FROM RESEARCH TO INDUSTRY

AND HIGH INTENSITY SOURCES

A. MOSNIER

www.cea.fr

ERL CONCEPT

- □ Storage rings: limitations (equilibrium emittance, IBS, …)
- Linacs: provide the highest brightness beams (fresh particle bunch used for each interaction) But after acceleration and interaction, the beam is dumped
- ERL: acceleration, use of the beam, deceleration and recovery of beam energy = perfect candidate to provide continuous (energy recovery) and high brightness beams (fresh electron bunches used every turn, qualities largely determined by source)

M. Tigner: "A Possible Apparatus for Electron Clashing-Beam Experiments", Il Nuovo Cimento Series 10, Vol. **37**, issue 3, 1 Giugno1965

From ERL concept (1965) to Cornell ERL study (2001)

Dogleg for return path length adjustment

ADVANTAGES OF AN ERL

Relative to storage rings

- Better beam quality (emittance, polarization maintain nonequilibrium state due to short dwell time)
- Easier to upgrade (add linac section or recirculation passes)
- Tolerate more "damage" to the beam from collisions with a beam or at target (the beam is dumped soon after)

□ Relative to single-pass linacs

- Higher beam current possible (RF power limit removed)
- Reduced power bill (RF power recovered)
- Reduced cost of RF amplifiers (smaller RF power amplifiers)
- Reduced beam power and energy in beam dump (less shielding / activation issues)

CW SRF Linacs

CW OPERATION FOR FEL (OR HIGH DUTY CYCLE)

- Significant interest in increasing the pulse repetition rate of FELs and so in increasing the duty cycle of the e-driver
- Most of projects rely on superconducting RF owing to its ability to deliver high average power electron beams
 - with pulse frequency 10 Hz \rightarrow 10 kHz \rightarrow 1 MHz
- Examples of single pass, CW operation
 - European XFEL @Hamburg LP or CW operation as possible upgrade
 - NGLS (Next Generation Light Source @LBNL) FEL proposal operating in CW mode
 - LCLS-II @SLAC CW 4GeV SRF Linac with a bunch rate up to 1 MHz

 LUNEX5 @SOLEIL includes a 400MeV SRF Linac designed for high rep'rate and possible further CW upgrade

SRF Linac (400 MeV) for high rep' rate and multiple beamlines

10 01 0

Example: LUNEX5 layout

Laser Wakefield Accelerator (400 MeV)

Pilot user experiments

XFEL cryomodule = 8 x 9-cell SC 1.3 GHz TESLA cavities **Nominal operation**: Short Pulse (SP) mode \rightarrow 0.65 ms bunch train 10 Hz rep rate

"Prospects for CW and LP operation of the E-XFEL in hard X-ray regime" (R. Brinkmann et al.)

LCLS-II @SLAC 4 GeV SRF LINAC

Linac Acceleration and Compression (100 pC)

Linac	Phase	Gradient	No. of	Avail.	Powered
section	(deg)	(MV/m)	CM's	cavities	cavities
L0	~0	16.3	1	8	7
L1	-12.7	13.6	2	16	15
HL	-150	12.5	2	16	15
L2	-21	15.5	12	96	90
L3	0	15.7	18	144	135
Lf	±34	15.7	2	16	15

Average gradient ~16 MV/m with $Qo \ge 2.7 \ 10^{10} at 2K$

CW SRF ERLs

In parallel, numerous Energy Recovery Linacs (ERL) based on superconducting linacs operating in CW mode planned or under construction. For example:

- JLab FEL/ ERL Light source delivers bursts at 75 MHz
- Alice @Daresbury CW ERL cryomodule developed as part of a collaboration program
- ERL test facility @Beijing (35 MeV, 10 mA) to promote ERL-FEL studies at IHEP
- ERL facility @BNL ampere class 20 MeV ERLunder commissioning @Broohaven to investigate the feasability of an electron-ion collider @RHIC
- CERL @KEK
 ERL prototype in operation @KEK to demonstrate the recirculation of high brightness beams
- bERLinPro @HZB ERL under construction @Berlin includes SRF linac and SC photo-injector
- MESA @Mainz U. multi-turn ERL for nuclear physics
- LHeC ERL @CERN ERL test facility project to prospect e-p collider (60 GeV e⁻ 7 TeV p)
- Cornell ERL R&D program preparatory research launched for an ERL light source using a 5 GeV linac and high current (100 mA)

CEBAF (FOR NUCLEAR PHYSICS)

First large high-power CW recirculating e-linac based on SRF technology (1497 MHz) Long operational experience with CW cryomodules 12 GeV upgrade (doubling the energy) \rightarrow 2 x 1.1 GeV Linacs Initial C20 = 8 x 5-cell cavities 5 MV/m \Rightarrow 20 MeV / CM New Hall Now C100 = 8 x 7-cell cavities 19.2 MV/m \Rightarrow 108 MeV/ CM Upgrade arc magnets and supplies Add 5 cryomodules 5.5 passes to Hall D CHL 20 cryomodules upgrade Add arc 20 crvomodules Add 5 cryomodules Enhanced capabilities in existing Halls Results: 50 + 2 CW cryomodules commissioned

Mean maximum operating gradient – 20.4 MV/m Average Energy Gain = 113 MV / 108 MV Dynamic heat load ≤ 35 W per cavity Static Heat Load ~18 W

JLAB ERL LIGHT SOURCE

Output Light Parameters	Achieved	Goal
Wavelength range (microns)	22	22
Bunch Length (FWHM psec)	15	6
Laser power / pulse (microJoules)	10	120
Laser power (kW)	0.1	10
Rep. Rate (MHz)	10.4	83.2
Macropulse format	10ms 10Hz	CW

Electron Beam Parameters	Achieved	Goal
Energy (MeV)	17	16.4
Accelerator frequency (MHz)	500	500
Charge per bunch (pC)	500	500
Average current (mA)	5	40
Peak Current (A)	33	83
Beam Power (kW)	85	656
Energy Spread (%)	~0.5	~0.5
Normalized emittance (mm-mrad)	~40	~40
Induced energy spread (full)	~3%	~3%

ERL-FEL (UV SOURCE for lithography)

N. Nakamura (KEK)

e-p collisions at CERN LHeC Linac-Ring option

e-ion collisions at BNL eRHIC

BUT SMALLER SCALE TEST FACILITIES NEEDED

CERN ERL Test Facility (PERLE)

Parameter	Value		
injection energy	5 MeV		
RF <i>f</i>	801.59 MHz		
acc. voltage per cavity	18.7	٧V	
# cells per cavity	5		
cavity length	pprox 1.2	2 m	
# cavities per cryomodule	4		
RF power per cryomodule	$\leq 50 \text{ kW}$		
# cryomodules	4 *)		
acceleration per pass	299.4 MeV *)		
bunch repetition f	40.079 MHz		
Normalized emittance $\gamma \epsilon_{x,y}$	50 µm		
injected beam current	< 13 mA		
nominal bunch charge	$320 \text{ pC} = 2 \cdot 10^9 e$		
number of passes *)	2 3		
top energy *)	604 MeV	903 MeV	
total circulating current *)	52 mA	78 mA	
duty factor	CW		

Cornell-BNL FFAG-ERL Test Facility (Cβ)

- NS-FFAG arcs, 4 passes (similar to first eRHIC loop)
- Momentum aperture of x4 as for eRHIC
- Uses Cornell DC gun, injector (ICM), dump, 70MeV SRF CW Linac
- Prototyping of essential components of eRHIC design

Cea BIG ERLS FOR LIGHT SOURCES

ERL Light Source at Cornell

Norm. emittance	0.1 - 0.5 mm.mrad	
Beam current	25 - 100 mA	
Bunch charge	19 - 77 pC	
RF frequency	1.3 GHz	

ERL Light Source at KEK

Norm. emittance	0.1 - 1 mm.mrad	
Beam current	10 - 100 mA	
Bunch charge	7.7 - 77 pC	
RF frequency	1.3 GHz	

Energy Recovery Linac Conceptual Design Report

cERL = DEMO FOR KEK 3 GeV ERL

SRF photoinjector, with SC solenoid, 1.5 – 2.3 MeV **Challenge:**

- 30 MV/m CW operation with CsK₂Sb cathode
- Cathode performance @ 100 mA
- Dark current/halo control
- Emittance compensation

HZB (Helmholtz Zentrum Berlin)

FROM RESEARCH TO INDUSTRY

ALICE ERL FEL

Beam-pipe HOM Absorbers

20 kW CW Adjustable Input Couplers

Cea Mesa For NUCLEAR PHYSICS (MAINZ UNIV)

D. Simon, IPAC15

2 x ELBE Rossendorf Modules with some modifications

Cea

RELEVANT PROJECTS BASED ON CW SC LINACS

		Energy (MeV)	Rep Rate (MHz)	<lb> (mA)</lb>	# Cryom x Cav x Cells	Freq (GHz)	Eacc (MV/m)
	LUNEX5 CW	400	0.010 - 1	0.100	3 x 8 x 9	1.3	17
ACs	XFEL CW option	7,800	0.25	0.125	17 x 8 x 9 96 x 8 x 9	1.3	16 7.3
	LCLS-II	4,000	> 0.6	0.030	35 x 8 x 9	1.3	16
	NGLS	2,400	1	0.300	24 x 8 x 9	1.3	14
	Jlab ERL	135	75	10	3 x 8 x 5	1.5	12
	ALICE (Dares)	35	81.25	6.5	1 x 2 x 7	1.3	
EKLS	cERL (KEK)	35	1300	10-ini	1 x 2 x 9	1.3	15
	bERLinPRO	50	1300	100	1 x 3 x 7	1.3	18
	LHeC demo stage 1	150	40.1	13	4 x 4 x 5	0.802	20
	Cornell ERL	5,000	1.3	100	64 x 6 x 7	1.3	16.2

High rep rate FEL projects rely on TESLA Technology Developed in the 90s' inherited low duty cycle from HE linear colliders designs

CW SRF Linacs Challenges

HIGH DUTY CYCLE & CW OPERATION ISSUES

SRF cavities

- CW operation at high fields with low cryogenic losses \Rightarrow high Q_0
- Reliable operation with very low trip-rate
- Very low microphonics levels \rightarrow optimized mechanical cavity design

□ RF power system and control

- Low cost, low CW RF power input couplers
- Low cost RF power sources → High efficiency IOTs & Solid-State RF amplifiers

Cryostat and Refrigeration

- Cryogenic system for high cryo-loads
- Cryostat design for excellent magnetic shielding (to preserve high Q₀)

CRYOGENIC ISSUES - REFRIGERATION

- Because the resistive power dissipated in the SRF cavities is absorbed by the refrigeration system at 2K (1.8K), high duty cycle or CW operation makes the refrigeration system a major utility component
- Total dissipated power for a given final energy $P_d = \frac{\Delta E}{r/Q} \times \frac{E_{acc}}{Q_0} \times d.c.$

This favors relatively low gradient E_{acc} and high Q_0

JLab CEBAF 12 GeV Upgrade 4.5K cold-box

simplified flow scheme of a He refrigerator including a helium II cooling loop

Cryogenic losses strongly depend on temperature below Tc Optimum operating Temp ultimately set by residual resistance Surface resistance $R_s = R_{BCS} + R_{res}$ depends on surface preparation conditions

- with cavities dominated by BCS resistance, lower Temp of the He bath is favored
- Dynamic cryogenic load reduced by a factor of ~2 if the temperature is lowered by 0.2°

 $\rm 2K \rightarrow 1.8K$

Note: high quality magnetic shielding is required to prevent Q_0 spoiling due to flux trapping during cooldown \rightarrow additional residual resistance $\sim 0.35 n\Omega/mG$ (earth's magnetic field $\sim 500 \text{ mG}$)

OPERATING T OPTIMIZATION - CRYOPLANT

Technical efficiency of refrigerator ~20% @2K (pure isentropic Carnot cycle cannot be achieved)

Note: lower T might cause instability in the cryo-system

- with cavities dominated by BCS resistance, lower Temp
 2K → 1.8K
- Another cold compressor stage required

TOWARDS HIGH Q0 – NITROGEN DOPING

N-doping can drastically lower BCS losses: **Q**₀ improvement up to a factor to 2-3 A. Grassellino et al, 2013 Supercond. Sci. Technol. 26 102001

Possible explanation (A. Romanenko): assuming that hydrides may be the cause of the medium and high field Q slopes, nitrogen doping may fully trap hydrogen and prevent from hydride formation

FROM RESEARCH TO INDUSTRY

HIGH Q0 – SHIELDING & THERMAL CYCLE

Vertical Test results at 1.8K

- Better shielding in Horizontal CM
- Thermal cycle to above Tc

Effective to reduce cavity T gradient (~0.2K) suppress flux trapping induced by thermocurrent (1.8K) $Qo = 3.5 \times 10^{10} \Rightarrow Qo = 6.0 \times 10^{10}$

Horizontal Test results

Additional ERL Challenges

□ SRF cavities

- Very low microphonics levels \rightarrow optimized mechanical cavity design
- Design optimized for strong HOM damping (no trapped HOM)

Higher Order Mode dampers

 Strong damping of HOMs and efficient HOM power extraction for high beam currents

□ RF power system and control

- ~ 10 kW CW RF power
- Efficient cavity field stabilization at highest loaded Q for energy stability

Cryostat & cryoplant

CW operation, high cryogenic load

KEK 9-cell, 1.3 GHz

bERLinPRO 7-cell, 1.3 GHz

Cornell 7-cell, 1.3 GHz

JLAB 5-cell, 748.5 MHz

BNL 5-cell, 703 MHz

cERL 9-cell, 1.3 GHz

HOM POWER

HOM power built up in a CW machine (monopole modes)

D Non-resonant excitation $P = k_{loss} Q_b I_0$

- TESLA cavity P = 260 W for 77 pC and 2x100 mA (0.5 W for XFEL)
- □ Resonant excitation $P = (R/Q)_{\lambda} Q_{\lambda} I_0^2$ HOM frequency close to beam spectrum line
 - TESLA cavity $P \ge 1$ kW for $Q_{\lambda} = 10^4$ and 2x100 mA
 - 2 ps long bunches excite HOMs to ~100 GHz

□ HOM power has to be extracted (not deposited at 2K !)

 HOM couplers or absorbers for propagating modes (20% to 40% of cavity cost)

MULTI-PASS BEAM BREAK UP

Multi-pass BBU caused by Higher Order Modes field in cavities = one of the main limitations to the beam current of ERL

- \succ HOMs start orbit oscillations \rightarrow the returning beam then has an offset that adds energy to the HOM (feedback >0) => exponential oscillation growth
- Current threshold for a single HOM in a single cavity

the added energy

 $Q_{\lambda} < 10^4$ typically needed

Electron-radioactive ion collisions ESNT Workshop| 25-27 April 2016 | PAGE 34

.2

With multiple cavities and beam optics manipulation, BBU current estimate from numerical simulations

S. Chen et al, "Multi-pass, Multi-bunch Beam Break-Up of ERLs with 9-cell Tesla Cavities", IPAC2013

BBU current vs. betatron phase advance of recirculating loop for different cavity numbers BBU current ↘ when number of cavities ↗

BBU current distribution with a spread in HOM frequencies ($\sigma = 10 \text{ MHz}$) BBU current \nearrow with frequency spread But reaches its limit at $\sigma \sim 5 \text{ MHz}$

JLAB 5-cell: waveguides

RF absorber Rings

CORNELL'S ERL MAIN LINAC CAVITY 1.3 GHZ 80 K Cavity at 1.8 K 80 K HOM Power cavity shape optimized with ~ 20 free parameters HOM damping calculated up to 10 GHz with realistic RF absorbers

RF POWER REQUIREMENT - MICROPHONICS

Ideally in an ERL: recirculated beam decelerated at an RF phase shifted by π relative to the accelerated beam \Rightarrow Net beam loading is zero. Required RF power to maintain a given accelerating voltage Vc :

$$P_{RF} = \frac{V_c^2}{R/Q Q_0} \frac{(\beta + 1)^2}{4 \beta} \left[1 + \left(2 \frac{\delta \omega}{\omega} \frac{Q_0}{1 + \beta} \right)^2 \right]$$

cavity wall dissipation cavity coupling detuning (microphonics)
• Optimal coupling $\beta^2 = 1 + (2Q_0 \delta \omega / \omega)^2$
• Gives minimal power $P_{RF} = P_d \times \frac{1}{2} \left(1 + \sqrt{1 + (2Q_0 \delta \omega / \omega_0)^2} \right) \approx P_d Q_0 \delta \omega / \omega_0$

- ➢ ERL → No effective beam loading so could operate at $Q_L \sim 1x10^8$
- ➢ Microphonics as low as possible
 → mechanical design (dF/dP sensitivity)
- Level of microphonics should be properly predicted to optimize the coupling
- > any beam return time error results in an effective beam current $I_{eff} \approx -i I_{acc} \delta \phi$ \rightarrow increase of the required RF power

ACTIVE MICROPHONICS COMPENSATION

- Tests on Cornell injector module showed an rms detuning reduction of a factor 3-4 by active microphonics control
- efficiency limitated by transverse mechanical modes (tuner action in axial direction)

Saclay tuner equipped with fast piezo stacks

XFEL short pulses high peak power, low average power

CRYOMODULE DESIGN

Most of the projects based on TESLA (XFEL) module designed for short pulses and convert it to CW

			1 Contraction of the second se
		VEEL	
	Nb cavities	8 (9-cell)	6 (7-cell)
	Eacc (MV/m)	23.6	16.2
	Qo	10 ¹⁰	2.10 ¹⁰
All components suspended from the He Gas Return Pipe supported by 3 support posts	rf duty cycle	1.4%	100%
	Temperature	2K	1.8K
Cornell ERL main linac Civi	Coupling Qex	4.6 10 ⁶	6.5 10 ⁷
	8) 		
SC magnets & BPMs 7-cell cavity Beamline HOM absorbe	er		

nominal length: 9.8 m

Intermodule unit

XFEL / CORNELL ERL CRYOSTATS

- Design for up to 20 W per cryomodule at 2 K (limited by 2K pipe diameter)
- Also allow for possible 1.8 K operation with lower heat load ~15 W / module at 1.8 K

1 line for 2K supply	subcooled liquid @1.2 bar	 2K helium bath for cavities via 2K-2 phase line pre-cool gas for cool-down 90% heat load from RF losses in the cavities
2 lines for 4.5-6K	3.0 bar He liquid Single phase flow	 Thermal intercept for HOM absorbers and couplers 2/3 dynamic heat load
3 lines for 40-80K	20 bar He gas	 Thermal intercept for HOM absorbers and couplers 40K thermal shield 90% heat load from HOM

CHANGES COMPARED TO XFEL CM

- ❑ Larger 2-phase 2K helium pipe for the high CW gas load
 → Increase from 72 mm to 90-100 mm
- Larger nozzle from He vessel to 2-phase pipe for the high CW heat load
 - \rightarrow Increase from 55 mm to 70-100 mm
- □ Separate liquid baths for each cryomodule

heat flux limit for heat transport by saturated helium II through a vertical pipe to the surface

- \rightarrow Include a JT value in each cryomodule for the high CW heat load
- □ No 5K thermal radiation shield (dynamic losses dominant)
- tuner design with access ports for repair/replacement of piezos, motors, and/or mechanism
- Low peak/High average power coax RF input coupler per cavity
- Beamline HOM absorbers for strong brodband damping of HOMs (high current and recirculation loops)

High brightness and High rep' rate sources

HIGH REP RATE PHOTO-INJECTORS SUMMARY

High brightness & high rep'rate e-guns required

short + high charge bunches (pC to nC) \rightarrow photocathode (vacuum ~10⁻¹⁰ mbar) small emittance \rightarrow high electic field on cathode + emittance compensation solenoid

High DC field

To achieve very high dc voltage limited by field emission & breakdown (I

NC RF gun

to evacuate the high heat load (low frequency) keep good vacuum

SRF cavity

 $\epsilon_n \propto \sqrt{\frac{kT_{\perp}(meV)}{E_{cath}(MV/m)}}$

to operate SC cavity with NC photocathode inside

segmented insulator GaAs cathode electron beam laser

500 kV JAEA DC Gun, 160 mm gap 5.8 MV/m on photocathode 10 mA

Berkeley 186 MHz CW RF gun 745 keV, **20 MV/m** at cathode 300 µA, 300 pC current Elbe SRF gun

Potential for highest fields >30 MV/m 3½ TESLA cell + SC choke filter Limited to 10 MV/m due to FE

ERL SUMMARY

- □ Cost-driver = cryogenic load (CW SRF linacs)
 - MW-scale cryoplants (ex: JLab Cryoplant 2x4.6 kW @2K)
- □ Medium Gradient @16MV/m and $Q_0 > 2x10^{10}$ (to limit cryo load)
 - new methods: N-doping, thermal cycling...
- **CW cryomodule design with Power ~ 100 W @2K**
 - With low microphonics (low df/dp cavities)
 - With Q₀ preserved (efficient magnetic shielding)
- **Cavity design for strong HOM damping & broadband dampers**
- **Operation at high** Q_L (5.10⁷ to >10⁸) with excellent field stability
- Numerous CW SRF linacs under development
 - CW FELs (XFEL CW option, LCLS-II, LUNEX5, ...)
 - ERLs (JLab ERL, ALICE, cERL, Berlinpro, LHeC demo, Cornell ERL, ...)
- High brightness photo-injectors
 - DC field, NC RF, or SRF gun (R&D still neded) Electron-radioactive ion collisions ESNT Workshop| 25-27 April 2016 | PAGE 46

DC gun challenges

Low emittance and high current

DC GUNS

- ➢ High extraction voltage 500 kV
- High accelerating gradient on photocathode
- Cathode lifetime (backscattered ions bombardment)

SRF gun challenges

Potentially very powerful injector : CW operation + high field + UHV simultaneously but not demonstrated to date

- \succ normal conducting cathode in the SRF cavity \rightarrow cooling issues
- > Operating a cathode at high field \rightarrow field emission issues

Development @ HZ Berlin

1.3 GHz, $3\frac{1}{2}$ TESLA cell + SC choke filter Cs₂Te photocathode But limited by field emission

Development @ HZ DR

Reasonable longevity & vacuum requirements QE and laser wavelength (green)

22 QWR SRF GUNS

Wisconsin

Naval Postgraduate School (Monterey)

NC CW RF GUN

NC gun challenges

- \succ Heat load at high field \rightarrow cooling issues
- Very high vacuum required (specially with CsK₂Sb)

APEX GUN Advanced Photoinjector EXperiment (LBNL)

The Berkeley normal-conducting scheme satisfies all the LBNL FEL requirements simultaneously.

Operation mode CW Gap voltage 750 kV Field at the cathode 19.47 MV/m Q₀ (ideal copper) 30887 Shunt impedance 6.5 MΩ RF Power @ Q₀ 87.5 kW Stored energy 2.3 J Peak surface field 24.1 MV/m Peak wall power density 25.0 W/cm² Accelerating gap 4 cm Diameter/Length 69.4/35.0 cm **Operating pressure** ~ 10⁻¹⁰-10⁻⁹ Torr

186 MHz

Frequency

J. Staples, F. Sannibale, S. Virostek, CBP Tech Note 366, Oct. 2006

K. Baptiste, et al, NIM A 599, 9 (2009)

- At the VHF frequency, the cavity structure is large enough to withstand the heat load
 and operate in CW mode at the required gradients.
- Also, the long λ_{RF} allows for large apertures and thus for high vacuum conductivity.
- Based on mature and reliable normal-conducting RF and mechanical technologies.