ETIC: ELECTRON TRAPPED ION COLLISIONS FOR $10{ }^{29}$ LUMINOSITY

Antoine CHANCE
On behalf of Jacques PAYET

ESNT workshop 25-27 April 2016
Electron-radioactive ion collisions: theoretical and experimental challenges
«ELECTRONS: PIĖGES À IONS!»

SUMMARY

- Introduction
- Circular Accelerator for ETIC
- Parameters
- Optics
- Space Charge tune shift
- Touschek lifetime
- Intra-Beam Scattering growth
- ERL for ETIC
- Advantages of ERL
- Challenges of ERL
- ERL Parameters
- Beam Breakup cure
- ERL Preliminary lattices
- ERL Magnets parameters

SCRIT \rightarrow ETIC

* Kyoto prototype confirmed the feasibility of SCRIT

- Luminosity of $10^{26} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ achieved for 10^{6} ions of stable ${ }^{133} \mathrm{Cs}$
- Injection-trap-ejection and detection systems tested
- Elastic scattering from Cs ions unambiguously observed
* SCRIT operative at RIKEN
- Physics runs in 2015-2016
- Luminosity limited to $10^{27-28} \mathrm{~cm}^{-2} \mathbf{s}^{-1} \rightarrow$ mainly elastic scattering of mid/heavy nuclei
T. Suda et al., Phys. Rev. Lett. 102, 102501 (2009).

ETIC (Electron-Trapped Ion Collider)

- Working group started at CEA/IRFU within GANIL2025 discussions on a possible electron-ion collider started at CEA/IRFU
- SCRIT concept matches well GANIL settings (continuous injection / low energy)
- ETIC goal: gain a factor > $\mathbf{1 0 0}$ in luminosity w.r.t. SCRIT

צ Greatly expand accessible types of reactions and reach in N/Z
צ Open up exciting areas of potential physics research

Geometric Luminosity

$$
\begin{gathered}
L_{\text {geom }}=\frac{n_{\text {bunch }} N_{R I} N_{e, \text { bunch }}}{4 \pi \sigma_{x} \sigma_{y} t_{r e v}}=\frac{I_{\text {beam }} N_{R I}}{4 \pi \sigma_{x} \sigma_{y} q_{e}}=\frac{N_{R I}}{4 \pi q_{e} \kappa \sqrt{\beta_{x} \beta_{y}}} \frac{I_{\text {beam }}}{\varepsilon_{x}} \\
\kappa=\frac{\varepsilon_{y}}{\varepsilon_{x}}
\end{gathered}
$$

To reach the luminosity one can play on:

Geometric Luminosity

$$
\begin{gathered}
L_{\text {geom }}=\frac{n_{\text {bunch }} N_{R I} N_{e, \text { bunch }}}{4 \pi \sigma_{x} \sigma_{y} t_{r e v}}=\frac{I_{\text {beam }} N_{R I}}{4 \pi \sigma_{x} \sigma_{y} q_{e}}=\frac{N_{R I}}{4 \pi g{ }_{e} \kappa \sqrt{\beta_{x} \beta_{y}}} \frac{I_{b e a m}}{\varepsilon_{x}} \\
\kappa=\frac{\varepsilon_{y}}{\varepsilon_{x}}
\end{gathered}
$$

To reach the luminosity one can play on:

- The trapped ions number N_{RI}.

Geometric Luminosity

$$
L_{\text {geom }}=\frac{n_{\text {bunch }} N_{R I} N_{e, \text { bunch }}}{4 \pi \sigma_{x} \sigma_{y} t_{r e v}}=\frac{I_{\text {beam }} N_{R I}}{4 \pi \sigma_{x} \sigma_{y} q_{e}}=\frac{N_{R I}}{4 \pi q_{e} \kappa \sqrt{\beta_{x} \beta_{y}} \varepsilon_{\varepsilon_{x}}}
$$

To reach the luminosity one can play on:

- The trapped ions number N_{RI}.
- The electron beam intensity $\mathrm{I}_{\text {beam }}$.

Geometric Luminosity

$$
\begin{gathered}
L_{\text {geom }}=\frac{n_{\text {bunch }} N_{R I} N_{e, \text { bunch }}}{4 \pi \sigma_{x} \sigma_{y} t_{\text {rev }}}=\frac{I_{\text {beam }} N_{R I}}{4 \pi \sigma_{x} \sigma_{y} q_{e}}=\frac{N_{R I}}{4 \pi q \kappa \sqrt{\beta_{x} \beta_{y}}} \frac{I_{\text {beam }}}{\varepsilon_{x}} \\
\kappa=\varepsilon_{\varepsilon_{x}}
\end{gathered}
$$

To reach the luminosity one can play on:

- The trapped ions number N_{RI}.
- The electron beam intensity $I_{\text {beam }}$.
- The electron beam optics $\kappa, \beta_{x}, \beta_{y}$.

LUMINOSITY

Geometric Luminosity

To reach the luminosity one can play on:

- The trapped ions number N_{RI}.
- The electron beam intensity $I_{\text {beam }}$.
- The electron beam optics $\kappa, \beta_{x}, \beta_{y}$.
- The electron beam emittance ε_{x}.

cea ORDER OF MAGNITUDE

$$
I_{\text {beam }}=200 \mathrm{~mA}, \mathrm{~L}_{\text {geom }}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \mathrm{~K}=0.5
$$

■ Luminosity goal $10^{29}-10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- Working energy range $0.5-0.7 \mathrm{GeV}$

■ 6 m long free space, at least, for e-lons collisions

- Collider Interaction Region (like LHC, ILC)

■ Racetrack shape, two long straight sections

- The experiment is located in one long straight section.
- Circular Accelerator
- Adjustable equilibrium emittance from 4 nm down to 0.5 nm
- Coupling 50\%
- Multiple Bend Achromat arc lattice

■ Energy Recovery Linac

- 1 nm emittance at working energy
- Low emittance return arcs

CIRCULAR ACCELERATOR

MBA LATTICE V28, LAYOUT

MBA LATTICE V28, 2.0 NM OPTICS

The focusing is reverted from either side of the straight section centers in order to balance the horizontal and vertical chromaticity.

MBA LATTICE V28, TUNING PARAMETERS

Tuning	1 nm @ 700 MeV		1.5 nm @ 700 MeV		2 nm @ 700 MeV	
Circumference (m)	108.176					
Ec (MeV)	500	700	500	700	500	700
ε_{x} (nm.rad)	0.59	1.16	0.76	1.49	1.09	2.14
κ^{6} Coupling (\%)	50					
$\beta_{x, y} @ I P(m)$	0.3, 0.3		0.2, 0.2		0.15, 0.15	
$\sigma_{x, y} @ \operatorname{IP}(\mu \mathrm{~m})$	13.4, 9.4	18.7, 13.2	12.3, 8.7	17.3, 12.2	12.8, 9.1	17.9, 12.7
$\sigma_{\delta}(\%)$	0.0344	0.0482	0.0344	0.0481	0.0343	0.0481
$\sigma_{\mathrm{s}}(\mathrm{mm})$	4.43	5.80	4.46	5.88	4.52	6.02
$\mathrm{V}_{\mathrm{RF}}(\mathrm{kV})$	58	94	68	108	87	135
$\mathrm{Q}_{\mathrm{x}, \mathrm{y}}$	11.702, 6.685		11.300, 6.308		10.702, 6.703	
Chromaticity $_{x, y}$	-4.41, -2.59		-3.73, -3.17		-3.50, -3.53	
$\mathrm{D}_{\mathrm{x}} \max (\mathrm{m})$	0.200		0.205		0.221	
$\mathrm{I}_{\text {beam }}(\mathrm{mA})$	254	499	217	423	233	458

- The $10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ luminosity goal is reached with 10^{6} trapped ions

SC TUNE SHIFT : SC LINEARIZED STRENGTH

The particles undergo a repulsive force due to the Coulomb interaction with the beam. Due to this force, the betatron tunes of the particles are dispersed over a certain range.
Linear approximation

$$
E_{x} \approx \frac{q_{e} \lambda}{2 \pi \varepsilon_{0}} \frac{x}{\sigma_{x}\left(\sigma_{x}+\sigma_{y}\right)}, E_{y} \approx \frac{q_{e} \lambda}{2 \pi \varepsilon_{0}} \frac{y}{\sigma_{y}\left(\sigma_{x}+\sigma_{y}\right)} \quad \begin{aligned}
& \mathrm{q}_{e} \lambda \text { is the longitudinal } \\
& \text { charge density }
\end{aligned}
$$

SC Tune Shift

$$
\Delta Q_{x, y s c}=\frac{\mp 1}{2 \pi} \oint \beta_{x, y} k_{x, y} d s, \quad k_{x, y}=-\frac{2 r_{e} \lambda}{\beta^{2} \gamma^{3} \sigma_{x, y}\left(\sigma_{x}+\sigma_{y}\right)}
$$

For a Gaussian bunch of $N_{e, \text { bunch }}$ particles and rms bunch length σ_{s} the SC tune shift is given by:

$$
\Delta Q_{x, y S C}=\frac{2 r_{e} N_{e, \text { bunch }}}{(2 \pi)^{3 / 2} \sigma_{s} \beta^{2} \gamma^{3}} \oint \frac{\beta_{x, y}}{\sigma_{x, y}\left(\sigma_{x}+\sigma_{y}\right)} d s
$$

SC TUNE SHIFT : LASLETT TUNE SIFT

SC Laslett Tune Shift

$$
\Delta Q_{x, y S C}=\frac{3 r_{e} R_{0} N_{e, \text { bunch }}}{4 \beta^{2} \gamma^{3} \varepsilon_{x, y} l_{\text {bunch }}}=\frac{3 r_{e} R_{0} t_{\text {rev }}}{4 \beta^{2} \gamma^{3} q_{e} n_{\text {bunch }} l_{\text {bunch }}} \frac{I_{\text {beam }}}{\varepsilon_{x, y}}
$$

The RF voltage, V_{RF}, is set in order to obtain the same momentum acceptance. Then, the bunch lengths are comparable for all equilibrium emittances.

The luminosity and the space charge tune shift remains constant when $I_{\text {beam }} / \varepsilon_{x, y}$ is constant.

SC TUNE SHIFT

$\varepsilon_{\mathrm{x}}=1.16 \mathrm{~nm}, \delta_{R F}=0.02, \mathrm{~h}=123, \beta_{\mathrm{x}, \mathrm{y}}=0.30 \mathrm{~m}, \mathrm{~N}_{\mathrm{R} 1}=10^{6}, \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$				
$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	600	700	750
$\mathrm{N}_{\mathrm{e}, \text { bunch }}\left(10^{9}\right)$	4.527	6.523	8.822	10.105
$\Delta Q_{x, y}\left(10^{-2}\right)$	-2.88, -4.88	-1.54, -2.49	-1.01, -1.58	-0.83, -1.29
$\Delta \mathrm{Q}_{\mathrm{x}, \mathrm{y}}$ Laslett (10^{-2})	-2.16, -4.31	-1.08, -2.15	-0.60, -1.20	-0.46, -0.93
$\varepsilon_{\mathrm{x}}=1.49 \mathrm{~nm}, \delta_{R F}=0.02, \mathrm{~h}=123, \beta_{\mathrm{x}, \mathrm{y}}=0.20 \mathrm{~m}, \mathrm{~N}_{\mathrm{R} 1}=10^{6}, \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$				
$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	600	700	750
$\mathrm{N}_{\text {e,bunch }}\left(10^{9}\right)$	3.868	5.579	7.539	8.644
$\Delta Q_{x, y}\left(10^{-2}\right)$	-1.85, -3.37	-0.98, -1.71	-0.34, -0.67	-0.22, -0.44
$\Delta \mathrm{Q}_{\mathrm{x}, \mathrm{y}}$ Laslett (10^{-2})	-1.43, -2.86	-0.71, -1.42	-0.39, -0.79	-0.30, -0.61
$\varepsilon_{\mathrm{x}}=2.16 \mathrm{~nm}, \delta_{\text {RF }}=0.02, \mathrm{~h}=123, \beta_{\mathrm{x}, \mathrm{y}}=0.15 \mathrm{~m}, \mathrm{~N}_{\mathrm{RI}}=10^{6}, \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$				
$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	600	700	750
$\mathrm{N}_{\mathrm{e}, \text { bunch }}\left(10^{9}\right)$	4.206	6.06	8.198	9.393
$\Delta Q_{x, y}\left(10^{-2}\right)$	-0.77, -1.60	-0.42, -0.84	-0.24, -0.46	-0.19, -0.36
$\Delta \mathrm{Q}_{\mathrm{x}, \mathrm{y}}$ Laslett (10^{-2})	-1.07, -2.13	-0.53, -1.05	-0.29, -0.58	-0.22, -0.45

TOUSCHEK EFFECT

Touschek effect is a loss mechanism:

Large angle Coulomb collisions in the bunch
\Rightarrow Momentum transfers into the longitudinal plane.
\Rightarrow Change of the betatron amplitudes if occurs in dispersive areas.
\Rightarrow Loss of the particles if:
\Rightarrow the momentum exceeds the RF acceptance or
\Rightarrow if the transverse extensions exceed the acceptance (physical or dynamic).
The half life at a location s is given by

$$
\begin{gathered}
\frac{1}{\tau_{1 / 2}(s)}=\frac{c r_{e}^{2} N_{e, \text { bunch }}}{8 \pi \sigma_{x} \sigma_{y} \sigma_{s}} \frac{D(\xi)}{\gamma^{2} \delta_{R F}^{2}} \\
D(\xi)=\sqrt{\xi}\left\{-\frac{3}{2} e^{-\xi}+\frac{\xi}{2} \int_{\xi}^{\infty} \frac{\ln (u)}{u} e^{-u} d u+\frac{3 \xi-\xi \ln (\xi)+2}{2} \int_{\xi}^{\infty} \frac{e^{-u}}{u} d u\right\} \quad \xi=\left(\frac{\delta_{R F} \beta_{x}}{\gamma \sigma_{x}}\right)^{2}
\end{gathered}
$$

The total half life is the average around the ring

$$
\frac{1}{\tau_{1 / 2}}=\frac{1}{C} \oint \frac{d s}{\tau_{1 / 2}(s)}
$$

TOUSCHEK LIFETIME

$\varepsilon_{x}=1.16 \mathrm{~nm}, \delta_{R F}=0.02, \mathrm{~h}=123, \beta_{\mathrm{x}, \mathrm{y}}=0.30 \mathrm{~m}, \mathrm{~N}_{\mathrm{R}}=10^{6}, \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$				
$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	600	700	750
$\mathrm{I}_{\text {beam }}(\mathrm{mA})$	254	366	495	567
$\mathrm{N}_{\mathrm{e}, \text { bunch }}\left(10^{9}\right)$	4.527	6.523	8.822	10.105
$\tau_{\text {Touschek }}(\mathrm{h})$	0.95	1.15	1.46	1.66
$\varepsilon_{\mathrm{x}}=1.49 \mathrm{~nm}, \delta_{R F}=0.02, \mathrm{~h}=123, \beta_{\mathrm{x}, \mathrm{y}}=0.20 \mathrm{~m}, \mathrm{~N}_{\mathrm{Rl}}=10^{6}, \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$				
$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	600	700	750
$\mathrm{I}_{\text {beam }}(\mathrm{mA})$	217	313	423	485
$\mathrm{N}_{\mathrm{e}, \text { bunch }}\left(10^{9}\right)$	3.868	5.579	7.539	8.644
$\tau_{\text {Touschek }}(\mathrm{h})$	1.25	1.54	2.01	2.31
$\varepsilon_{x}=2.16 \mathrm{~nm}, \delta_{R F}=0.02, \mathrm{~h}=123, \beta_{\mathrm{x}, \mathrm{y}}=0.15 \mathrm{~m}, \mathrm{~N}_{\mathrm{R} 1}=10^{6}, \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$				
$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	600	700	750
$\mathrm{I}_{\text {beam }}(\mathrm{mA})$	236	340	460	527
$\mathrm{N}_{\text {e,bunch }}\left(10^{9}\right)$	4.206	6.060	8.198	9.393
$\tau_{\text {Touschek }}(\mathrm{h})$	1.35	1.74	2.38	2.79

INTRA-BEAM SCATTERING

Intra-beam scattering: multiple Coulomb scattering
\Rightarrow Diffusion in all three directions
\Rightarrow Changes the beam dimensions.
\Rightarrow We get the growth rates for the 3 degrees of freedom by computing the momentum variation by scattering in between the beam particles.

$$
\left\{\begin{array}{l}
\frac{d \varepsilon_{x, y}}{d t}=-\frac{2}{\tau_{x, y}}\left(\varepsilon_{x, y}-\varepsilon_{x, y, 0}\right)+\frac{2 \varepsilon_{x, y}}{T_{x, y}\left(\varepsilon_{x}, \varepsilon_{y}, \sigma_{\delta}\right)} \\
\frac{d\left(\sigma_{\delta}{ }^{2}\right)}{d t}=-\frac{2}{\tau_{\delta}}\left(\sigma_{\delta}^{2}-\sigma_{\delta 0}^{2}\right)+\frac{2 \sigma_{\delta}^{2}}{T_{\delta}\left(\varepsilon_{x}, \varepsilon_{y}, \sigma_{\delta}\right)}
\end{array}\right.
$$

where $\left\{\begin{array}{c}T_{x, y, \delta}\left(\varepsilon_{x}, \varepsilon_{y}, \sigma_{\delta}\right) \text { are the IBS growth rates } \\ \tau_{x, y, \delta} \text { are the synchrotron radiation damping times } \\ \varepsilon_{x, y, 0}, \sigma_{\delta 0} \text { are the zero current emittances and momentum spread }\end{array}\right.$
Equilibrium emittance is reached when the SR damping counterbalances the emittance growing.

$$
\frac{d \varepsilon_{x, y}}{d t}=0, \frac{d\left(\sigma_{\delta}^{2}\right)}{d t}=0
$$

INTRA-BEAM SCATTERING : W/O BUNCH LENGTHENING

$\mathrm{N}_{\mathrm{RI}}=10^{6}, \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Ec (MeV)	500			600			700		
Approximation	Bane	MAX IV	CIMP	Bane	MAX IV	CIMP	Bane	MAX IV	CIMP
1.0 nm tuning	$\varepsilon_{x, 0}=0.59 \mathrm{~nm}, \sigma_{\delta, 0}=3.410^{-4}$			$\varepsilon_{\chi, 0}=0.86 \mathrm{~nm}, \sigma_{\delta, 0}=4.110^{-4}$			$\varepsilon_{\chi, 0}=1.16 \mathrm{~nm}, \sigma_{\delta, 0}=4.810^{-4}$		
$\mathrm{T}_{\mathrm{x}, \mathrm{y}}(\mathrm{ms})$	X	X	X	X	X	X	140	138	108
$\mathrm{T}_{\delta}(\mathrm{ms})$	X	X	X	X	X	X	50	49	46
$\varepsilon_{\mathrm{x}, \mathrm{y}}(\mathrm{nm})$	X	X	X	X	X	X	1.58, 0.79	1.59, 0.80	1.78, 0.58
$\sigma_{\delta}\left(10^{-4}\right)$	X	X	X	X	X	X	6.0	6.1	6.2
1.5 nm tuning	$\varepsilon_{\chi, 0}=0.76 \mathrm{~nm}, \sigma_{\delta, 0}=3.410^{-4}$			$\varepsilon_{\mathrm{x}, 0}=1.10 \mathrm{~nm}, \sigma_{\delta, 0}=4.110^{-4}$			$\varepsilon_{\mathrm{x}, 0}=1.49 \mathrm{~nm}, \sigma_{\delta, 0}=4.810^{-4}$		
$\mathrm{T}_{\mathrm{x}, \mathrm{y}}(\mathrm{ms})$	X	X	X	X	X	X	218	221	166
$\mathrm{T}_{\delta}(\mathrm{ms})$	X	X	X	X	X	X	62	62	58
$\varepsilon_{x_{\mathrm{x}, \mathrm{y}}}(\mathrm{nm})$	X	X	X	X	X	X	1.80, 0.90	1.79, 0.90	1.92, 0.75
$\sigma_{\delta}\left(10^{-4}\right)$	X	X	X	X	X	X	5.7	5.7	5.8
2.0 nm tuning	$\varepsilon_{X, 0}=1.09 \mathrm{~nm}, \sigma_{\delta, 0}=3.410^{-4}$			$\varepsilon_{\mathrm{x}, 0}=1.57 \mathrm{~nm}, \sigma_{\delta, 0}=4.110^{-4}$			$\varepsilon_{x, 0}=2.14 \mathrm{~nm}, \sigma_{\delta, 0}=4.810^{-4}$		
$\mathrm{T}_{\mathrm{x}, \mathrm{y}}(\mathrm{ms})$	X	X	X	231	236	175	381	404	286
$\mathrm{T}_{\delta}(\mathrm{ms})$	X	X	X	57	58	54	75	79	73
$\varepsilon_{\mathrm{x}, \mathrm{y}}(\mathrm{nm})$	X	X	X	2.12, 1.06	2.11, 1.05	2.38, 0.79	2.38, 1.19	2.36, 1.18	2.47, 1.07
$\sigma_{\delta}\left(10^{-4}\right)$	X	X	X	5.8	5.8	6.0	5.5	5.5	5.5

CIRCULAR ACCELERATOR CONCLUSIONS

- With 10^{6} trapped ions, the $10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ luminosity goal is reached with a conventional electron circular accelerator.
- For $500-600 \mathrm{MeV}$ working energy range, a good compromise between optics and equilibrium emittance seems the lattice " 2.0 nm tuning", which leads to the lowest space charge tune shift and the lowest IBS growth.
- The Touschek life time remains short, but compatible with the experiments.
- The IBS is an issue and we have to consider a bunch lengthening with harmonic cavities, this will have a positive effect on the SC tune shift and on the Touschek life time.

■ An increase of the number of trapped ions will allow to reduce the electron beam intensity :

- the IBS growth will decrease,
- the Touschek life time will increase,
- the SC tune shift will decrease.

ENERGY RECOVERY LINAC

ADVANTAGES OF AN ERL

- Advantage of ERL vs Storage Ring

- Non-equilibrium conditions (IBS, Touschek life-time,...)

All of this is particularly important at low energy (300-500 MeV)

- Beam characteristics determined by injector
- Small emittance, Ultra short bunches
- The difficulties inherent to the circular machines have no more place
- Dynamic aperture, Resonances crossing
- Advantage of ERL vs Linacs
- Improvement in efficiency
- An ERL is less expensive in exploitation cost
- Increase in average current (CW)
- Reduced beam dump activation

CHALLENGES

■ High current \& low emittance beam production

- Source, injector

■ Emittance control

- Emittance growth due to SR
- Beam/orbit stability
- Sub-micro stability (rms) is required
- 10^{-4} energy stability is needed

■ SRF issues

- HOM damping
- RF cavity design, high Q_{0} cavity

■ Collective effects

- Beam break-up (BBU) instability
- Instrumentation \& diagnostics

PARAMETERS

Many challenges

$$
\varepsilon_{N}=\beta \gamma \varepsilon\left(\mathrm{E}_{\mathrm{c}}\right)
$$

Injector Parameters	
Energy (MeV)	10
Charge per bunch (pC)	77
Normalized Emittance (mm.mrad)	1
Bunch length rms (ps)	2
Repetition Rate (CW, MHz)	1300
I beam (mA)	100

ERL, IR Parameters		
Injection/Extraction energy (MeV)	10	
Beam dump power (MW)	1	
Energy max. (MeV)	530	
Beam power @ $530 \mathrm{MeV}(\mathrm{MW})$	53	
Emittance @ $500 \mathrm{MeV}(\mathrm{nm} . \mathrm{rad})$	1.02	With $\mathrm{N}_{\mathrm{RI}}=10^{6} \Rightarrow \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$\beta_{\mathrm{x}, \mathrm{y}} @ \mathrm{IP}(\mathrm{m})$	0.048	
Beam size @ IP $(\mu \mathrm{m})$	7	

cea
 SCHEMATIC LAYOUT

530 MEV ETIC PRELIMINARY LAYOUT

ETIC 530 MeV :

-4 accelerator modules
-interaction region @ 530 MeV -return optic not yet considered -dogleg is not yet considered

Circumference (m)	147.85
Footprint $(\mathrm{m} \times \mathrm{m})$	70×12
$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	530
$\mathrm{~N}_{\mathrm{RI}}\left(10^{6}\right)$	1
Emittance @ $530 \mathrm{MeV}(\mathrm{nm} . \mathrm{rad})$	0.96
$\beta_{\mathrm{x}, \mathrm{y}} @$ IP (m)	$0.05-0.025$
Size @ IP $(\mu \mathrm{m})$	$6.9-4.9$
$\mathrm{~L}_{0} / \mathrm{IP} @ 530 \mathrm{MeV}\left(10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	$1.03-2.06$

140 MEV DEMONSTRATOR PRELIMINARY LAYOUT

To validate these challenges:

- electron source
- energy recovering
- BBU cure capability
- ion trapping
- emittance control
- Optics
\Rightarrow Proposal of a demonstrator 140 MeV

Circumference (m)	110.62
Footprint $(\mathrm{m} \times \mathrm{m})$	52×12
$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	140
$\mathrm{~N}_{\mathrm{RI}}\left(10^{6}\right)$	1
Emitttance @ $140 \mathrm{MeV}(\mathrm{nm} . \mathrm{rad})$	3.9
$\beta_{\mathrm{x}, \mathrm{y}}$ @ IP (m)	$0.05-0.025$
Size @ IP $(\mu \mathrm{m})$	$14-9.9$
$\mathrm{~L}_{0} /$ IP @ $140 \mathrm{MeV}\left(10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	$0.25-0.51$

With 10^{6} trapped ions, the $10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ luminosity goal can be reached with a 530 MeV ERL accelerator.

An ERL is an interesting solution because it does not have the circular machines related issues. This is particularly important at low energy.

However an increase of the trapped ions will be greatly appreciated.

When the needed electron beam intensity becomes lower
\Rightarrow The electron source parameters can be relaxed.

A 140 MeV ERL demonstrator can be a first step.

GENERAL CONCLUSIONS

- The aim of ETIC is to push the luminosity to $\mathbf{1 0}^{\mathbf{2 9}}$ by using a scheme a la SCRIT (circulating electron bunch which collided with trapped ions).

■ Two options were explored:

- A circular collider, which can work up to 700 MeV . A first optics was delivered. The main limitation comes from the intra beam scattering. At low energy (less than 700 MeV), the IBS becomes an issue. It limits the stored intensity and thus the luminosity. A solution is to use harmonic cavities to make RF gymnastics. That is a more expensive and needs more studies.
- An electron recirculating linac (ERL). The IBS is not anymore a problem and we can work at lower energy. A first layout has been shown at 530 MeV . A special effort must be performed on the electron source quality.
- In both cases, a key point is the ion capture efficiency. The more efficient the capture is, the less intensity we need. The parameters can be then relaxed.
- That is why a proposal of an intermediary step was made with a $140 \mathbf{~ M e V}$ demonstrator to validate some of the key points of such a machine.

Thank you for your attention.

MBA LATTICE V28, MAGNETS

2 quadrupole types		Bend @ 750 MeV	
Quadrupoles @ 750 MeV		\#nb	24
		Bore Diameter \varnothing (mm)	56
\#nb	24		
Bore Diameter \varnothing (mm)	100	Magnetic length (m)	0.4033
Magnetic length (m)	0.26	Field B (T)	1.625
Gradient G (T/m)	13.8	Gradient G (T/m)	0
\#nb	88	2 sextupole families	
Bore Diameter \varnothing (mm)	56		
Magnetic length (m)	0.12	Sextupoles @ 750 MeV	
Gradient G (T/m)		\#nb	94
	32.6	Bore Diameter \varnothing (mm)	56
		Magnetic length (m)	0.15
		$1 / 2 d^{2} B_{y} / d^{2}\left(T / m^{2}\right)$	305.5

MBA LATTICE V28, 1.0 NM PARAMETERS

Circumference (m)	108.176
L bend (m)	0.4033
ρ bend (m)	1.5407
n bend $=-\rho / B_{0} d B_{y} / d x$	0
$\beta_{x}, \beta_{y} @$ IP (m)	$0.3,0.3$
$D_{x} \max (m)$	0.200
Q_{x}, Q_{y}	$11.702,6.685$
Q_{x}, Q_{y} arc cell	$0.440,0.257$
$\xi_{x, y}=1 / Q_{x, y} d Q_{x, y} / d \delta$	$-4.41,-2.59$
$1 /(2 B \rho) d^{2} B_{y} / d x^{2}\left(m^{-2}\right)$	$10.82,-15.37$
$t_{\text {rev }}(n s)$	360.8
$R F$ frequency $(M H z)$	352
$h, n_{\text {bunch }}$	127,127
α_{c}	1.3110^{-3}
$N_{\text {RI }}\left(10^{6}\right)$	1

$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	700
B field (T)	1.0846	1.5167
$\varepsilon_{x}(\mathrm{~nm})$	0.59	1.16
$\sigma_{x} @ \operatorname{IP}(\mu \mathrm{~m})$	13.35	18.68
$\sigma_{y} @ \operatorname{IP}(\mu \mathrm{~m}) \mathrm{k}=.50$	9.44	13.21
$\mathrm{~V}_{\mathrm{RF}}(\mathrm{kV})$	58	94
$\delta_{\text {RF }}(\%)$	2.	2.
$\sigma_{\delta}(\%)$	0.0344	0.0482
$\sigma_{\mathrm{s}}(\mathrm{mm})$	4.43	5.80
$\tau_{x}(\mathrm{~ms})$	102.05	37.19
$\tau_{\mathrm{s}}(\mathrm{ms})$	49.91	18.19
$\mathrm{I}_{\text {beam }}(\mathrm{mA})$	254	499
$\left(\Delta \mathrm{Q}_{x} \mathrm{SC}\right)$	0.0221	0.0062
$\left(\Delta \mathrm{Q}_{y} \mathrm{SC}\right)$	0.0441	0.0124
$\mathrm{~L}_{0}\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1} 10^{29}\right)$	1	1

MBA LATTICE V28, 1.0 NM OPTICS

MBA LATTICE V28, 1.5 NM PARAMETERS

Circumference (m)	108.176
L bend (m)	0.4033
ρ bend (m)	1.5407
n bend $=-\rho / B_{0} d B_{y} / d x$	0
$\beta_{x}, \beta_{y} @$ IP (m)	$0.2,0.2$
$D_{x} \max (m)$	0.205
Q_{x}, Q_{y}	$11.300,6.308$
Q_{x}, Q_{y} arc cell	$0.420,0.237$
$\xi_{x, y}=1 / Q_{x, y} d Q_{x, y} / d \delta$	$-3.73,-3.17$
$1 /(2 B \rho) d^{2} B_{y} / d x^{2}\left(m^{-2}\right)$	$12.14,-16.80$
$t_{\text {rev }}(n s)$	360.8
$R F$ frequency $(M H z)$	352
$h, n_{\text {bunch }}$	127,127
α_{c}	1.5610^{-3}
$N_{\text {RI }}\left(10^{6}\right)$	1

$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	700
B field (T)	1.0846	1.5167
$\varepsilon_{\mathrm{x}}(\mathrm{nm})$	0.76	1.49
$\sigma_{\mathrm{x}} @ \mathrm{IP}(\mu \mathrm{m})$	12.34	17.27
$\sigma_{\mathrm{y}} @$ IP $(\mu \mathrm{m}) \kappa=.50$	8.72	12.21
$\mathrm{~V}_{\mathrm{RF}}(\mathrm{kV})$	68	108
$\delta_{\mathrm{RF}}(\%)$	2.	2.
$\sigma_{\delta}(\%)$	0.0344	0.0481
$\sigma_{\mathrm{s}}(\mathrm{mm})$	4.46	5.88
$\tau_{\mathrm{x}}(\mathrm{ms})$	102.33	37.29
$\tau_{\mathrm{s}}(\mathrm{ms})$	49.84	18.16
$\mathrm{I}_{\text {beam }}(\mathrm{mA})$	217	423
$\left(\Delta \mathrm{Q}_{\mathrm{x}} \mathrm{SC}\right)$	0.0146	0.0040
$\left(\Delta \mathrm{Q}_{\mathrm{y}} \mathrm{SC}\right)$	0.0293	0.0081
$\left.\mathrm{~L}_{0}(\mathrm{~cm})^{-2} \mathrm{~s}^{-1} 10^{29}\right)$	1.0	1.0

MBA LATTICE V28, 1.5 NM OPTICS

MBA LATTICE V28, 2.0 NM PARAMETERS

Circumference (m)	108.176
L bend (m)	0.4033
ρ bend (m)	1.5407
n bend $=-\rho / B_{0} d B_{y} / d x$	0
$\beta_{x}, \beta_{y} @$ IP (m)	0.15, 0.15
$\mathrm{D}_{\mathrm{x}} \max (\mathrm{m})$	0.221
$\mathrm{Q}_{\mathrm{x}}, \mathrm{Q}_{\mathrm{y}}$	10.702,6.703
$\mathrm{Q}_{\mathrm{x}}, \mathrm{Q}_{\mathrm{y}}$ arc cell	0.391, 0.256
$\xi_{x, y}=1 / Q_{x, y} d Q_{x, y} / d \delta$	-3.50, -3.53
$1 /(2 B \rho) d^{2} B_{y} / d x^{2}\left(m^{-2}\right)$	13.00,-18.25
$\mathrm{t}_{\text {rev }}$ (ns)	360.8
RF frequency (MHz)	352
$\mathrm{h}, \mathrm{n}_{\text {bunch }}$	127, 127
α_{c}	2.0510^{-3}
$\mathrm{N}_{\mathrm{RI}}\left(10^{6}\right)$	1

$\mathrm{E}_{\mathrm{c}}(\mathrm{MeV})$	500	700
B field (T)	1.0846	1.5167
$\varepsilon_{\mathrm{x}}(\mathrm{nm})$	1.09	2.14
$\sigma_{\mathrm{x}} @ \mathrm{IP}(\mu \mathrm{m})$	12.81	17.93
$\sigma_{\mathrm{y}} @$ IP $(\mu \mathrm{m}) \kappa=.50$	9.06	12.68
$\mathrm{~V}_{\mathrm{RF}}(\mathrm{kV})$	87	135
$\delta_{\mathrm{RF}}(\%)$	2.	2.
$\sigma_{\delta}(\%)$	0.0343	0.0481
$\sigma_{\mathrm{s}}(\mathrm{mm})$	4.52	6.02
$\tau_{\mathrm{x}}(\mathrm{ms})$	102.91	37.50
$\tau_{\mathrm{s}}(\mathrm{ms})$	49.71	18.11
$\mathrm{I}_{\text {beam }}(\mathrm{mA})$	233	458
$\left(\Delta \mathrm{Q}_{\mathrm{x}} \mathrm{SC}\right)$	0.0108	0.0030
$\left(\Delta \mathrm{Q}_{\mathrm{y}} \mathrm{SC}\right)$	0.0216	0.0059
$\left.\mathrm{~L}_{0}(\mathrm{~cm})^{-2} \mathrm{~s}^{-1} 10^{24}\right)$	1.	1.

INTRA-BEAM SCATTERING (2)

To evaluate the effect three models of IBS growth rate was used

- The K. Bane high energy approximation

$$
\frac{1}{T_{\delta}} \approx \frac{r_{e}{ }^{2} c N_{e}(\log)}{32 \gamma^{3} \varepsilon_{x}{ }^{\frac{3}{4}} \varepsilon_{y^{\frac{3}{4}}} \sigma_{s} \sigma_{\delta}{ }^{3}}\left\langle\sigma_{H} g_{\text {bane }}\left(\frac{a}{b}\right)\left(\beta_{x} \beta_{y}\right)^{-\frac{1}{4}}\right\rangle, \frac{1}{T_{x, y}} \approx \frac{\sigma_{\delta}{ }^{2}\left\langle H_{x, y}\right\rangle}{\varepsilon_{x, y}} \frac{1}{T_{\delta}}
$$

- The MAX IV approximation

$$
\frac{1}{T_{\delta}} \approx \frac{r_{e}^{2} c N_{e}(\log)}{32 \gamma^{3} \varepsilon_{x} \varepsilon_{y} \sigma_{s} \sigma_{\delta}^{2}}\left(\frac{\varepsilon_{x} \varepsilon_{y}}{\left\langle\beta_{x}\right\rangle\left\langle\beta_{y}\right\rangle}\right)^{\frac{1}{4}}, \frac{1}{T_{x, y}} \approx \frac{\sigma_{\delta}{ }^{2}\left\langle H_{x, y}\right\rangle}{\varepsilon_{x, y}} \frac{1}{T_{\delta}}
$$

- The modified Piwinski approximation (CIMP)

$$
\begin{aligned}
& \frac{1}{T_{\delta}} \approx \frac{r_{e}^{2} c N_{e}(\log)}{32 \pi^{1 / 2} \beta^{3} \gamma^{4} \varepsilon_{x} \varepsilon_{y} \sigma_{s} \sigma_{\delta}}\left|\frac{\sigma_{H}^{2}}{\sigma_{\delta}^{2}}\left(\frac{g_{\text {CIMP }}(b / a)}{a}+\frac{g_{\text {CIMP }}(a / b)}{b}\right)\right| \\
& \left\{\frac{1}{T_{x}} \approx \frac{r_{e}{ }^{2} c N_{e}(\log)}{32 \pi^{1 / 2} \beta^{3} \gamma^{4} \varepsilon_{x} \varepsilon_{y} \sigma_{s} \sigma_{\delta}}\left\langle-a g_{\text {CIMP }}\left(\frac{b}{a}\right)+\frac{H_{x} \sigma_{H}{ }^{2}}{\varepsilon_{x}}\left(\frac{g_{\text {CIMP }}(b / a)}{a}+\frac{g_{\text {CIMP }}(a / b)}{b}\right)\right|\right.
\end{aligned}
$$

cea
 INTRA-BEAM SCATTERING (3)

Where :

$$
\begin{gathered}
\frac{1}{\sigma_{H}^{2}}=\frac{1}{\sigma_{\delta}^{2}}+\frac{H_{x}}{\varepsilon_{x}}+\frac{H_{y}}{\varepsilon_{y}}, a=\frac{\sigma_{H}}{\gamma} \sqrt{\frac{\beta_{x}}{\varepsilon_{x}}}, b=\frac{\sigma_{H}}{\gamma} \sqrt{\frac{\beta_{y}}{\varepsilon_{y}}} \\
H_{x, y}=\gamma_{x, y} D_{x, y}{ }^{2}+2 \alpha_{x, y} D_{x, y} D_{x, y^{\prime}}+\beta_{x, y}\left(D_{\left.x, y^{\prime}\right)^{2}}\right. \\
(\log) \approx \ln \left(\frac{\gamma^{2} \varepsilon_{x}\left\langle\sigma_{y}\right\rangle}{r_{e}\left\langle\beta_{x}\right\rangle}\right) \\
g_{\text {bane }}(u) \approx 2 u^{(0.021-0.044 \ln (u))}, 0.01<u<1 \\
g_{\text {CIMP }}(u) \approx 2.691\left(1-\frac{0.22889}{u}\right) \frac{1}{(1+0.16 u)\left(1+1.35 e^{-u / 0.2}\right)}, 0.1<u<10
\end{gathered}
$$

INTRA-BEAM SCATTERING: L $_{\text {Bunch }}$ X 2

$\mathrm{N}_{\mathrm{RI} 1}=10^{6}, \mathrm{~L}_{0}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$									
Ec (MeV)	500			600			700		
Approximation	Bane	MAXIV	CIMP	Bane	MAXIV	CIMP	Bane	MAX IV	CIMP
1.0 nm tuning	$\varepsilon_{\mathrm{x}, 0}=0.59 \mathrm{~nm}, \sigma_{\delta, 0}=3.410^{-4}$			$\varepsilon_{\mathrm{X}, 0}=0.85 \mathrm{~nm}, \sigma_{\delta, 0}=4.110^{-4}$			$\varepsilon_{\mathrm{x}, 0}=1.16 \mathrm{~nm}, \sigma_{\delta, 0}=4.810^{-4}$		
$\mathrm{T}_{\mathrm{x}, \mathrm{y}}(\mathrm{ms})$							231	227	181
$\mathrm{T}_{\delta}(\mathrm{ms})$							67	65	63
$\varepsilon_{\mathrm{x}, \mathrm{y}}(\mathrm{nm})$							1.38, 0.69	1.38, 0.69	1.45, 0.58
$\sigma_{\delta}\left(10^{-4}\right)$							5.6	5.6	5.6
1.5 nm tuning	$\varepsilon_{\chi, 0}=0.76 \mathrm{~nm}, \sigma_{\delta, 0}=3.410^{-4}$			$\varepsilon_{\chi, 0}=1.10 \mathrm{~nm}, \sigma_{\delta, 0}=4.110^{-4}$			$\varepsilon_{x, 0}=1.49 \mathrm{~nm}, \sigma_{\delta, 0}=4.810^{-4}$		
$\mathrm{T}_{\mathrm{x}, \mathrm{y}}(\mathrm{ms})$				201	204	156	318	331	248
$\mathrm{T}_{\delta}(\mathrm{ms})$				67	68	62	94	98	90
$\varepsilon_{\mathrm{x}, \mathrm{y}}(\mathrm{nm})$				1.54, 0.77	1.53, 0.76	1.74, 0.55	1.68, 0.84	1.68, 0.84	1.75, 0.75
$\sigma_{\delta}\left(10^{-4}\right)$				5.4	5.4	5.6	5.3	5.3	5.4
2.0 nm tuning	$\varepsilon_{x, 0}=1.10 \mathrm{~nm}, \sigma_{\delta, 0}=3.410^{-4}$			$\varepsilon_{x, 0}=1.58 \mathrm{~nm}, \sigma_{\delta, 0}=4.110^{-4}$			$\varepsilon_{x, 0}=2.16 \mathrm{~nm}, \sigma_{\delta, 0}=4.810^{-4}$		
$\mathrm{T}_{\mathrm{x}, \mathrm{y}}(\mathrm{ms})$				252	274	193	445	508	342
$\mathrm{T}_{\delta}(\mathrm{ms})$				81	87	75	130	147	125
$\varepsilon_{\mathrm{x}, \mathrm{y}}(\mathrm{nm})$				2.1, 1.0	2.0, 1.0	2.3, 0.79	2.35, 1.17	2.32, 1.16	2.42, 1.08
$\sigma_{\delta}\left(10^{-4}\right)$				5.1	5.0	5.2	5.2	5.1	5.2

BBU OPTICAL SUPPRESSION SCHEME [1] [1] D. DOUGLAS JLAB-TN-04-023

BBU threshold current $I_{t h}=\frac{2 p_{\text {beam }} c^{2}}{e \omega_{\lambda}(R / Q)_{\lambda} Q_{\lambda} M^{*} \sin \left(\omega_{\lambda} t_{r e c}\right)}$

$$
M^{*}=M_{12} \cos ^{2} \alpha+\left(M_{14}+M_{32}\right) \sin \alpha \cos \alpha+M_{34} \sin ^{2} \alpha
$$

$$
\left(\begin{array}{cc}
-I & 0 \\
0 & i
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
0 & A \\
A & 0
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
i & 0 \\
0 & -I
\end{array}\right)
$$

(m)

(m)

With $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad i=\sqrt{-I}=\left(\begin{array}{cc}0 & \beta \\ -1 / \beta & 0\end{array}\right), \quad A=\left(\begin{array}{cc}\sqrt{1-(b / \beta)^{2}} & b \\ -b / \beta^{2} & \sqrt{1-(b / \beta)^{2}}\end{array}\right)$
The transfer matrix is then

$$
M=\left(\begin{array}{cc}
0 & A \\
-A & 0
\end{array}\right)
$$

$$
M_{14}=-M_{32}, \quad M_{12}=0, \quad M_{34}=0
$$

ERL MAGNETS

Arc dipoles	$\mathbf{8}$
Magnetic length (m)	0.625
Deviation (rad)	$\pi / 8$
Curvature radius (m)	1.591549
Field @ $530 \mathrm{MeV}(\mathrm{T})$	1.113

Injection/Extraction dipoles	$\mathbf{8}$
Magnetic length (m)	0.3
Deviation (mrad)	8.281036
Curvature radius (m)	36.22735
Field @ $530 \mathrm{MeV}(\mathrm{T})$	0.05

Quadrupoles	$\mathbf{8 1}$
Magnetic length (m)	0.2
Gradient @ $530 \mathrm{MeV}(\mathrm{T} / \mathrm{m})$	19.6

RF modules	$\mathbf{4}$
length (m)	11.2
Energy gain / module (MeV)	130
Frequency (GHz)	1.3

