
Energy density functional studies
of elastic and inelastic scattering off nuclei

Michael Bender
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What to expect from this talk

Bottom lines

I Method: Symmetry-restored Generator Coordinate Method based on
deformed HFB states using an effective Skyrme interaction.

I Goal: study the impact of deformation, shape fluctuations and shape
mixing (which all are ”long-range” correlations) on observables.

I no in-medium (”short-range”) correlations that are explicitely dealt with.

Outline

I What is a symmetry-restored Generator Coordinate Method based on
deformed HFB states and why using it.

I Calculation of densities and transition densities in the laboratory frame
– proof of principle.

I From simple to increasingly complicated MR schemes
– possibilities for the future.
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Selfconsistent mean field

I assume you have heard about Hartree-Fock and Hartree-Fock Bogoliubov.

⇒ Single-Reference (SR) Energy Density Functional (EDF) Methods

I will talk about mixing HF & HFB states

⇒ Multi-Reference (MR) Energy Density Functional (EDF) Methods
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Horizontal vs. vertical expansion of correlations

M. B., P.-H. Heenen, unpublished

F. D6nau et al. / Large amplitude collective motion 335 

la te r  on  ca l l ed  the  loca l  v a c u u m .  I f  one  is s t u d y i n g  s low co l l e c t i ve  m o t i o n ,  the  s ta te  
Iq) is t a k e n  to be  the  e n e r g e t i c a l l y  l owes t  H F B  d e t e r m i n a n t  sa t i s fy ing  

alq) = 0 ,  (4) 

w h e r e  b o t h  the  d e s t r u c t i o n  o p e r a t o r  a = a ( q )  a n d  its v a c u u m  are  de f i ned  loca l ly  
fo r  e a c h  p o i n t  (q) .  T h e  a b o v e  p r o c e d u r e  m e a n s  an  a d i a b a t i c  p r e p a r a t i o n  o f  a 
s e q u e n c e  o f  s tates* l a b e l e d  by  q, q ' ,  q",  • • • .  In this  a d i a b a t i c  r eg ime ,  c o n s i d e r  t hen  
a ser ies  o f  level  c ross ings  as s h o w n  in fig. 1. H e r e  the  loca l  v a c u u m  Iq) fo l lows  
m e r e l y  the  e n v e l o p e  o f  t he  ene rgy  o f  p u r e  c o n f i g u r a t i o n s  (see fig. 1) in s t ead  o f  
c o n t i n u i n g  in the  p r e v i o u s  c o n f i g u r a t i o n  w h i c h  inc reases  in ene rgy** .  A c c o r d i n g  to 

CAL 
ICUA 

Fig. 1. Schematic plot of the energy versus the collective variable. The dark envelopes show the positions 
of the local vacua. The domain of the collective variable is defined by q,m,~, qm,x and the energy cut Em~,~. 

* To simplify the notation, we label the above well-prepared set of determinantal solutions subject 
to the routhian (3) by the symbol q regardless of the fact that q may not always lead to a complete 
classification of the set of states taken into account. 

** It is important to mention that for the formalism given one can prepare also another set of HFB 
states following adiabatic filling regime, and furthermore adiabatic and diabatic sets could even be used 
simultaneously. 

F. Dönau et al, NPA496 (1989) 333.
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Symmetry restoration

particle-number projector

P̂N0 =
1

2π

∫ 2π

0

dφN e−iφNN0︸ ︷︷ ︸
weight

rotation in gauge space︷ ︸︸ ︷
e iφN N̂

angular-momentum restoration operator

P̂J
MK =

2J + 1

16π2

∫ 4π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ D∗JMK (α, β, γ)︸ ︷︷ ︸
Wigner function

rotation in real space︷ ︸︸ ︷
R̂(α, β, γ)

K is the z component of angular momentum in the body-fixed frame.
Projected states are given by

|JMq〉 =
+J∑

K=−J

fJ(K) P̂J
MK P̂Z P̂N |MF(q)〉 =

+J∑
K=−J

fJ(K) |JM(qK)〉

fJ(K) is the weight of the component K and determined variationally

Axial symmetry (with the z axis as symmetry axis) allows to perform the α and
γ integrations analytically, while the sum over K collapses, fJ(K) ∼ δK0
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Configuration mixing by the symmetry-restored Generator Coordinate
Method

Superposition of projected self-consistent mean-field states |MF(q)〉 differing in a set of
collective and single-particle coordinates q

|NZJMν〉 =
∑

q

+J∑
K=−J

f NZ
J,κ (q,K) P̂J

MK P̂Z P̂N |MF(q)〉 =
∑

q

+J∑
K=−J

f NZ
Jν (q,K) |NZ JM(qK)〉

with weights f NZ
Jν (q,K).

δ

δf ∗Jν(q,K)

〈NZ JMν|Ĥ|NZ JMν〉
〈NZ JMν|NZ JMν〉 = 0 ⇒ Hill-Wheeler-Griffin equation

∑
q′

+J∑
K ′=−J

[
HNZ

J (qK , q′K ′)− ENZ
J,ν INZJ (qK , q′K ′)

]
f NZ
J,ν (q′K ′) = 0

with

HJ(qK , q′K ′) = 〈NZ JM qK |Ĥ|NZ JM q′K ′〉 energy kernel
IJ(qK , q′K ′) = 〈NZ JM qK |NZ JM q′K ′〉 norm kernel

Angular-momentum projected GCM gives the

I correlated ground state for each value of J

I spectrum of excited states for each J
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Numerical implementation

I full space of occupied single-particle states

I effective Skyrme interactions / energy density functionals

I “HF+BCS” or “HFB” solved with two-basis method

I Coordinate space representation on a 3d mesh using Lagrange-mesh technique

NUMERICAL ACCURACY OF MEAN-FIELD CALCULATIONS . . . PHYSICAL REVIEW C 92, 064318 (2015)

FIG. 7. (Color online) Energy differences between the results
obtained for 240Pu with dx = 1.0, 0.82, and 0.69 fm and those
corresponding to dx = 0.6 fm.

smaller than the one of the fission isomer the configurations
are reflection symmetric, whereas at larger deformations they
are increasingly asymmetric.

We use this curve as a reference to determine the accuracy
of the calculations carried out for other values of dx. For each
dx, the ground-state energy is taken as the 0 of the energy. The
results are shown in Fig. 7. The properties of the minimum
are listed in Table IV. The error decreases roughly by an order
of magnitude upon going from dx = 1.0 to dx = 0.82 fm
and from dx = 0.82 to dx = 0.69 fm. At dx = 1.0 fm the
error is of the order of a few hundred keV, with a rather
large oscillation. For a mesh discretization of 0.82 fm, the
error becomes lower than 100 keV (except in the vicinity
of the spherical configuration, where it reaches 150 keV, but
this configuration is very excited) and is quite acceptable for
the calculation of energy curves. Decreasing the discretization
further, to 0.69 fm, reduces the error to values of a few tens of
keV at most.

Some published results allow for a comparison between the
accuracy of mesh calculations and that of calculations using

FIG. 8. (Color online) Absolute difference in neutron rms radius
for different Skyrme parametrizations for 34Ne at dx = 0.8 fm. The
reference calculation was performed in a box with N = 20.

an expansion on an HO basis. Pei et al. [8] have performed
calculations on an axial mesh using B splines and on HO bases,
either spherical or deformed, with 20 oscillator shells in both
cases. The accuracy obtained in [8] on a mesh of dx = 0.65 fm
seems very similar to the one we obtain. The use of a spherical
HO basis is rather unreliable, with an error larger than 1 MeV
already for the excitation energy of the fission isomer and that
quickly increases to several MeV at larger deformations. For
an axial oscillator basis, the results are similar to those we
obtain with a mesh size of 0.82 fm up to the first barrier but the
accuracy deteriorates rapidly for larger deformations, being
several hundred keV at the deformation corresponding to the
fission isomer. Similar results can be found in [46] for 194Hg
and in [47] for 256Fm.

As a number of shells significantly larger than 20 is
numerically prohibitive, either one has to resort to a two-center
oscillator basis or one has to construct a suitable subspace
within a much larger one-center HO basis by carefully select-
ing the low-lying single-particle states. The former option is
developed in Ref. [48], whereas the latter has been used during
the construction of the unedf1 parametrization [49], where the
lowest 1771 basis states of a basis of 50 HO shells have been
kept. The accuracy obtained in this way for the excitation
energy of the fission isomer is of the order of 100 keV. As
a comparison, the experimental excitation energies of the
fission isomer found in the literature are 2.4 ± 0.3 MeV
[50], approximately 2.8 MeV [51], and 2.25 ± 0.20 MeV
[52]. In the light of these error bars, a numerical accuracy
of 100 keV is sufficient for the adjustment of an EDF. However,
from the published results of Pei et al. [8], it can be estimated
that the numerical error in the fission barrier height is a few
times these 100 keV. Similar results have been obtained in the
case of the relativistic mean-field method [13,53].

C. Radial density distribution

The rms radius is intimately linked to the radial density
distribution of a nucleus. One can expect that it is particularly
sensitive to the box size for nuclei with a large excess of
neutrons. Tests have been performed for the very neutron-

FIG. 9. (Color online) Radial density profile of 34Ne in different
box sizes with dx = 0.8 fm.
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FIG. 10. (Color online) Absolute difference between the total rms radii calculated on a 3D mesh with respect to those of LENTEUR as a
function of the step size dx for the spherical nuclei 40Ca (a), 132Sn (b), and 208Pb (c) and those calculated with the Skyrme parametrizations as
indicated.

rich nucleus 34Ne by varying the box size for a fixed mesh
discretization dx = 0.8 fm. To avoid any ambiguity in the
calculation, pairing has been omitted. The results are presented
in Fig. 8, where we show the difference in total rms radius as
a function of the box size for a representative set of EDF
parametrizations. For the size of the box recommended for
40Ca in Table III, the number of points is 16 for a mesh size
of 0.8 fm. It leads to an error of the order of 10−2 fm for
most interactions, the results being slightly less accurate for
SV-min. For smaller boxes, the accuracy of radii is lower and
depends on the interaction.

In Fig. 9 the radial profile of the total density of 34Ne is
plotted as a function of the box size. The distortion of the
density in the smallest box is large and demonstrates that half
the box size must be larger than 8.0 fm. In all other boxes, the
exponential tail of the density distribution is well described,
up to the point before the last one. For a box size of around
12 fm, the density is well described up to a decrease in the
central density by six orders of magnitude.

The confinement in a volume is less evident in an expansion
on a basis than in a mesh calculation, but it is also present.
While oscillator basis functions extend to infinity, they are in
practice strongly localized by their Gaussian form factor. If one
takes its classical turning point as a measure of the extension
of an HO state, one obtains, for 208Pb and 20 oscillator shells,
a value for the turning point that varies from 14 fm for ! = 0 to
16 fm for ! = 20!. To increase the value of this turning point to
20 fm would require using 28 oscillator shells for ! = 0. This
effect of confinement by an oscillator basis has been reported
in Ref. [54] for the case of 112Zr.

For comparison, the experimental uncertainty in rms charge
radii for the Ne isotopes (up to A = 28) varies from 0.002 fm
close to stability to 0.02 fm for exotic isotopes [55]. It is
interesting to note that the numerical accuracy of a mesh mean-
field calculation has a similar level (provided the box is large
enough) but that the model already introduces uncertainties in
the rms radii that are at least one order of magnitude larger [2].

In Fig. 10, we compare the total rms radii calculated with
decreasing mesh sizes to those obtained with LENTEUR for
three spherical nuclei: 40Ca, 132Sn, and 208Pb. The agreement is

already very satisfactory for the large mesh size of 1.0 fm, with
one order of magnitude gained in accuracy upon decreasing
the mesh size to 0.8 fm, which is the usual value of production
calculations. An interesting feature that cannot be deduced
from Fig. 10 is that all of the parametrizations, with the
exception of unedf0, always produce an rms radius that is
smaller than the LENTEUR result.

In Fig. 11, we present the isotopic shifts δr2(N,Z) for
a range of even-even Sn nuclei, the reference being 132Sn.
All curves almost exactly coincide. This demonstrates that
the isotopic shifts are quite reliable even with coarse meshes.
Similar results are obtained for Cd, Xe, and Te isotopes.

D. Two-neutron separation energies

To put into evidence changes in nuclear structure with
nucleon number, one often uses mass filters that are computed
by taking specific differences between the binding energies
of neighboring nuclei. The simplest filter is the two-nucleon
separation energy, which is defined as the energy difference
between two isotopes (or isotones) whose nucleon numbers
differ by 2. In Fig. 12, we show the evolution of the
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FIG. 11. (Color online) Isotopic shifts δr2(N,Z) with respect to
132Sn for different Sn isotopes and different mesh sizes.
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Configuration mixing via the projected Generator Coordinate Method

M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.
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Spectroscopy from MR EDF

M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.
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Spectroscopy from MR EDF
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M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.

Attention: g 2
i (q) is not the probability to find a mean-field state with intrinsic

deformation q in the collective state
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Spectroscopy from MR EDF: Transition moments

M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.

Experiment: T. Grahn et al, Phys. Rev. Lett. 97 (2006) 062501 I in-band and out-of-band E2 transition
moments directly in the laboratory
frame with correct selection rules

I full model space of occupied particles

I only occupied single-particle states
contribute to the kernels (”horizontal
expansion”)

I ⇒ no effective charges necessary

I no adjustable parameters

B(E2; J ′ν′ → Jν) =
e2

2J ′ + 1

+J∑
M=−J

+J′∑
M′=−J′

+2∑
µ=−2

|〈JMν|Q̂2µ|J ′M ′ν′〉|2

β
(t)
2 =

4π

3R2A

√
B(E2; J → J − 2)

(J 0 2 0 |(J − 2) 0)2e2
with R = 1.2 A1/3
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Spherical nuclei don’t stay spherical ”beyond the mean field”

.

.

.

.

.

.

.

.

.

.

M. B., B. Avez, B. Bally, T. Duguet, P.-H. Heenen, D. Lacroix, unpublished
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charge radii: Experimental signatures of shape mixing

M. B., G. F. Bertsch, P.-H. Heenen, PRC 78 (2008) 054312
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transition [17] allows the formalism of King to be used to
study the atomic properties of polonium by comparing
modified isotope shifts (see Fig. 2) [15]. The slope of this
so-called King plot is the ratio of the two F while the y
intercept is a linear combination of the MSMS from each
transition. The MSMS and F can also be calculated on
the basis of the Dirac-Coulomb-Breit Hamiltonian and a
Fermi-like distribution of the different isotopes. A series of
relativistic configuration interaction calculations have
been carried out with systematically enlarged wave func-
tion expansions within a restricted active space, including
the polarization of the electronic core and single and
double excitations into three additional layers of correla-
tion orbitals (n ¼ 8, 9, 10). Reasonable convergence with
the size of the wave functions was obtained, especially
for F, while the MSMS values appear more sensitive to
the details of the calculations. The results are shown in
Table II. The red dotted line in Fig. 2 displays the corre-
sponding relation according to the calculated parameters
and lies within 1! of the fitted trend. The good agreement
between the slope of the calculated parameters and that
of the fit shows the predictive power of the calculations
for F. The difference in the y intercept, however, raises
some questions on the theoretical accuracy of the calcu-
lated MSMS.

The "hr2i of the even-A isotopes 192–210;216;218Po were
extracted using those parameters and a 0.932 correction
for higher moments [22]. In order to take into account the
uncertainty of the different MSMS in the calculation, a
systematic error was introduced. It was deduced as the

difference between the "hr2i values using only the calcu-
lated atomic parameters for the 843.38 nm line and those
obtained via the King plot and the calculated atomic pa-
rameters from the 255.8 nm transition. The "hr2i (see
Table I) are compared with the predictions from the spheri-
cal FRDM [18] using the second parametrization from
Ref. [23] (see Fig. 3). On the neutron-deficient side, a
surprisingly large deviation from sphericity can be seen
starting from 198

114Po that becomes increasingly marked for
the lighter isotopes. The deviation is larger in magnitude
and occurs for larger neutron numbers than in the Z " 82
isotones. The data in the neutron-deficient radon and ra-
dium isotopes [24] do not extend far enough in the neutron-
deficient side to compare with the polonium isotopes.
In order to understand the unexpectedly large and early

deviation from sphericity in the polonium isotopes, the
"hr2i have been calculated using the same beyond mean
field method as in Refs. [25,26]. The most important
feature of the method for this study is that the ground-state
wave function is constructed as a superposition of mean-
field wave functions corresponding to a large set of axial
quadrupole deformations, projected on angular momentum
and particle number. The coefficients of the expansion
are determined by varying the energy corresponding to a
Skyrme energy density functional. The SLy4 Skyrme pa-
rametrization has been tested together with the effect of a
reduced pairing strength (SLy4#). Within this framework,
one cannot assign an intrinsic deformation to the wave
functions. Instead, they are a mixture of mean-field states
of different deformation and therefore different radii. In
general, deformed configurations have larger radii than
spherical ones. The two main effects that increase the radii
of neutron-deficient polonium isotopes, compared to the
global A1=3 trend set by spherical configurations, are the
spread of the collective wave function in deformation
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FIG. 3 (color online). (top) "hr2i for the even-Z isotopes from
platinum (Z ¼ 78) to radium (Z ¼ 88) [5,7,24,27,29–31]. The
solid black line represents the predictions from the spherical
FRDM [18] using the second parametrization from Ref. [23].
(bottom) Difference between the measured "hr2i to the spherical
FRDM. The dotted lines represent the beyond mean field calcu-
lations with the SLy4 and SLy4# (with reduced pairing) inter-
actions [25,26].
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FIG. 2 (color online). King plot between the transitions at
255.8 nm ([17], x axis) and at 843.38 nm (present work, y
axis) for 200–210Po. The solid line is a linear fit through the
data points; the dotted red line is the calculated relation from
the large-scale atomic calculation and lies within 1! of the fit.

TABLE II. Calculated atomic electronic factors F and specific
mass shifts MSMS.

Transition [nm] F [GHz=fm2] MSMS [GHz $ amu]

255.8 28.363 51
843.38 %12:786 %311

PRL 106, 052503 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 FEBRUARY 2011

052503-3

T. Cocolios, . . . , M. B., P.-H. Heenen, PRL 106 (2011) 052503.
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Laboratory densities

Transition matrix element for tensor operator T̂λµ = â†r âr Tλµ (r)

〈Jf Mf νf |T̂λµ |JiMiνi 〉 =

∫
d3r ρ

Jf Mf νf
JiMiνi

(r) Tλµ (r) .

Transition density in the laboratory between GCM states |JiMiνi 〉 and |Jf Mf νf 〉 assuming axial
HFB states

ρ
Jf Mf νf
JiMiνi

(r) =
∑
qf ,qi

f
Jf ∗
νf ,q

′ 〈q′|P̂
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2
f

(8π2)2

∫
dΩ′ D

Jf ∗
0Mf

(Ω′)
∑
K

D
Ji
K0(Ω′)

∫
dΩ′′ D

Ji
0K (Ω′′)〈q′|ρ̂(̃rΩ′ ) P̂N P̂Z R̂†(Ω′′)|q〉

≡
Ĵ2
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Beyond-mean-field study of the possible “bubble” structure of 34Si
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Recent self-consistent mean-field calculations predict a substantial depletion of the proton density in the
interior of 34Si. In the present study, we investigate how correlations beyond the mean field modify this finding.
The framework of the calculation is a particle-number and angular-momentum projected generator coordinate
method based on Hartree-Fock-Bogoliubov + Lipkin-Nogami states with axial quadrupole deformation. The
parametrization SLy4 of the Skyrme energy density functional is used together with a density-dependent pairing
energy functional. For the first time, the generator coordinate method is applied to the calculation of charge
densities. The impact of pairing correlations, symmetry restorations and shape mixing on the density profile is
analyzed step by step. All these effects significantly alter the radial density profile, and tend to bring it closer to
a Fermi-type density distribution.
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I. INTRODUCTION

Charge distributions in atomic nuclei [1–7] provide very
detailed information about nuclear structure. They are obtained
through the analysis of elastic electron-nucleus scattering data.
Because of the absence of suitable targets, data on unstable
nuclei are available, to the best of our knowledge, only for 14C
[8] and 3H [9,10]. The SCRIT project [11–13] of constructing
a high-resolution electron spectrometer that is underway in
Japan and ELISe [14], planned to be constructed at FAIR, are
expected to provide data about the charge distributions and
transition form factors for many exotic nuclei in the future.

Because of the saturation properties of the nuclear medium,
the radial dependence of the nuclear density takes, at the lowest
order, the form of a Fermi distribution. However, the density
often deviates from this simple behavior because of quantal
effects related to the filling of single-particle states with wave
functions that have specific spatial behavior. In this context,
s1/2 orbits in spherical nuclei have a very peculiar signature,
as they are the only ones that contribute to the density at the
nuclear center. Depending on whether they are filled or empty,
s1/2 orbits can generate a central bump in the density as it has
been observed for 40Ca [15], or a central depression.

Mean-field-based methods [16] are the tools of choice when
modeling the nuclear density distribution. Indeed, they include
the ingredients required for this task: the full model space of
occupied single-particle states as degrees of freedom together
with an effective interaction that reproduces the empirical
saturation properties of nuclear matter.

The density profile and the spatial dependence of the single-
particle potentials are closely related and self-consistently

*jmyao@swu.edu.cn
†simone.baroni@ulb.ac.be
‡bender@cenbg.in2p3.fr
§phheenen@ulb.ac.be

linked to each other. A central depression in the density
might be accompanied by two very specific properties of the
mean-field potential, one related to its central part and a second
one related to the spin-orbit potential.

A central depression of the density is reflected in the central
potential by a maximum at the origin and a minimum for some
finite distance r . This is often called a “wine-bottle” shaped
central potential, referring to the shape of the bottom of a
bottle of wine. Levels with low orbital angular momentum !
are then pushed up relatively to those with large ! that are
pulled down. For sufficiently large rearrangement, the order
of single-particle levels can even change, lowering the central
density even more and leading to the so-called “bubble nuclei”.
For specific “bubble magic numbers” 18, 34, 50, 58, 80,
120, ... [17,18] large shell effects might compensate for the
loss in binding energy due to the reduced central density well
below the nuclear matter saturation value. There was some
speculation in the 1970s whether such structure could exist
in nuclei that were about to become accessible for detailed
studies, in particular 36Ar and some Hg isotopes [17–24].
However, the possibility of a bubble structure in these nuclei
has been ruled out by experiment. By contrast, predictions that
superheavy and hyperheavy nuclei beyond the currently known
region of the mass table might take the form of bubbles [25–29]
are still standing. In fact, for a large charge number Z, a hollow
density distribution is energetically favored over a regular one
as it lowers the Coulomb repulsion. In this context, one often
distinguishes between “true bubbles”, which have vanishing
density in their center, and “semibubbles”, which have a central
density significantly lower than saturation density, but with a
nonzero value.

The second effect of a central depression concerns the
spin-orbit potential. In self-consistent mean-field models, this
potential is proportional to the gradient of a combination of
proton and neutron densities, whose relative weights depend
on the model and parametrization [16,27]. For nuclei with a
regular density profile, it is peaked at the nuclear surface. For
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Background: Electron scattering provides a powerful tool to determine charge distributions and transition
densities of nuclei. This tool will soon be available for short-lived neutron-rich nuclei.
Purpose: Beyond-mean-field methods have been successfully applied to the study of excitation spectra of nuclei
in the whole nuclear chart. These methods permit determination of energies and transition probabilities starting
from an effective in-medium nucleon-nucleon interaction but without other phenomenological ingredients. Such
a method has recently been extended to calculate the charge density of nuclei deformed at the mean-field level
of approximation [J. M. Yao et al., Phys. Rev. C 86, 014310 (2012)]. The aim of this work is to further extend
the method to the determination of transition densities between low-lying excited states.
Method: The starting point of our method is a set of Hartree-Fock-Bogoliubov wave functions generated with a
constraint on the axial quadrupole moment and using a Skyrme energy density functional. Correlations beyond
the mean field are introduced by projecting mean-field wave functions on angular momentum and particle number
and by mixing the symmetry-restored wave functions.
Results: We give in this paper detailed formulas derived for the calculation of densities and form factors. These
formulas are rather easy to obtain when both initial and final states are 0+ states but are far from being trivial
when one of the states has a finite J value. Illustrative applications to 24Mg and to the even-mass 58–68Ni have
permitted an analysis of the main features of our method, in particular the effect of deformation on densities and
form factors. An illustrative calculation of both elastic and inelastic scattering form factors is presented.
Conclusions: We present a very general framework to calculate densities of and transition densities between
low-lying states that can be applied to any nucleus. Achieving better agreement with the experimental data
will require improving the energy density functionals that are currently used and also introducing quasiparticle
excitations in the mean-field wave functions.
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I. INTRODUCTION

Electron scattering off nuclei is a powerful tool for studies
of nuclear structure and spectroscopy [1–16]. It allows deter-
mination of the charge distribution of nuclear ground states,
as well as of the transition charge and current densities from
the ground state to excited states. More global properties, such
as charge radii, can be extracted from a detailed knowledge of
charge distribution. Parameters characterizing the extension
and surface thickness of the nuclear density can also be
derived [17,18]. From the form factors for inelastic electron
scattering at low transferred momentum q, the spin and parity
of excited states and the multipole transition strengths can
be determined in a model-independent manner [4,10]. At
larger values of q, the form factors present an insight into
the spatial location of the transition process, which cannot
be accessed from the integral over this function provided by
the measurement of B(EL) values in Coulomb excitation
or lifetime measurements. Thereby, electron scattering not
only provides a powerful alternative to many other types
of nuclear structure studies but also complements them by

*Present address: Department of Physics, Tohoku University, Sendai
980-8578, Japan.

giving access to levels and transitions that are undetectable in
photoexcitation and γ -ray spectroscopy, such as for instance
levels excited by monopole transitions or transitions of high
multipolarity.

As all electron-nucleus scattering experiments of the past
used fixed or gas targets, only stable and a very few long-lived
nuclides could be studied so far. This will change with the
setup of electron-RIB collider experiments. The SCRIT (Self
Confining Radioactive Isotope Target) project [19–21] is under
construction at Rikagaku Kenkyusho (RIKEN) (Japan) and the
ELISe (ELectron-Ion Scattering in a storage ring) project is
planned for the GSI Facility for Antiproton and Ion Research
(FAIR) (Germany) [22,23]. The charge densities and transition
charge densities of short-lived nuclides, in particular neutron-
rich nuclei, will be measured at both installations.

Data from electron scattering are often interpreted in terms
of paramterized macroscopic density and transition density
distributions, such as the ones of Helm [24], Tassie [25],
or Friedrich et al. [17,18]. They all have in common that
some functional form of the ground-state or transition charge
densities is postulated and its parameters are adjusted to
reproduce the data. Such analysis provides an insight into the
gross features of the ground-state and transition charge density
distribution and the resolution of their details [6]. For a more
detailed analysis, however, it is desirable to calculate the form

0556-2813/2015/91(2)/024301(17) 024301-1 ©2015 American Physical Society
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FIG. 1. (Color online) Energy curves for the particle-number-
projected HFB states (N&Z) and particle-number and angular-
momentum projected states (J = 0, 2, 4, 6 curves) for 34Si as a
function of the intrinsic quadrupole deformation of the mean-field
states they are projected from. The solid square dots correspond to the
lowest GCM solutions, which are plotted at their average deformation∑

q q |gJ
µ(q)|2 (see text).

The energies EJ
µ of the lowest GCM states are also shown

in Fig. 1 (solid square with a label J π
µ ) at the mean deformation∑

q q |gJ
µ(q)|2 of the mean-field states on which they are built.

This mean deformation is not an observable; still, it often
provides a good indication about the dominating mean-field
configurations in a GCM state. The mean deformations and the

FIG. 2. (Color online) Nilsson diagram of the eigenvalues of
the single-particle Hamiltonian for neutrons (a) and protons (b) as
obtained with the Skyrme interaction SLy4 for 34Si as a function
of the quadrupole deformation. Solid (dotted) lines represent levels
of positive (negative) parity, and black, red, green and blue color
represents levels with expectation values of 〈jz〉 = 1/2, 3/2, 5/2,
and 7/2. The thick long-dashed line represents the Fermi energy.
Single-particle levels are labeled for the spherical configuration only.

FIG. 3. (Color online) Comparison between the experimental
(left) and calculated (right) excitation energies Ex and B(E2) values
(in units of e2 fm4) for the low-lying states of 34Si. Experimental data
are taken from Ref. [61].

B(E2) transition strengths suggest to organize the correlated
states into the two structures displayed in Fig. 3, where the
computed transition probabilities and the energy of the levels
are also compared with the available experimental values [61].
Our result can be interpreted as resulting from the coexistence
of an anharmonic spherical vibrator and a prolate deformed
band at low excitation energy. Both structures are not pure and
distorted by their strong mixing.

The energy of the recently observed low-energy 0+
2

state [61] and the out-of-band B(E2 : 2+
1 → 0+

2 ) value are
reproduced rather well. However, the electric monopole
ρ2(E0; 0+

2 → 0+
1 ) and the in-band B(E2; 2+

1 → 0+
1 ) are over-

estimated by our model: 58.1 × 10−3 compared to the ex-
perimental value of 13.0 (0.9) × 10−3 [61] for the former and
60.5 e2 fm4 compared to 16.6 e2 fm4 for the latter. This discrep-
ancy might indicate [62] that the two lowest 0+ GCM states
are too strongly mixed in our calculation. The corresponding
collective wave functions gJ

µ(q) are displayed in Fig. 4. Both
are indeed spread over a very wide range of deformations,

FIG. 4. (Color online) Collective wave functions gJ
µ(q) [cf.

Eq. (6)] of the two lowest GCM solutions for J = 0.
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with similar contributions at small deformation |β2| ≈ 0. The
ground state is peaked around the deformations of the two
minima in the J = 0 projected energy curve, cf. Fig. 1. By
contrast,the wave function of the 0+

2 state is peaked at large
prolate and oblate deformations where at least one downslop-
ing level from the neutron f7/2 shell becomes intruder by
crossing the upsloping levels from the sd shell, cf. Fig. 2. This
is consistent with the interpretation of the 0+

2 state in 34Si as a
counterpart of the deformed ground state of the slightly lighter
nuclei located in the so-called “island of inversion” [61].

IV. DENSITY DISTRIBUTION

To quantify the depletion of the proton density distribution,
we will use a depletion factor

Fmax ≡ ρmax,p − ρcent,p

ρmax,p

, (9)

which has been used in Refs. [31,33] and that measures the
reduction of the density at the nucleus center relatively to its
maximum value.

The effect of pairing correlations, projection on good
quantum numbers and configuration mixing on the radial
profiles of the proton, neutron, and total densities is displayed
in Fig. 5. The densities of the HF, HFB + LN and particle-
number projected HFB + LN states are compared to those of
the GCM 0+ ground state. To facilitate the comparison, the
proton and neutron densities are rescaled by A/Z and A/N
factors, respectively.

A large depletion at r = 0 and a bulge at r ≈ 1.8 fm are
obtained for the proton density when the HF method is used
[panel (a) of Fig. 5]. The HF neutron density, however, has
an opposite behavior, with a flat shoulder at intermediate r
values and a bump at the nucleus center. This bump is similar

FIG. 5. (Color online) Neutron, proton, and total radial densities
at x = y = 0 for 34Si for the spherical HF state (a), the spherical
HFB + LN state (b), and its projection on good particle numbers
(c), as well as for the GCM 0+

1 ground state (d). Neutron and
proton densities have been rescaled with the factors A/N and A/Z,
respectively.

to the one found experimentally for the charge density in
40Ca [15]. Altogether, the total density has an almost flat, even
slowly rising, profile in the interior of the nucleus. The same
compensation of neutron and proton densities in the system’s
interior is also found at all other stages of the calculation.

Unconstrained HFB calculations for 34Si give the same
result as the HF approximation. This is because the large
Z = 14 gap of about 4.5 MeV between the proton 1d5/2 and
2s1/2 levels in the single-particle spectrum prevents the protons
from becoming superfluid at the HFB approximation. The even
larger N = 20 gap in the single-particle spectrum has the same
effect for neutrons. The situation is different for nuclei such as
22O and 46Ar, where pairing correlations are already active at
the HFB level and wash out the bubble structure predicted by
HF calculations [33].

The collapse of pairing correlations when the density
of single-particle levels falls below a critical value is a
deficiency of the HFB method [55,63]. It can be partially
corrected by using the LN procedure [panel (b) of Fig. 5].
The level occupation is then smeared over the Fermi energy
and the proton 2s1/2 orbital becomes partially occupied. As
a consequence, the central proton density rises considerably
from Fmax = 0.41 (HF) to Fmax = 0.32 (HFB + LN). The
HFB + LN density presented in Fig. 5 is calculated using
occupation numbers corrected for particle-number projection
by the approximation described for example in Ref. [64]. Using
the noncorrected BCS occupation numbers instead would
overestimate the effect of pairing and give a much larger
reduction of the depletion factor.

Projection of the HFB + LN state on good particle num-
bers [panel (c) of Fig. 5] substantially reduces the pairing
correlations, and the density profiles almost go back to the HF
ones with Fmax = 0.36. This reflects the well-known fact that
the LN approximation overestimates the correlations in the
weak pairing limit (whereas HFB underestimates them), cf.
for example Ref. [65], and indicates that in this case a correct
treatment of pairing requires to go beyond the mean field.

The behavior of the density close to the origin is usually
discussed in terms of the occupation of single-particle states
in the spherical HF basis. This is not obvious in a method
like the one that we use where the mean-field basis is different
for each deformation. Deformation mixes single-particle states
with different orbital angular momentum. In particular, when
one expands a deformed basis in terms of the spherical one,
the proton 2s1/2 level gets partially filled. The situation is even
more complicated after projection and configuration mixing,
cf. panel (d) of Fig. 5. We have seen in Fig. 4 that the collective
wave function of the 0+ GCM ground state is spread over a
wide range of intrinsic deformations.

Figure 6 illustrates how the density distribution of neutrons
(upper panels) and protons (lower panels) is modified at
different levels of our calculation. The left column shows con-
tour plots of both densities for the particle-number projected
HFB + LN state with β2 = 0.26 that after angular-momentum
projection gives the prolate minimum of the J = 0 curve in
Fig. 1. The proton density still exhibits a central depletion, but
less pronounced than it is for the spherical HFB + LN state,
reflecting the partial filling of the 2s1/2 level by deformation.
After projection on total angular momentum J = 0 (middle
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FIG. 6. Contour plots of the neutron (upper panels) and proton
(lower panels) densities in the y = 0 plane for the particle number
projected HFB + LN state with β2 = 0.26 (left column), its projection
on both particle numbers and total angular momentum J = 0 (middle
column) and for the 0+ GCM ground state (right column).

column), the density is obtained in the laboratory frame and
is spherical. However, the central depression of the density is
similar to the one found when projecting on particle numbers
only. The configuration mixing leading to the GCM 0+ ground
state (right column) increases the central proton density again
and simultaneously reduces the value at the bulge, see the
bottom right panel of Fig. 5, which in combination reduces
the depletion factor to Fmax = 0.21. The values of central and
maximum densities and of the depletion factor for the states
discussed above are summarized in Table I.

Up to now we have discussed the density of point protons
and neutrons, thereby neglecting that protons and neutrons
are composite particles of extended size. When searching for
experimental signature of a depleted central density in 34Si
by elastic electron scattering, however, this has to be taken
into account. The observable charge density is calculated by
convolution of the proton density with a Gaussian form factor
[66] with a proton size a =

√
2/3 〈r2〉1/2

p = 0.65 fm, which
for spherically symmetric density distributions leads to

ρch(r) = 1
a
√

π

∫
dr ′r ′ ρp(r ′)

[
e−(r−r ′)2/a2

r
− e−(r+r ′)2/a2

r

]
.

(10)

TABLE I. Central and maximum proton density of 34Si and the
depletion factors Fmax,p [cf. Eq. (9)] and Fsat,τ [cf. Eq. (11)]. For the
latter, values for proton, neutron, and the total densities are given. All
densities are in fm−3. The three first lines correspond to a spherical
state. The values labeled with N&Z, J = 0 correspond to the prolate
minimum of the N&Z, J = 0 projected energy curve of Fig. 1.

ρcent,p ρmax,p Fmax,p Fsat,p Fsat,n Fsat,t

HF 0.044 0.074 0.41 0.34 −0.37 −0.08
HFB + LN 0.050 0.074 0.32 0.24 −0.31 −0.08
N&Z 0.047 0.074 0.36 0.28 −0.30 −0.06
N&Z, J = 0 0.051 0.073 0.30 0.22 −0.27 −0.07
GCM(g.s.) 0.057 0.073 0.21 0.13 −0.22 −0.07

FIG. 7. (Color online) Comparison of point-proton densities (a)
with the folded charge densities (b) for 34Si for the same states as in
Fig. 5.

The charge density (right panel) is compared in Fig. 7 to
the point proton density (left panel) for the same four cases
discussed in Fig. 5. Like correlations, the convolution (10)
tends to even out the variations of the density profile: the central
density rises and the maximum density of the outer bulge
becomes smaller. In combination, both leads to a substantial
reduction of the depletion factor from Fmax = 0.41 for the
point proton density in a spherical HF calculation to Fmax =
0.09 for the charge density of the 0+ GCM ground state.

Adding correlations, the root-mean-square (rms) radius
of the point proton density increases from 3.127 fm for
the spherical HF state to 3.133 fm for the particle-number
projected spherical HFB + LN state and to 3.180 fm for the
GCM 0+ ground state. Looking at the density profiles in Fig. 7
the larger radius of the GCM 0+ ground state might appear
counter-intuitive, as, at small radii <3 fm, the protons are
obviously shifted to the inside. At larger radii, however, the tail
of the density of the GCM 0+ ground state becomes slightly
larger than the density of the other states, which is almost
undetectable on the linear scale of Fig. 7. Because of the factor
r4 in the mean-square radius integral in polar coordinates, this
tail is much more important than the center of the nucleus.

Figure 7 puts into evidence that the reduction of the
depletion factor at each stage of the calculation is partly due to
the reduction of the maximum density ρmax Obviously, shell
effects can reduce the density at some radii, but also enhance
it at others. This indicates that the definition of the depletion
factor (9) contains an ambiguity concerning the reference
density. An alternative definition of a depletion factor could be

Fsat,τ ≡ ρsat,τ − ρcent,τ

ρsat,τ
, (11)

where ρsat,τ with τ = p, n, t is now the saturation value
of the proton, neutron, and total density. For 34Si, we
have ρsat,p = (14/34) × 0.16 fm−3 = 0.066 fm−3, ρsat,n =
(20/34) × 0.16 fm−3 = 0.094 fm−3, and ρsat,t = 0.16 fm−3,
respectively. Unlike Fmax, this alternative depletion factor Fsat
can also be used to quantify central bumps in the density
distribution.
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FIG. 6. Contour plots of the neutron (upper panels) and proton
(lower panels) densities in the y = 0 plane for the particle number
projected HFB + LN state with β2 = 0.26 (left column), its projection
on both particle numbers and total angular momentum J = 0 (middle
column) and for the 0+ GCM ground state (right column).

column), the density is obtained in the laboratory frame and
is spherical. However, the central depression of the density is
similar to the one found when projecting on particle numbers
only. The configuration mixing leading to the GCM 0+ ground
state (right column) increases the central proton density again
and simultaneously reduces the value at the bulge, see the
bottom right panel of Fig. 5, which in combination reduces
the depletion factor to Fmax = 0.21. The values of central and
maximum densities and of the depletion factor for the states
discussed above are summarized in Table I.

Up to now we have discussed the density of point protons
and neutrons, thereby neglecting that protons and neutrons
are composite particles of extended size. When searching for
experimental signature of a depleted central density in 34Si
by elastic electron scattering, however, this has to be taken
into account. The observable charge density is calculated by
convolution of the proton density with a Gaussian form factor
[66] with a proton size a =

√
2/3 〈r2〉1/2

p = 0.65 fm, which
for spherically symmetric density distributions leads to

ρch(r) = 1
a
√

π

∫
dr ′r ′ ρp(r ′)

[
e−(r−r ′)2/a2

r
− e−(r+r ′)2/a2

r

]
.

(10)

TABLE I. Central and maximum proton density of 34Si and the
depletion factors Fmax,p [cf. Eq. (9)] and Fsat,τ [cf. Eq. (11)]. For the
latter, values for proton, neutron, and the total densities are given. All
densities are in fm−3. The three first lines correspond to a spherical
state. The values labeled with N&Z, J = 0 correspond to the prolate
minimum of the N&Z, J = 0 projected energy curve of Fig. 1.

ρcent,p ρmax,p Fmax,p Fsat,p Fsat,n Fsat,t

HF 0.044 0.074 0.41 0.34 −0.37 −0.08
HFB + LN 0.050 0.074 0.32 0.24 −0.31 −0.08
N&Z 0.047 0.074 0.36 0.28 −0.30 −0.06
N&Z, J = 0 0.051 0.073 0.30 0.22 −0.27 −0.07
GCM(g.s.) 0.057 0.073 0.21 0.13 −0.22 −0.07

FIG. 7. (Color online) Comparison of point-proton densities (a)
with the folded charge densities (b) for 34Si for the same states as in
Fig. 5.

The charge density (right panel) is compared in Fig. 7 to
the point proton density (left panel) for the same four cases
discussed in Fig. 5. Like correlations, the convolution (10)
tends to even out the variations of the density profile: the central
density rises and the maximum density of the outer bulge
becomes smaller. In combination, both leads to a substantial
reduction of the depletion factor from Fmax = 0.41 for the
point proton density in a spherical HF calculation to Fmax =
0.09 for the charge density of the 0+ GCM ground state.

Adding correlations, the root-mean-square (rms) radius
of the point proton density increases from 3.127 fm for
the spherical HF state to 3.133 fm for the particle-number
projected spherical HFB + LN state and to 3.180 fm for the
GCM 0+ ground state. Looking at the density profiles in Fig. 7
the larger radius of the GCM 0+ ground state might appear
counter-intuitive, as, at small radii <3 fm, the protons are
obviously shifted to the inside. At larger radii, however, the tail
of the density of the GCM 0+ ground state becomes slightly
larger than the density of the other states, which is almost
undetectable on the linear scale of Fig. 7. Because of the factor
r4 in the mean-square radius integral in polar coordinates, this
tail is much more important than the center of the nucleus.

Figure 7 puts into evidence that the reduction of the
depletion factor at each stage of the calculation is partly due to
the reduction of the maximum density ρmax Obviously, shell
effects can reduce the density at some radii, but also enhance
it at others. This indicates that the definition of the depletion
factor (9) contains an ambiguity concerning the reference
density. An alternative definition of a depletion factor could be

Fsat,τ ≡ ρsat,τ − ρcent,τ

ρsat,τ
, (11)

where ρsat,τ with τ = p, n, t is now the saturation value
of the proton, neutron, and total density. For 34Si, we
have ρsat,p = (14/34) × 0.16 fm−3 = 0.066 fm−3, ρsat,n =
(20/34) × 0.16 fm−3 = 0.094 fm−3, and ρsat,t = 0.16 fm−3,
respectively. Unlike Fmax, this alternative depletion factor Fsat
can also be used to quantify central bumps in the density
distribution.

014310-6

J. M. Yao, S. Baroni, M. B., P.-H. Heenen, PRC 86 (2012) 014310

M. Bender, IPN Lyon EDF studies of elastic and inelastic scattering off nuclei



Follow-up work using the relativistic mean-field model

Physics Letters B 723 (2013) 459–463

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Does a proton “bubble” structure exist in the low-lying states of 34Si?

J.M. Yao a,b,∗, H. Mei a, Z.P. Li a

a School of Physical Science and Technology, Southwest University, Chongqing 400715, China
b Physique Nucléaire Théorique, Université Libre de Bruxelles, C.P. 229, B-1050 Bruxelles, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 April 2013
Accepted 20 May 2013
Available online 23 May 2013
Editor: W. Haxton

Keywords:
Covariant density functional theory
Beyond mean-field approximation
Low-lying states
Density distribution

The possible existence of a “bubble” structure in the proton density of 34Si has recently attracted a lot of
research interest. To examine the existence of the “bubble” structure in low-lying states, we establish a
relativistic version of configuration mixing of both particle-number and angular-momentum projected
quadrupole deformed mean-field states and apply this state-of-the-art beyond relativistic mean-field
method to study the density distribution of the low-lying states in 34Si. An excellent agreement with
the data of low-spin spectrum and electric multipole transition strengths is achieved without introducing
any parameters. We find that the central depression in the proton density is quenched by dynamic
quadrupole shape fluctuation, but not as significantly as what has been found in a beyond non-relativistic
mean-field study. Our results suggest that the existence of proton “bubble” structure in the low-lying
excited 0+

2 and 2+
1 states is very unlikely.

 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been a growing interest in searching
for “bubble” nuclei, in which the density in the center vanishes or
is significantly lower than saturation density. The “bubble” nuclei
are of particular interest because they have different mean-field
potentials from those of normal nuclei with Fermi-type density
distribution. In particular, the splitting of spin–orbit partners lo-
cated mainly at the nuclear center is reduced in the “bubble” nu-
clei. Some modern parametrizations of the relativistic mean field
(RMF) [1,2] and of the Skyrme energy density functional (EDF)
[3–5], as well as the mean-field calculation using semi-realistic in-
teractions [6] predict a hollow proton density for 34Si and some
neutron-rich Ar isotopes. At the time being, 34Si stands out as the
only candidate on which many different studies agree. The pos-
sible proton “bubble” structure of this nucleus has also been sug-
gested as an explanation for the recently observed reduction of the
spin–orbit splitting using the transfer reactions 36S(d, p)37S and
34Si(d, p)35Si [7]. Recently, the intruder 0+

2 state and its weak elec-
tric monopole transition to the ground state were measured [8].
The results support the coexistence structure of a spherical ground
state with a large deformed 0+

2 state in 34Si. The spectroscopy

* Corresponding author at: School of Physical Science and Technology, Southwest
University, Chongqing 400715, China.

E-mail address: jmyao@swu.edu.cn (J.M. Yao).

of low-lying states provides a strong test of the nuclear structure
models that have been used to study the density profiles.

Most recently, the stability of “bubble” structure against dy-
namical effects in 34Si has been examined in the framework
of a particle-number (PN) and angular-momentum (AM) pro-
jected generator coordinate method (GCM) based on Hartree–
Fock–Bogoliubov (HFB) states with axial quadrupole deformation
using the non-relativistic Skyrme force SLy4 [9]. It has been shown
that the dynamic effect of quadrupole shape fluctuation signifi-
cantly altered the radial density profile, and brought it closer to
a Fermi-type density distribution. We noted, however, that the
spectroscopic properties of the observed low-lying states were not
reproduced very well [9]. The calculated two lowest 0+ states were
too strongly mixed, which might overestimate the effect of shape
mixing on the density of ground state. Moreover, in the context
of projected GCM based on self-consistent mean-field approaches,
the density profiles of excited states have not been studied yet. The
existence of the proton “bubble” structure in the low-lying excited
states of 34Si is not known.

During the past decades, the RMF theory has achieved great
success in describing many nuclear phenomena for both stable and
exotic nuclei over the entire nuclear chart with a few universal
parameters [10–13]. It incorporates many important relativistic ef-
fects, such as the presence of large Lorentz scalar and vector fields
with approximately equal magnitude and opposite sign. This leads
to a new saturation mechanism via the difference between the
scalar and vector densities, and naturally to the large spin–orbit in-
teraction needed for the understanding of magic numbers in finite

0370-2693/$ – see front matter  2013 Elsevier B.V. All rights reserved.
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Fock–Bogoliubov (HFB) states with axial quadrupole deformation
using the non-relativistic Skyrme force SLy4 [9]. It has been shown
that the dynamic effect of quadrupole shape fluctuation signifi-
cantly altered the radial density profile, and brought it closer to
a Fermi-type density distribution. We noted, however, that the
spectroscopic properties of the observed low-lying states were not
reproduced very well [9]. The calculated two lowest 0+ states were
too strongly mixed, which might overestimate the effect of shape
mixing on the density of ground state. Moreover, in the context
of projected GCM based on self-consistent mean-field approaches,
the density profiles of excited states have not been studied yet. The
existence of the proton “bubble” structure in the low-lying excited
states of 34Si is not known.
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Fig. 1. (Color online.) Comparison between the (left) experimental data [8], (middle)
the predictions by the SLy4 force [9], and (right) the ones by the PC-PK1 force for
the low-lying states in 34Si. The electric monopole (E0) transition between the first
two 0+ states is indicated with the value of ρ2(E0;0+

2 → 0+
1 ) × 103. The electric

quadrupole (E2) transition is indicated with the value in units of e2 fm4.

Fig. 2. (Color online.) Collective wave functions [cf. Eq. (8)] of the 0+
1 ,0+

2 ,2+
1 states

in 34Si.

Fig. 2 displays the distribution of the collective wave functions
g J
α(β) in deformation β degree of freedom for the 0+

1 , 0+
2 , 2+

1
states, among which the electric multipole transitions have been
observed [8], where the g J

α(β) are related to the weight function
f J N Z
α by the following relation:

g J
α(β) =

∑

β ′

(
N J (β,β ′))1/2

f J N Z
α

(
β ′), (8)

and are orthonormal to each other. The shapes of collective wave
functions for the 0+

1 and 0+
2 states are similar to those obtained

in Ref. [9] from the calculations using the SLy4 force. However,
there are differences in detail. The wave function of ground state
is more concentrated around the spherical shape in the relativistic
case, while that of 0+

2 state has more weight in large deformed
configurations (dominated by the intruder neutron f7/2 orbital). As
a consequence, compared with the SLy4 results, the ρ2(E0;0+

2 →
0+

1 ) and B(E2;2+
1 → 0+

1 ) values are reduced and become closer to
the data in the beyond RMF calculations.

The density distribution of protons in 34Si from the RMF cal-
culation is displayed in Fig. 3, which shows an evident central
depletion. This density distribution corresponds to the spherical
mean-field configuration, for which case, the occupation proba-
bility of proton 2s1/2 orbital is zero due to pairing collapse. The

Fig. 3. (Color online.) Density distribution of mean-field spherical state in y–z plane
at x = 0.4 fm from the RMF calculation using the PC-PK1 force for 34Si (in fm−3).

Fig. 4. (Color online.) Comparison of proton density distributions of ground state
from both mean-field and beyond mean-field calculations for 34Si. The non-
relativistic results, taken from Ref. [9], are given for comparison.

mixing of configurations of different intrinsic shapes resulting from
dynamic fluctuation in quadrupole deformations can alter the oc-
cupancy of the 2s1/2 orbital and therefore change the density dis-
tribution in the center. Fig. 4 displays the comparison of mean-field
and beyond mean-field (GCM+PNP+AMP) calculated density dis-
tributions for the ground state in 34Si. It shows that the quenching
of the depletion of proton density in the center by shape mixing is
a common feature in the beyond mean-field calculations. However,
the beyond RMF calculation gives a smaller quenching effect than
that the one found in the beyond non-relativistic mean-field cal-
culation, which can be mainly attributed to the difference in the
distribution of wave function in the collective space, i.e., the wave
function of ground state in this work is more concentrated around
the spherical shape than that given in Ref. [9].

Fig. 5 displays the comparison of charge density distributions
in 34Si and 36S from the relativistic calculations using the PC-
PK1 force. The charge density is calculated by convolution of the
proton density with a Gaussian form factor with a proton size

462 J.M. Yao et al. / Physics Letters B 723 (2013) 459–463

Fig. 5. (Color online.) Charge density distributions in 34Si and 36S from the rela-
tivistic calculations using the PC-PK1 force. The experimental data for 36S are taken
from Ref. [24].

a = √
2/3〈r2〉1/2

p = 0.65 fm, which for spherically symmetric den-
sity distributions leads to [23]

ρch(r) = 1
a
√

π

∫
dr′ r′ρp

(
r′)

[
e−(r−r′)2/a2

r
− e−(r+r′)2/a2

r

]
. (9)

The charge density of mean-field result (β = 0.0) for 36S is much
higher than the experimental data. This phenomenon is also ob-
served in other RMF calculations using the NL3 and DD-ME2
forces [4]. Fig. 5 demonstrates that after including the dynamic
correlation effects in the projected GCM calculation, the charge
density of 36S is in excellent agreement with the data, which gives
us confidence in the prediction for the charge density of 34Si.

In the mean-field approaches, a central depletion of the proton
density in 34Si could induce a non-zero density derivative in the
center and thus reduce the strength of the spin–orbit interaction
for the inner orbits. This has been suggested as an explanation for
the reduction of neutron 2p3/2–2p1/2 splitting between 37S and
35Si inferred from transfer reactions [7]. To examine this effect at
the mean-field level, we plot in Fig. 6 the single-particle energy
spectra for protons and neutrons corresponding to the spherical
configuration of 34Si and 36S from the RMF calculations using
the PC-PK1 force. As expected, the splitting of spin–orbit dou-
blets 2p3/2–2p1/2 is reduced significantly from 2.77(2.66) MeV to
0.73(0.80) MeV for protons (neutrons) when going from 36S to
34Si. It should be noted that the spin–orbit interaction is emerg-
ing naturally from the derivative of vector and scalar fields in
the RMF approaches and no adjustable parameter is introduced.
However, one should not compare these values directly with those
inferred from transfer reactions, as discussed in Ref. [9]. Moreover,
as shown in Fig. 5 that the pure RMF calculation overestimates
the central density in 36S, and therefore enhances the spin–orbital
splitting. Furthermore, the neutron 2p3/2 level in 34Si is weakly
bound at −0.063 MeV, whereas the neutron 2p1/2 level in 34Si
and 36S is unbound at +0.74 MeV and +0.48 MeV respectively,
in which case, the coupling to the continuum has to be carefully
taken into account, which is beyond the scope of present study.

Fig. 6. (Color online.) Single-particle energy spectra for protons and neutrons corre-
sponding to the spherical configuration of 34Si and 36S from the RMF calculations
using the PC-PK1 force. The size of spin–orbit splitting is indicated with the value
in units of MeV.

Fig. 7. (Color online.) Density distributions of neutrons, protons and charges for the
first two 0+ states (solid lines), in comparison with the mean-field calculated re-
sults for the spherical configuration (dashed lines).

Fig. 7 displays the density distributions of neutrons, protons and
charges for the first two 0+ states, in comparison with the mean-
field calculated results of pure spherical configuration. It shows
clearly that the densities of both neutrons and protons in the
ground state are closer to the Fermi-type distribution in the pro-
jected GCM calculation, in comparison with the pure RMF calcula-
tion (β = 0.0). In particular, for the 0+

2 state, the central depression
in the density distribution is not visible.

For non-zero spin states, the density is deformed, in which case,
it is convenient to define a radial (reduced) transition density with
angular momentum transfer L [19],

ρ J
J ;L(r) = 〈 J0L0| J0〉−1

∫
dr̂ρ Jα(r)Y L0(r̂), (10)

where 〈 J 0L0| J 0〉 is a Clebsch–Gordan coefficient. We note that the
integration of the radial transition density ρ J

J ;0(r), multiplied with

r4 over the radial coordinate r is related to the mean-square radius
of the state 〈r2〉 Jα by the relation

∫
ρ J

J ;0(r)r
4 dr = 〈r2〉 Jα/

√
4π . We

find that the mean-square radius of the first three low-lying states
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where the reduced matrix element of the multipole operator
Q̂LM (r) ≡ rL YLM (r̂) is defined by

〈Jf q ′||Q̂L(r)||Jiq〉 ≡
Ĵ 2

f Ĵ 2
i

2
(−1)Jf

∑

M

(
Jf L Ji

0 M −M

)

×
∫ π

0
dβ sin(β) d

Ji∗
−M0(β)

×〈q ′|rL YLM (r̂) P̂N P̂ZR̂y(β)|q〉.
(27)

The electric multipole transition strengths B(EL : αi → αf )
are then given by the square of the proton part of the transition
matrix element M

Jf µf

Jiµi ,L
(abbreviated with M

p
L). More details

are given in Appendix D.
There have been efforts to deduce the multipole transition

matrix elements M
p
L and Mn

L of protons and neutrons by
combining Coulomb excitation and (p,p′) measurements [86],
which, however, requires model assumptions at several stages
of the analysis. While their experimental determination re-
mains debatable, it turns out that the comparison between the
calculated M

p
L and Mn

L sheds light on the relative contributions
by the neutrons and protons to the nuclear excitation, and
therefore it provides an insight into the isospin nature of
the calculated excitation modes. The deviation of a factor η
defined as

η = Mn
L/M

p
L

N/Z
(28)

from 1.0 is then interpreted as the measure of the isovector
character of the excitation [86]. This quantity provides a tool
to study the isospin nature of the excitations, as the multipole
moments of neutrons can be easily calculated in the same way
as the ones of protons.

III. ILLUSTRATIVE APPLICATION TO 24Mg

The nucleus 24Mg has been used as a testing ground
for many implementations of beyond-mean-field mod-
els [75,82,83,85,87,88]. The results presented here are an
extension of previous studies. The mass quadrupole moment is
discretized with a step size %q = 40 fm2, ranging from −200
to +360 fm2. This choice ensures good convergence of the
GCM calculation. The excitation spectra obtained here are the
same as those reported for axial calculations in Ref. [75].

The energy curves obtained after projection on particle
numbers only and after simultaneous projections on particle
numbers and angular momentum J = 0, 2, and 4 are plotted in
Fig. 1(a). They are drawn as a function of the scaled quadrupole
moment β2 defined as

β2 =
√

5
16π

4π

3R2A
〈q|2ẑ2 − x̂2 − ŷ2|q〉, (29)

where R = 1.2A1/3 fm and varies from −0.9 to +1.6. The
energies of the first GCM states are also indicated by dots
centered at their mean deformations β̄Jµ defined as

β̄Jµ =
∑

q

β2(q)
∣∣gJ

µ,q

∣∣2
. (30)

FIG. 1. (Color online) (a) Total energy (normalized to the 0+
1

state) for the particle-number-projected HFB states (N&Z) and for
the particle-number and angular-momentum-projected states (curves
for J = 0, 2, and 4) for 24Mg as a function of the intrinsic mass
quadrupole deformation of the mean-field states. The solid squares
indicate the lowest GCM solutions, which are plotted at their average
deformation β̄Jµ. (b) Collective wave functions gJ

µ,q [cf. Eq. (5)] of
the 0+

1 , 2+
1 , and 4+

1 states.

Although β̄Jµ is not an observable, in axial calculations it
often provides a good indication about the dominant mean-
field configurations in a GCM state.

The corresponding collective wave functions are shown in
Fig. 1(b). The 0+

1 , 2+
1 , and 4+

1 states are a mixing of projected
prolate and oblate deformed configurations, with a dominance
of the prolate ones.

Contour plots of the proton densities ρα
α (r), Eq. (24), in the

y = 0 plane are shown in Fig. 2 for the M = 0 orientation
of the J π = 0+, 2+

1 , and 4+
1 states. As expected, the density

of the 0+
1 state is spherical after projection, The densities

FIG. 2. (Color online) Contour plots of calculated 3D proton
densities ρα

α (r) (in fm−3) in the y = 0 plane for the 0+
1 (a), 2+

1 (b),
and 4+

1 (c) states (with M = 0) in 24Mg.
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FIG. 3. (Color online) Contour plots of calculated TPD ρ
αf

0+
1

(r),

Eq. (21), in fm−3 in the y = 0 plane for the inelastic scattering from
the ground state to the 2+

1 (a) and the 4+
1 (b) states with M = 0 in

24Mg.

of the 2+
1 and 4+

1 states are a superposition of spherical
harmonics with λ values ranging from 0 to 2J [see Eq. (24)].
Their elongation along the z axis is larger than along the
x and y axes, giving the shapes a prolate-like form. The
dimensionless quadrupole deformations β(s) determined from
the spectroscopic quadrupole moments Qs(Jµ) of K = 0
states,

β(s)(Jk) =
√

5
16π

4π

3ZR2

(
−2J + 3

J

)
Qs(Jµ), (31)

are β(s) = 0.55 for the 2+
1 and 0.63 for the 4+

1 states,
respectively. The spectroscopic quadrupole moment Qs(Jµ)
is given by the expectation value of the quadrupole operator
Q̂20(r) = r2 Y20(r̂), multiplied by a coefficient

√
16π/5:

Qs(Jµ) =
√

16π

5
〈JJ20|JJ 〉M

Jµ
Jµ,2, (32)

with M
Jµ
Jµ,2 as defined in Eq. (26).

Figure 3 displays the transition proton density (TPD) ρ
αf

0+
1

(r)
[cf. Eq. (21)] for the inelastic scattering from the ground state
to the 2+

1 and 4+
1 states of 24Mg. The density for the transition

from the 0+
1 ground state to the 4+

1 state is an order of magnitude
smaller than the one to the 2+

1 state. As expected from Eq. (21),
the angular part of the TPDs has the shape of a spherical
harmonic. They are the largest around the nuclear surface and
present lobes of alternating signs.

The elastic C0 form factor |F0(q)|2 for the ground state of
24Mg is plotted in Fig. 4. The GCM calculation reproduces the
position of the form factor minima and is in agreement with
the data at low q values. However, our result underestimates
largely the form factor after the first minimum. A similar
discrepancy was found in Ref. [68] in the case of 12C. There,
it has been argued that the spreading of the collective wave
function on many deformations creates a too large smoothing
of the one-body density and decreases the weights of the
large-q components of the transition density. In the case of
12C, the pure HF form factor was slightly in better agreement
with the data. To estimate the effect of deformation on the

FIG. 4. (Color online) Elastic C0 form factor |F0(q)|2 for the 0+
1

ground state of 24Mg, in comparison with several calculations: he
C0 form factor obtained by particle-number and J = 0 projection
of a single HFB state with either β2 = 0 (spherical shape; light blue
dash-dotted curve) or β2 = 0.55 (minimum of J = 0 projected energy
curve; dark blue dashed curve) and from the full projected GCM
calculation (red solid curve). The inset shows the corresponding
charge density. Data (solid triangles and circles) are taken from
Ref. [89].

form factors, we also show the results obtained from single-
configuration calculations based on either β2 = 0 (spherical
shape) or β2 = 0.55 (minimum of the J = 0 energy curve)
wave functions. The form factor corresponding to the projec-
tion of the deformed configuration differs only marginally from
the GCM result. A similar result has also been found for 46Ar in
Ref. [66]. On the contrary, the high-q components of the form
factor based on the spherical configuration are much larger
and in better agreement with the data. As can be seen from the
inset, the charge density of the spherical configuration is also
larger in the interior than the densities obtained from J = 0
projected deformed configurations. Since it is well established
that 24Mg is deformed, the discrepancy between the GCM
result and experiment at large q values points toward missing
components in the ground-state wave function.

In Refs. [17,18], Friedrich and collaborators have per-
formed a detailed analysis of the relation between various
parametric forms of charge density distributions and the
resulting form factors. They conclude that the first zero of
|F0(q)|2 determines an extension parameter of the charge
distribution. Indeed, their analysis shows that, when comparing
two different C0 form factors, a minimum at lower q values
corresponds to a larger extension of the nuclear density. By
contrast, the surface diffuseness of the charge distribution is
related to the height of the first maximum of |F0(q)|2. For each
of the three calculations shown in Fig. 4, the first minimum
of |F0(q)|2 is located at nearly the same value of q, indicating
similar extensions. The value of |F0(q)|2 at the first maximum,
however, is significantly larger for the spherical configuration
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1 (b) states with M = 0 in

24Mg.
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√

5
16π

4π

3ZR2

(
−2J + 3

J

)
Qs(Jµ), (31)

are β(s) = 0.55 for the 2+
1 and 0.63 for the 4+

1 states,
respectively. The spectroscopic quadrupole moment Qs(Jµ)
is given by the expectation value of the quadrupole operator
Q̂20(r) = r2 Y20(r̂), multiplied by a coefficient

√
16π/5:

Qs(Jµ) =
√

16π

5
〈JJ20|JJ 〉M

Jµ
Jµ,2, (32)

with M
Jµ
Jµ,2 as defined in Eq. (26).

Figure 3 displays the transition proton density (TPD) ρ
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1

(r)
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charge density. Data (solid triangles and circles) are taken from
Ref. [89].
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wave functions. The form factor corresponding to the projec-
tion of the deformed configuration differs only marginally from
the GCM result. A similar result has also been found for 46Ar in
Ref. [66]. On the contrary, the high-q components of the form
factor based on the spherical configuration are much larger
and in better agreement with the data. As can be seen from the
inset, the charge density of the spherical configuration is also
larger in the interior than the densities obtained from J = 0
projected deformed configurations. Since it is well established
that 24Mg is deformed, the discrepancy between the GCM
result and experiment at large q values points toward missing
components in the ground-state wave function.

In Refs. [17,18], Friedrich and collaborators have per-
formed a detailed analysis of the relation between various
parametric forms of charge density distributions and the
resulting form factors. They conclude that the first zero of
|F0(q)|2 determines an extension parameter of the charge
distribution. Indeed, their analysis shows that, when comparing
two different C0 form factors, a minimum at lower q values
corresponds to a larger extension of the nuclear density. By
contrast, the surface diffuseness of the charge distribution is
related to the height of the first maximum of |F0(q)|2. For each
of the three calculations shown in Fig. 4, the first minimum
of |F0(q)|2 is located at nearly the same value of q, indicating
similar extensions. The value of |F0(q)|2 at the first maximum,
however, is significantly larger for the spherical configuration
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FIG. 5. (Color online) Longitudinal C2 form factor |F2(q)|2 for
the transition from the ground state to the 2+

1 state for 24Mg, in
comparison with available data. The form factor calculated with only
one single configuration of β2 = 0.55 and the form factor of the
transition proton density from full GCM calculations are given for
comparison. The inset shows the corresponding transition densities.
Data are taken from Ref. [90] (squares) and Ref. [89] (circles and
triangles).

and corresponds to a lower surface thickness, as can be seen
on the plot of the density.

The C2 longitudinal inelastic form factor is plotted in Fig. 5
for the transition from the ground state to the 2+

1 state in 24Mg.
Results obtained by projecting a single deformed HFB state
with β2 = 0.55 on J = 0 and J = 2 are compared with the
full projected GCM calculation and with experimental data.
The spreading of the GCM wave function over deformation
has little effect. As for |F0(q)|2, the GCM |F2(q)|2 form factor
is too low at large q values. A possible cause for this deficiency
could be a lack of components not included in the mean-field
basis. However, since we are using effective interactions, a
shortfall of the EDF cannot be excluded either. To estimate
the spurious effect of the c.m. motion, we have introduced
a correction in the form given by Eq. (10). Although this
correction is too small, it is going in the right direction.

Figure 6 displays the q-dependent transition quadrupole
matrix element M2(q2), Eq. (A15), for the transition from the
ground state to the 2+

1 state. The calculated values agree well
with the available data. According to Eqs. (A13) and (A15),
the transition strength B(E2) is given by the square of M2(q2)
in the q → 0 limit. The B(E2 ↑) value determined in this
way from the inelastic scattering data in low-q region is
420 ± 25 e2 fm4 [90], which is slightly overestimated by our
calculation, which gives a value of about 450 e2 fm4.

Figure 7 displays the C4 longitudinal inelastic form factor
|F4(q)|2 from the ground state to the 4+

1 state. The experimental
data are taken from Ref. [91]. The calculation reproduces well
the diffraction minimum observed at q # 2.0 fm−1 in the data.

FIG. 6. (Color online) q-dependent transition quadrupole matrix
element M2(q2), Eq. (A15), for the E2 transition from the ground state
to the 2+

1 state in 24Mg, in comparison with available data. M2(q2) in
the q → 0 limit is related to the B(E2) value via M2(0) =

√
B(E2)/e.

Data are taken from Ref. [90] (squares) and Ref. [89] (circles and
triangles).

Moreover, the calculated E4 transition strength B(E4 : 0+
1 →

4+
1 ) = 2.07 × 103 e2 fm8 is close to the experimental value of

2.0(3) × 103 e2 fm8 [91]. The L = 4 transition density, shown
in the inset of Fig. 7, is peaked at r # 4.0 fm, further out than
the L = 2 transition density that has been shown in Fig. 5.

IV. APPLICATION TO EVEN-MASS 58–68Ni

The stable Ni isotopes (A = 58 to 62) have been extensively
studied in the 1960s. The data have been extended to heavier
isotopes over the past ten years, going up to potentially neutron
magic numbers N = 40 and N = 50. There is now a large set
of data putting into evidence the complexity of the evolution
of the Ni shell structure with the number of neutrons (see for
instance the discussions in Refs. [92–94]).

FIG. 7. (Color online) Longitudinal C4 form factor |F4(q)|2 for
the transition from the ground state to the 4+

1 state of 24Mg, in
comparison with available data. The inset shows the corresponding
transition density. Data are taken from Ref. [91].
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FIG. 10. (Color online) Data for the elastic form factor |F0(q)|2
for the ground state of 58Ni taken from Ref. [99] in comparison with
the form factor obtained from four different calculations: projection
of a single HFB configuration with either β2 = 0 (spherical shape) or
β2 = ∓0.21 (oblate and prolate minima of the J = 0 energy curve)
and full GCM of projected states.

the C0 form factor and the rms charge radii rch for low-q
values and from the effect of deformation on the charge radius
of a uniformly charged liquid drop, rch/r

sph
ch " (1 + 5

4π
β2

2 ).
Figure 12(b) illustrates the effect of deformation on the charge
density distribution. Increasing the deformation pushes charge

FIG. 11. (Color online) Comparison between the charge distri-
bution of the ground state of 58Ni obtained using single projected
mean-field configurations or the full GCM basis and the experimental
data [100]. A previous calculation using a one-dimensional Bohr
Hamiltonian based on an HFB calculation with the Gogny D1 force
(1DBH) [101] is also shown. The insets magnify the profile of the
charge density at very small radii and in the nuclear surface.

FIG. 12. (Color online) (a) Elastic form factor |F0(q)|2 for the
J = 0 state of 58Ni projected from a single HFB configuration with
prolate deformation of β2 increasing from 0.0 to 0.7, respectively. (b)
Charge distributions corresponding to the form factors displayed in
panel (a).

from the inside of the surface (around r = 3 fm) to the outside
(around r = 6 fm).

The origin of the change of behavior of |F0(q)|2 at β2 ≈ 0.3
can be traced back to the single-particle spectra. These are
plotted in Fig. 13. The shell structure for neutrons and for
protons is very similar. At β2 ≈ 0.3, a downsloping proton
level from the 1f7/2 spherical shell crosses an upsloping level
from the 2p3/2 shell. This indicates that the gradual population
of the 2p3/2 orbital beyond this point might be responsible for
the decrease of the form factor at large q values.

In the next figures, we show results obtained for the even
Ni isotopes up to N = 40. Figure 14 shows the evolution with

FIG. 13. (Color online) Nilsson diagram of the eigenvalues of
the single-particle Hamiltonian for neutrons (a) and protons (b) as
obtained with the Skyrme interaction SLy4 as a function of the
quadrupole deformation. Solid (dotted) lines represent levels of
positive (negative) parity, and black, red, green, and blue colors
represent levels with expectation values of 〈jz〉 = 1/2, 3/2, 5/2, and
7/2, respectively.
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TABLE I. Isovector character η [cf. Eq. (28)] of the 2+
1 state of

even-even Ni isotopes.

η 58Ni 60Ni 62Ni 64Ni 66Ni 68Ni

This work 1.02 1.05 1.06 1.06 1.03 1.02
Ref. [86] 1.01 1.02 1.12 0.92
Ref. [103] 1.10 1.31 1.36 1.41
Ref. [104] 1.10 1.09 1.33 1.02

V. SUMMARY AND OUTLOOK

We have presented how to determine densities and transition
densities, as well as the corresponding form factors, within
the beyond-mean-field model that we have developed over
many years. The light deformed nucleus 24Mg and the even-
mass 58–68Ni have been used as examples. Depending on the
structure of the nucleus, static deformation, or dynamic shape
fluctuations, or both might be important for the description of
the ground-state and transition densities.

The framework that we have developed is very general and
can be applied to any nucleus and any kind of transitions
for which calculations using the GCM are available. This
gives some hope that applications to odd-mass nuclei will
be available in a not too distant future [109]. For a better
description of low-lying excited states in spherical even-even
nuclei, it would be desirable to add noncollective time-
reversal-breaking n-quasiparticle states to the GCM basis.

FIG. 17. (Color online) Calculated transition charge densities
from the ground state to the 2+

1 state for 58–68Ni, in comparison with
available data [9].

FIG. 18. (Color online) Calculated inelastic Coulomb form fac-
tors |FL(q)|2 for the transition from the ground state to the J +

1 (L =
J = 2,4) state in 58–68Ni, in comparison with available data, taken
from Ref. [105] (up triangles), Ref. [106] (squares and diamonds),
Ref. [107] (circles), and Ref. [108] (left and right triangles).

Leptonic probes have the advantage that the interaction
mechanism and the nucleonic form factors are precisely
known, which reduces the theoretical uncertainties. But with
additional modeling, also the scattering of hadronic probes off
nuclei could be described.

To improve the quality of the results obtained in our model,
one certainly needs to construct a new energy functional, which
should be adjusted to the data on nuclear charge radii at the
beyond-mean-field level. As has been shown in Ref. [110], the
charge radii, in particular of light nuclei, become systemati-
cally larger in the angular-momentum-projected GCM, which
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What could be done in the future: triaxiality, odd-A nuclei, . . .
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Wrapping up

Take-away messages

I MR techniques provide useful tools to describe correlations related to the
finiteness and self-boundedness of atomic nuclei

I symmetry restoration of symmetry-breaking reference states

I GCM-type mixing of (symmetry-restored) states

I Construction of laboratory densities, transition densities, and their form
factors is feasible.

Questions to the audience

I What would be an interesting extension?

I non-axiality?
I single-particle excitations?
I odd nuclei?
I currents related to magnetic excitations?
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