² s ⁻¹ 10 ²⁹)	1.0	1.0

MBA LATTICE V28, 1.5 NM OPTICS

MBA LATTICE V28, 2.0 NM PARAMETERS

Circumference (m)	108.176	E _c (MeV)	500	700
L bend (m)	0.4033	B field (T)	1.0846	1.5167
ρ bend (m)	1.5407	ε _x (nm)	1.09	2.14
n bend=-p/B ₀ dB _y /dx	0	σ _x @ IP (μm)	12.81	17.93
eta_{x} , eta_{y} @ IP (m)	0.15, 0.15	σ _y @ IP (μm) κ=.50	9.06	12.68
D _x max (m)	0.221	V _{RF} (kV)	87	135
Q _x , Q _y	10.702,6.703	δ _{RF} (%)	2.	2.
Q_x , Q_y arc cell	0.391, 0.256	σ _δ (%)	0.0343	0.0481
$\xi_{x,y}=1/Q_{x,y} dQ_{x,y}/d\delta$	-3.50, -3.53	σ _s (mm)	4.52	6.02
l/(2Bρ) d ² B _y /dx ² (m ⁻²)	13.00,-18.25	τ _x (ms)	102.91	37.50
t _{rev} (ns)	360.8	τ _s (ms)	49.71	18.11
RF frequency (MHz)	352	I _{beam} (mA)	233	458
h, n _{bunch}	127, 127	(∆Q _x SC)	0.0108	0.0030
α _c	2.05 10 ⁻³	(∆Q _y SC)	0.0216	0.0059
N _{RI} (10 ⁶)	1	L ₀ (cm ⁻² s ⁻¹ 10 ²⁴)	1.	1.

INTRA-BEAM SCATTERING (2)

To evaluate the effect three models of IBS growth rate was used

The K. Bane high energy approximation

$$\frac{1}{T_{\delta}} \approx \frac{r_e^2 c N_e(log)}{32 \gamma^3 \varepsilon_x^{\frac{3}{4}} \varepsilon_y^{\frac{3}{4}} \sigma_s \sigma_{\delta}^3} \left\langle \sigma_H g_{bane} \left(\frac{a}{b}\right) \left(\beta_x \beta_y\right)^{-\frac{1}{4}} \right\rangle, \frac{1}{T_{x,y}} \approx \frac{\sigma_{\delta}^2 \left\langle H_{x,y} \right\rangle}{\varepsilon_{x,y}} \frac{1}{T_{\delta}}$$

The MAX IV approximation

$$\frac{1}{T_{\delta}} \approx \frac{r_e^2 c N_e(\log)}{32 \gamma^3 \varepsilon_x \varepsilon_y \sigma_s \sigma_{\delta}^2} \left(\frac{\varepsilon_x \varepsilon_y}{\langle \beta_x \rangle \langle \beta_y \rangle}\right)^{\frac{1}{4}}, \frac{1}{T_{x,y}} \approx \frac{\sigma_{\delta}^2 \langle H_{x,y} \rangle}{\varepsilon_{x,y}} \frac{1}{T_{\delta}}$$

The modified Piwinski approximation (CIMP)

$$\begin{cases} \frac{1}{T_{\delta}} \approx \frac{r_e^2 c N_e(\log)}{32 \pi^{1/2} \beta^3 \gamma^4 \varepsilon_x \varepsilon_y \sigma_s \sigma_\delta} \left| \frac{\sigma_H^2}{\sigma_\delta^2} \left(\frac{g_{CIMP}(b/a)}{a} + \frac{g_{CIMP}(a/b)}{b} \right) \right| \\ \frac{1}{T_x} \approx \frac{r_e^2 c N_e(\log)}{32 \pi^{1/2} \beta^3 \gamma^4 \varepsilon_x \varepsilon_y \sigma_s \sigma_\delta} \left| -a g_{CIMP} \left(\frac{b}{a} \right) + \frac{H_x \sigma_H^2}{\varepsilon_x} \left(\frac{g_{CIMP}(b/a)}{a} + \frac{g_{CIMP}(a/b)}{b} \right) \right| \\ \frac{1}{T_y} \approx \frac{r_e^2 c N_e(\log)}{32 \pi^{1/2} \beta^3 \gamma^4 \varepsilon_x \varepsilon_y \sigma_s \sigma_\delta} \left| -b g_{CIMP} \left(\frac{a}{b} \right) + \frac{H_y \sigma_H^2}{\varepsilon_y} \left(\frac{g_{CIMP}(b/a)}{a} + \frac{g_{CIMP}(a/b)}{b} \right) \right| \\ \frac{1}{T_y} \approx \frac{r_e^2 c N_e(\log)}{32 \pi^{1/2} \beta^3 \gamma^4 \varepsilon_x \varepsilon_y \sigma_s \sigma_\delta} \left| -b g_{CIMP} \left(\frac{a}{b} \right) + \frac{H_y \sigma_H^2}{\varepsilon_y} \left(\frac{g_{CIMP}(b/a)}{\varepsilon_y} + \frac{g_{CIMP}(a/b)}{b} \right) \right| \\ \frac{1}{T_y} \approx \frac{r_e^2 c N_e(\log)}{32 \pi^{1/2} \beta^3 \gamma^4 \varepsilon_x \varepsilon_y \sigma_s \sigma_\delta} \left| -b g_{CIMP} \left(\frac{a}{b} \right) + \frac{H_y \sigma_H^2}{\varepsilon_y} \left(\frac{g_{CIMP}(b/a)}{\varepsilon_y} + \frac{g_{CIMP}(a/b)}{b} \right) \right| \\ \frac{1}{T_y} \approx \frac{r_e^2 c N_e(\log)}{\varepsilon_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \approx \frac{r_e^2 c N_e(\log)}{\varepsilon_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}{b} \right) \right| \\ \frac{1}{T_y} \left| -b g_{CIMP} \left(\frac{a}$$

INTRA-BEAM SCATTERING (3)

Where :

ноне й старактии

$$\begin{split} \frac{1}{\sigma_{H}^{2}} &= \frac{1}{\sigma_{\delta}^{2}} + \frac{H_{x}}{\varepsilon_{x}} + \frac{H_{y}}{\varepsilon_{y}}, a = \frac{\sigma_{H}}{\gamma} \sqrt{\frac{\beta_{x}}{\varepsilon_{x}}}, b = \frac{\sigma_{H}}{\gamma} \sqrt{\frac{\beta_{y}}{\varepsilon_{y}}} \\ H_{x,y} &= \gamma_{x,y} D_{x,y}^{2} + 2\alpha_{x,y} D_{x,y} D_{x,y}' + \beta_{x,y} (D_{x,y}')^{2} \\ & (log) \approx ln \left(\frac{\gamma^{2} \varepsilon_{x} \langle \sigma_{y} \rangle}{r_{e} \langle \beta_{x} \rangle}\right) \\ g_{bane}(u) &\approx 2 u^{(0.021-0.044 \ln(u))}, 0.01 < u < 1 \\ g_{CIMP}(u) &\approx 2.691 \left(1 - \frac{0.22889}{u}\right) \frac{1}{(1 + 0.16 u)(1 + 1.35 e^{-u/0.2})}, 0.1 < u < 10 \end{split}$$

INTRA-BEAM SCATTERING : L_{BUNCH} X 2

$N_{RI} = 10^6, L_0 = 10^{29}$	cm ⁻² s ⁻¹								
Ec (MeV)	500		600			700			
Approximation	Bane	MAX IV	CIMP	Bane	MAX IV	CIMP	Bane	MAX IV	CIMP
1.0 nm tuning	$ε_{x,0}$ = 0.59 nm, $σ_{\delta,0}$ = 3.4 10 ⁻⁴		ε _{x,0} = 0.85 nm, σ _{δ,0} = 4.1 10 ⁻⁴		ε _{x,0} = 1.16 nm, σ _{δ,0} = 4.8 10 ⁻⁴				
T _{x,y} (ms)							231	227	181
T_{δ} (ms)							67	65	63
ε _{x,y} (nm)							1.38, 0.69	1.38, 0.69	1.45, 0.58
σ _δ (10 ⁻⁴)							5.6	5.6	5.6
1.5 nm tuning	$\epsilon_{x,0} = 0.76 \text{ nm}, \sigma_{\delta,0} = 3.4 \text{ 10}^{-4}$		$ε_{x,0}$ = 1.10 nm, $σ_{\delta,0}$ = 4.1 10 ⁻⁴		ε _{x,0} = 1.49 nm, σ _{δ,0} = 4.8 10 ⁻⁴				
T _{x,y} (ms)				201	204	156	318	331	248
T_{δ} (ms)				67	68	62	94	98	90
ε _{x,y} (nm)				1.54, 0.77	1.53, 0.76	1.74, 0.55	1.68, 0.84	1.68, 0.84	1.75, 0.75
σ _δ (10 ⁻⁴)				5.4	5.4	5.6	5.3	5.3	5.4
2.0 nm tuning	ε _{x,0} = 1.	10 nm, σ _{δ,0} =	3.4 10 ⁻⁴	ε _{x,0} = 1.	58 nm, σ _{δ,0} =	4.1 10 ⁻⁴	$\varepsilon_{\rm x,0} = 2.7$	16 nm, σ _{δ,0} =	4.8 10 -4
T _{x,y} (ms)				252	274	193	445	508	342
T_{δ} (ms)				81	87	75	130	147	125
ε _{x,y} (nm)				2.1, 1.0	2.0, 1.0	2.3, 0.79	2.35, 1.17	2.32, 1.16	2.42, 1.08
σ _δ (10 ⁻⁴)				5.1	5.0	5.2	5.2	5.1	5.2

BBU OPTICAL SUPPRESSION SCHEME [1] [1] D. DOUGLAS JLAB-TN-04-023

Antoine Chance, ETIC project, ESNT workshop 25-27 April 2016

Arc dipoles	8
Magnetic length (m)	0.625
Deviation (rad)	π/8
Curvature radius (m)	1.591549
Field @ 530 MeV (T)	1.113

Injection/Extraction dipoles	8
Magnetic length (m)	0.3
Deviation (mrad)	8.281036
Curvature radius (m)	36.22735
Field @ 530 MeV (T)	0.05

Quadrupoles	81
Magnetic length (m)	0.2
Gradient @ 530 MeV (T/m)	19.6

RF modules	4
length (m)	11.2
Energy gain / module (MeV)	130
Frequency (GHz)	1.3