Studying nuclear correlations with electron scattering: opportunities in exotic nuclei

Carlo Barbieri - University of Surrey

Phys. Rev. Lett. 111, 062501 (2013)
Phys. Rev. C 92, 014306 (2015)

Collaborators

UNIVERSITY OF SURREY

A. Cipollone,

A. Rios, A. Idini, F. Raimondi

V. Somà, T. Duguet

TECHNISCHE

 UNIVERSITAT DARMSTADT

A. Carbone

(U) $\mathrm{H}=\mathrm{A}$

B Universitat de Barcelona

A. Polls

Washington University inSt.Louis

W.H. Dickhoff,

 S. Waldecker
D. Van Neck, M. Degroote

S. Aoki,
T. Doi, T. Hatsuda, Y. Ikeda,
T. Inoue,
N. Ishii, K. Murano,
H. Nemura K. Sasaki
F. Etminan
T. Miyamoto,
T. Iritani
S. Gongyo

YITP Kyoto Univ. RIKEN Nishina
Nihon Univ.
RCNP Osaka Univ
Univ. Tsukuba
Univ. Birjand
Univ. Tsukuba
Stony Brook Univ.
YITP Kyoto Univ.

Past (e, e'p) data

Spectroscopy via knock out reactions-basic idea

Use a probe (ANY probe) to eject the particle we are interested to:

Basic idea:

- we know, e, é and p
- "get" energy and momentum of $p_{i}{ }^{\prime} p_{i}=k_{e}{ }^{\prime}+k_{p}-k_{e}$

$$
E_{i}=E_{e}^{\prime r}+E_{p}^{e}-E_{e}
$$

Better to choose large transferred momentum and weak probes!!!

Concept of correlations

independent particle, picture

Spectral function: distribution of momentum (p_{m}) and energies $\left(\mathrm{E}_{\mathrm{m}}\right)$

Understood for a few stable closed shells:
[GBand, WH. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and

Particle-vibration
couplin
fully characterised only si. (!)
so far, fully chat stable isotopes...

Understood for a few stable closed shells:
*[CR.andirWbr H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]
SURREY

Ab-Initio SCGF approaches

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength-on both sides of the Fermi surface...

```
CB et al.,
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313 (2009)
```

- A complete expansion requires all types of particle-vibration coupling
...these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Self-Consistent Green's Function Approach

- Global picture of nuclear dynamics
- Reciprocal correlations among effective modes
- Guaranties macroscopic conservation laws

Self-Consistent Green's Function Approach

つUKKEY

Gorkov and symmetry breaking approaches

V. Somà, CB, T. Duguet, , Phys. Rev. C 89, 024323 (2014)
V. Somà, CB, T. Duguet, Phys. Rev. C 87, 011303R (2013)
V. Somà, T. Duguet, CB, Phys. Rev. C 84, 064317 (2011)
> Ansatz

$$
\ldots \approx E_{0}^{N+2}-E_{0}^{N} \approx E_{0}^{N}-E_{0}^{N-2} \approx \ldots \approx 2 \mu
$$

>Auxiliary many-body state $\left|\Psi_{0}\right\rangle \equiv \sum_{N}^{\text {even }} c_{N}\left|\psi_{0}^{N}\right\rangle$
\longrightarrow Mixes various particle numbers
\longrightarrow Introduce a "grand-canonical" potential $\Omega=H-\mu N$
$\Longrightarrow\left|\Psi_{0}\right\rangle$ minimizes $\Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle$ under the constraint $N=\left\langle\Psi_{0}\right| N\left|\Psi_{0}\right\rangle$
$>$ This approach leads to the following Feynman diagrams:

$$
\Sigma_{a b}^{11(2)}(\omega)=\uparrow \omega^{c}
$$

$$
\Sigma_{a b}^{12(1)}=
$$

Carlo Barbieri - 18/11

Truncation scheme:	Dyson formulation (closed shells)	Gorkov formulation (semi-magic)
$1^{\text {st }}$ order:	Hartree-Fock	HF-Bogolioubov
$2^{\text {nd }}$ order:	$2^{\text {nd }}$ order	$2^{\text {nd }}$ order (w/ pairing)
\ldots	\ldots	
$3^{\text {rd }}$ and all-orders sums, P-V coupling:	ADC(3) FRPA	G-ADC(3)

Approaches in GF theory

Ab-initio Nuclear Computation \& BcDor code

BoccaDorata code:
(C. Barbieri 2006-14
V. Somà 2011-14
A. Cipollone 2012-13)

- Provides a C++ class library for handling many-body propagators ($\approx 40,000$ lines, OpenMPI based).
- Allows to solve for nuclear spectral functions, many-body propagators, RPA responses, coupled cluster equations and effective interaction/charges for the shell model.

Code history:

Ab-initio Nuclear Computation \& BcDor code

http://personal.ph.surrey.ac.uk/~cb0023/bcdor/

Computational Many-Body Physics

Download

Documentation

Welcome

From here you can download a public version of my self-consistent Green's function (SCGF) code for nuclear physics. This is a code in J-coupled scheme that allows the calculation of the single particle propagators (a.k.a. one-body Green's functions) and other many-body properties of spherical nuclei.
This version allows to:

- Perform Hartree-Fock calculations.
- Calculate the the correlation energy at second order in perturbation theory (MBPT2).
- Solve the Dyson equation for propagators (self consistently) up to second order in the self-energy.
- Solve coupled cluster CCD (doubles only!) equations.

When using this code you are kindly invited to follow the creative commons license agreement, as detailed at the weblinks below. In particular, we kindly ask you to refer to the publications that led the development of this software.

Relevant references (which can also help in using this code) are
Prog. Part. Nucl. Phys. 52, p. 377 (2004),
Phys. Rev. A76, 052503 (2007),
Phys. Rev. C79, 064313 (2009),
Phys Rev C.8.9 n24.323 (2014)

Reaching medium mass and neutron rich isotopes

\rightarrow Degenerate system (open shells, deformations...)
\rightarrow Hamiltoninan, including three nucleon forces

${ }^{56} \mathrm{Ni}$ neutron spectral function

W. Dickhoff, CB, Prog. Part. Nucl. Phys. 53, 377 (2004) CB, M.Hjorth-Jensen, Pys. Rev. C79, 064313 (2009)

Medium-mass isotopes from chiral interactions

Modern realistic nuclear forces

Chiral EFT for nuclear forces:

	2 N forces	3 N forces	4 N forces
$\mathrm{LO} \mathcal{O}\left(\frac{Q^{0}}{\Lambda^{0}}\right)$			
$\mathrm{NLO} \mathcal{O}\left(\frac{Q^{2}}{\Lambda^{2}}\right)$		——	

Single particle spectrum at $E_{\text {fermi }}$:

[T. Otsuka et al. Phys Rev. Lett 105, 032501 (2010)]

Need at LEAST 3NF!!! ("cannot" do RNB physics without...)
$\mathrm{N}^{2} \operatorname{LO} \mathcal{O}\left(\frac{Q^{3}}{\Lambda^{3}}\right)$
(3NFs arise naturally at N2LO)

Saturation of nuclear matter:
 Phy.s Rev. C 88, 044302 (2013)]

Oxygen puzzle...

The oxygen dripline is at ${ }^{24} \mathrm{O}$, at odds with other neighbor isotope chains.

Phenomenological shell model interaction reflect this in the s.p. energies but no realistic NN interaction alone is capable of reproducing this...

The fujita-Miyazawa 3NF provides repulsion through Pauli screening of other 2NF terms:

(a)

(b)

(c)

[T. Otsuka et al., Phys Rev. Lett 105, 32501 (2010)]
UUNRREY

Benchmark of ab-initio methools in the oxygen isotopic chain

Neutron spectral function of Oxygens

UnNRERYOF
SURREY

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and Phys. Rev. C 92, 014306 (2015)

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and Phys. Rev. C 92, 014306 (2015)

\rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

Calcium isotopic chain

Ab-initio calculation of the whole Ca: induced and full 3NF investigated

\rightarrow induced and full 3NF investigated
\rightarrow genuine (N2LO) 3NF needed to reproduce the energy curvature and $\mathrm{S}_{2 n}$
$\rightarrow \mathrm{N}=20$ and $\mathrm{Z}=20$ gaps overestimated!
\rightarrow Full 3NF give a correct trend but over bind!

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism
UNUNESIITOE

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

Lack of deformation due to quenched cross-shell quadrupole excitations
\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism
LuNERSIITOF
SURREY

The sd-pf shell gap

Neutron spectral distributions for ${ }^{48} \mathrm{Ca}$ and ${ }^{56} \mathrm{Ni}$:
$2 N+3 N F$ (induced)

$2 N+3 N F(F U L L)$

- sd-pf separation is overestimated even with leading order N2LO 3NF
- Correct increase of $p_{3 / 2}-f_{7 / 2}$ splitting (see Zuker 2003)

CB et al., arXiv:1211.3315 [nucl-th]

	2NF only	2+3NF(ind.)	2+3NF(full)	Experiment
${ }^{16} \mathrm{O}:$	2.10	2.41	2.38	$2.718 \pm 0.210[19]$
${ }^{44} \mathrm{Ca}:$	2.48	2.93	2.94	$3.520 \pm 0.005[20]$

UNIVERSITY OF
SURREY

Ni isotopic chain

\rightarrow Large J in free space SRG matter (must pay attention to its convergence)
\rightarrow Overall conclusions regarding over binding and $\mathrm{S}_{2 n}$ remain but details change

IM-SRG results from H. Hergert
SUNERSTYOF

Two-neutron separation energies for meutron rich K isotopes

M. Rosenbusch, et al., PRL114, 202501 (2015)

Measurements
@ ISOLTRAP

Theory tend to overestimate the gap at $N=34$, but overall good
\rightarrow Error bar in predictions are from extrapolating the manybody expansion to convergence of the model space.

NNLO-sat : a global fit up to AN24

A. Ekström et al. Phys. Rev. C91, 051301(R) (2015)

- Constrain NN phase shifts
- Constrain radii and energies up to $A \leq 24$
\rightarrow Provides saturation up to large masses!

From SCGF:

UNUNERSEY

NNLOsat (V2 + W3) -- Grkv 2nd ord.
V2-N3LO(500) + W3-NNLO(400MeV/c) w/ SRG at $2.0 \mathrm{fm}^{-1}$
A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

BE and radii for Oxygens

- New fits of chiral interactions (NNLOsat) highly improve comparison to data
- Deficiencies remain for neutron rich isotopes

FIG. 1. Oxygen binding energies. Results from SCGF and IMSRG calculations performed with EM [20-22] and $\mathrm{NNLO}_{\text {sat }}$ [26] interactions are displayed along with available experimental data.

BE and charge radii in ACa

$2^{\text {nd }}$ order GGF 'correct' to give a slight under binding and larger radii

Radii of even-odd are possible

UNUERSTITOF
${ }^{\mathrm{A}} \mathrm{Ca}$

BE and charge radii in ACa

$2^{\text {nd }}$ order GGF 'correct' to give a slight under binding and larger radii

Radii of even-odd are possible

${ }^{\mathrm{A}} \mathrm{Ca}$

Ca neutron spectral distributions @ 2nd order

$\mathrm{NN}(\mathrm{N} 3 L O 500-E M)+3 \mathrm{NFs}(\mathrm{NNLO400})$ at $\lambda_{\text {SRG }}=2.0 / \mathrm{fm}$

UNUNESSITOE
SUREY

Spectroscopic Factors

SURREY

ZNN asymmetry dependence of SF's - Theory

Ab-initio calculations explain (a very weak) the Z / N dependence but the effect is much lower than suggested by direct knockout

Rather the quenchng is high correlated to the gap at the Femi surface.

A. Cipollone, CB, P Navrátil

Phys. Rev. C92, 014306 (2015)

Spectroscopic factor are strongly correlated to p-h gaps:

CB, M. Hjorth-Jensen,
Phys. Rev. C 79, 064313 (2009)

SURREY

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]
\rightarrow Analysis of ${ }^{14} \mathrm{O}(d, t)^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

- Overlap functions and strengths from GF
- Rs independent of asymmetry

Quenching of absolute spectroscopic factors

[CB, Phys. Rev. Lett. 103, 202520 (2009)]

Overall quenching of spectroscopic factors is driven by:
SRC $\quad \rightarrow$ ~10\% part-vibr. coupling \rightarrow dominant "shell-model" \rightarrow in open shell

 2
1.5
1
0.5

Quenching of SF in stable nuclei

Nucl. Phys. A553 (1993) 297c

NIKHEF:

A common misconception about SRC:
"The quenching is constant over all stable nuclei, so it must be a shortrange effect"

Actually, NO!
All calculations show that SRC have just a small effect at the Fermi surface. And the correlation to the experimental p-h gap is much more important.

Quenching of SF in stable nuclei

NIKHEF:

Nucl. Phys. A553 (1993) 297c

$$
\mathrm{S}_{\mathrm{p} 1 / 2} \quad \mathrm{~S}_{\mathrm{p} 3 / 2}
$$

- Short-range correlations oriented methods:
- VMC [Argonne, '94]
- GF(SRC) [st.Louis-Tübingen '95] 0.91
- FHNC/SOC [Pisa ool
0.72
[CB et al., Phys. Rev. C65, (02)]
Experiment:
0.67 ± 0.07 (estimated uncertainty)

SRC are present and verified experimentally
BUT the are NOT the dominant mechanism for quenching SF!!!
unvestro of
SURREY

Short-range correlations (SRC)

Where can one see these??

High momentum components - where are they?

Momentum distribution:

$$
n(k)=\int_{-\infty}^{\varepsilon_{F}^{-}} d \omega S^{(h)}(k, \omega)
$$

- High k components are found at high missing energies
- Short-range repulsion in r-space $\leftrightarrow \rightarrow$ strong potential at large momenta
- A complication: the nuclear interaction includes also a tensor term (from Yukawa's meson meson exchange):

$$
S_{12}=3\left(\vec{\sigma}_{1} \cdot \hat{r}\right)\left(\vec{\sigma}_{2} \cdot \hat{r}\right)-1
$$

\rightarrow interaction amog 2 dipoles!!!!!!!

Distribution of (AII) the Nuclear Strength

(Recent review: Prog. Part. Nucl. Phys. $\underline{52}$ (2004) 337.)

Interest in short range correlations:

- a fraction of the total number of nucleons:
- ~10\% in light nuclei (VMC, FHNC, Green's function)
$-15-20 \%$ in heavy systems (CBF, Green's function)
- can explain up to 2/3 of the binding energy [see ex. PRC51, 3040 (' 95) for ${ }^{16} \mathrm{O}$]
- influmenge NM saturation properties [see ex. PRL90, 152501 (' 03)]

SURREY

Spectral strength of ${ }^{12} \mathrm{C}$ from exp. E97-006

Theory vs. measured strength - I

- About 0.6 protons are found in the correlated region:

TABLE I. Correlated strength, integrated over shaded area of
Fig. 2 (quoted in terms of the number of protons in ${ }^{12} \mathrm{C}$.)

Theory vs. measured strength - II

-Theory reproduces the total amount of correlated strength and its shape
-The exact position of the correlated peak depends on the particular many-body approach and (NN interaction?) used.

Phys. Rev. C70, 0243909 (2004)

Comparison to Experiment in Parallel Kinematics - ${ }^{12} \mathrm{C}$

Pion production at very high missing energies

$$
\begin{aligned}
& \mathrm{Q}^{2}=0.4(\mathrm{Gev} / \mathrm{c})^{2} \\
& \text { beam: } 3.3 \mathrm{GeV} \\
& \mathrm{p}_{\mathrm{f}}=1-2 \mathrm{GeV}
\end{aligned}
$$

CB et. al. Phys. Lett. B608 47 (2005)

unstable isotopes from e- scattering

Summary

\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow Experimental binding is predicted accurately up to the lower sd shell (A~30) but deteriorates for medium mass isotopes (Ca and above) with roughly 1 MeV/A over binding.
\rightarrow New fits of chiral interaction are promising for low-energy observables
\rightarrow Spectroscopic factors and strength distributions: SITLL UNKNOWN for most isotopes and of high relevance to understand structure and correlations with neutron excess!

Collaborators

UNIVERSITY OF SURREY

A. Cipollone,

A. Rios, A. Idini, F. Raimondi

V. Somà, T. Duguet

TECHNISCHE

 UNIVERSITAT DARMSTADT

A. Carbone

(U) $\mathrm{H}=\mathrm{A}$

B Universitat de Barcelona

A. Polls

Washington University inSt.Louis

W.H. Dickhoff,

 S. Waldecker
D. Van Neck, M. Degroote

S. Aoki,
T. Doi, T. Hatsuda, Y. Ikeda,
T. Inoue,
N. Ishii, K. Murano,
H. Nemura K. Sasaki
F. Etminan
T. Miyamoto,
T. Iritani
S. Gongyo

YITP Kyoto Univ. RIKEN Nishina
Nihon Univ.
RCNP Osaka Univ
Univ. Tsukuba
Univ. Birjand
Univ. Tsukuba
Stony Brook Univ.
YITP Kyoto Univ.

