Present Status and Future Prospects of Hypernuclear Physics at J-PARC

Dept. of Physics, Tohoku University H. Tamura

Contents

- **1. Present Status of SNP Expt's at J-PARC**
- 2. <u>A Hypernuclear γ -Ray Spectroscopy</u>
- **3.** Σ -N Systems
- 4. Double Strange Systems
- 5. Future Plan of the Hadron Hall

1. Present status of SNP experiments at J-PARC

Motivations of strangeness nuclear physics

BB interactions

Unified understanding of BB forces by u,d ->u, d, s particularly short-range forces by quark pictures Test lattice QCD calculations

Impurity effect

in nuclear structure

Changes of size, deformation, clustering, Appearing new symmetry, Properties and behavior of baryons

<u>in nuclei</u>

 μ_{Λ} in a nucleus, Single particle levels of heavy Λ hypernuclei

Clues to understand hadrons and nuclei from quarks Cold and dense nuclear matter with strangeness

 $\mathbf{\uparrow} \boldsymbol{\mu}_{\Lambda}$

Present status of J-PARC Hadron Hall and nuclear/hadron physics

Status of Strangeness Nuclear Physics exp. at J-PARC

2. Λ Hypernuclear γ-ray Spectroscopy

<u>Previous (π^+ ,K⁺) data and ΛN interaction</u>

ΛN spin-dependent interactions

 γ -ray data => Δ = 0.33 (0.43 for A=7), S_{Λ} = -0.01, S_{N} = -0.4, T = 0.03 [MeV] Small spin-dependent forces have been established.

Eeedback to		Δ	S₄	S _N	Τ	<u>(Me</u> V)
BB interaction	ND	-0.048	-0.131	-0.264	0.018	
models thru	NF	0.072	-0.175	-0.266	0.033	LS force:
G-matrix calc.	NSC89	1.052	-0.173	-0.292	0.036	All Nijmegen
(Millener)	NSC97f	0.421	-0.149	-0.238	0.055	models fail.
Niimegen	ESC04a	0.381	-0.108	-0.236	0.013	Quark model
models	ESC08a	0.146	-0.074	-0.241	0.055	looks OK
models	("Quark model"		0.0	-0.4)		
-	Exp.	0.4	-0.01	-0.4	0.03	

Charge Symmetry Breaking puzzle in A=4

Hyperball-J

L2

C3

Ge cooled down to ~70K (c.f. 92K w/LN2) to reduce radiation damage

Fast background suppressor made of PWO

∆E= 3.1(1) keV at 1.33 MeV Eff. = 5.4% @1 MeV with 28 Ge(re=60%)

Up side (Target view)

Pulse-tube refrigerator

97

Missing mass (⁴<u>A</u>**He)** ⁴He(K⁻, π ⁻) at 1.5 GeV/c

Run on 4/18~4/27, 2015

T.O. Yamamoto et al., PRL 115 (2015) 222501

Mass-gated γ spectrum

Existence of CSB confirmed <u>only by γ-ray data</u>

Large <u>spin dependence</u> in CSB found by combining with emulsion data

S

Observation of Spin-Dependent Charge Symmetry Breaking in ΛN Interaction: Gamma-Ray Spectroscopy of ${}^{4}_{\Lambda}$ He

T. O. Yamamoto,¹ M. Agnello,^{2,3} Y. Akazawa,¹ N. Amano,⁴ K. Aoki,⁵ E. Botta,^{3,6} N. Chiga,¹ H. Ekawa,⁷ P. Evtoukhovitch,⁸ A. Feliciello,³ M. Fujita,¹ T. Gogami,⁷ S. Hasegawa,⁹ S. H. Hayakawa,¹⁰ T. Hayakawa,¹⁰ R. Honda,¹⁰ K. Hosomi,⁹ S. H. Hwang,⁹ N. Ichige,¹ Y. Ichikawa,⁹ M. Ikeda,¹ K. Imai,⁹ S. Ishimoto,⁵ S. Kanatsuki,⁷ M. H. Kim,¹¹ S. H. Kim,¹¹ S. Kinbara,¹² T. Koike,¹ J. Y. Lee,¹³ S. Marcello,^{3,6} K. Miwa,¹ T. Moon,¹³ T. Nagae,⁷ S. Nagao,¹ Y. Nakada,¹⁰ M. Nakagawa,¹⁰ Y. Ogura,¹ A. Sakaguchi,¹⁰ H. Sako,⁹ Y. Sasaki,¹ S. Sato,⁹ T. Shiozaki,¹ K. Shirotori,¹⁴ H. Sugimura,⁹ S. Suto,¹ S. Suzuki,⁵ T. Takahashi,⁵ H. Tamura,¹ K. Tanabe,¹ K. Tanida,⁹ Z. Tsamalaidze,⁸ M. Ukai,¹ Y. Yamamoto,¹ and S. B. Yang¹³

(J-PARC E13 Collaboration)

¹Department of Physics, Tohoku University, Sendai 980-8578, Japan

²Dipartimento di Scienza Applicate e Tecnologica, Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy

³INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy

⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁵Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

⁶Dipartimento di Fisica, Universit di Torino, Via P. Giuria 1, 10125 Torino, Italy

⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁸Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia

⁹Advanced Science Research Center (ASRC), Japan Atomic Agency (JAEA), Tokai, Ibaraki 319-1195, Japan

¹⁰Department of Physics, Osaka University, Toyonaka 560-0043, Japan

¹¹Department of Physics, Korea University, Seoul 136-713, Korea

¹²Faculty of Education, Gifu University, Gifu 501-1193, Japan

¹³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea

¹⁴Research Center of Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

(Received 12 August 2015; published 24 November 2015)

The energy spacing between the spin-doublet bound state of ${}^{4}_{\Lambda}$ He(1⁺, 0⁺) was determined to be 1406 ± 2 ± 2 keV, by measuring γ rays for the 1⁺ \rightarrow 0⁺ transition with a high efficiency germanium detector array in coincidence with the 4 He(K^{-}, π^{-}) ${}^{4}_{\Lambda}$ He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus ${}^{4}_{\Lambda}$ H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in ΛN interaction. By combining the energy spacings with the known ground-state binding energies, it is also found that the CSB effect is large in the 0⁺ ground state but is vanishingly small in the 1⁺ excited state, demonstrating that the ΛN CSB interaction has spin dependence.

DOI: 10.1103/PhysRevLett.115.222501

PHYSICAL REVIEW LETTERS

moving physics forward

EDITORS' SUGGESTION

Observation of Spin-Dependent Charge Symmetry Breaking in ΛN Interaction: Gamma-Ray Spectroscopy of $^4_\Lambda He$

The energy spacing of the spin-doublet states in the $^4_{\Lambda}$ He hypernucleus indicate a large spin dependent charge symmetry breaking in the ΛN interaction.

T. O. Yamamoto *et al.* (J-PARC E13 Collaboration) Phys. Rev. Lett. **115**, 222501 (2015)

Press-released from Tohoku U., KEK, JAEA, J-PARC

What is the origin of the large CSB effect?

- * Exact calc. including $\Sigma^+\Sigma^-$ mass difference as well as CSB in BB force (Nijmegen SC97e) gives only $\Delta B_{\Lambda}(0^+) \sim 70$ keV. Nogga et al., PRL 88 (2002) 172501
- * p-shell hypernuclear levels are very well reproduced by $\Lambda \Sigma$ coupling from D2 interaction. *Millener (2005)*
- * Shell model calc. using D2 gives $\Delta B_{\Lambda}(0^+) \sim 200$ keV. A. Gal, PLB 744 (2015) 352
- * Ab-initio calc. using Bonn-Juelich EFT force (LO) reproduces $\Delta(B_{\Lambda}(0^+)-\Delta B_{\Lambda}(1^+)) \sim 0.3 \text{ MeV}.$ = Large central force D. Gazda and A. Gal

What is the origin of the large CSB effect?

- * Exact calc. including $\Sigma^+\Sigma^-$ mass difference as well as CSB in BB force (Nijmegen SC97e) gives only $\Delta B_{\Lambda}(0^+) \sim 70$ keV. Nogga et al., PRL 88 (2002) 172501
- * p-shell hypernuclear levels are very well reproduced by Λ - Σ coupling from D2 interaction. *Millener (2005)*
- * Shell model calc. using D2 gives $\Delta B_{\Lambda}(0^+) \sim 200$ keV. A. Gal, PLB 744 (2015) 352
- * Ab-initio calc. using Bonn-Juelich EFT force (LO) reproduces $\Delta(B_{\Lambda}(0^+)-\Delta B_{\Lambda}(1^+)) \sim 0.3 \text{ MeV}.$ = Large central force D. Gazda and A. Gal

Reproduction of level energies

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

Millener's parameter set

 $\Delta = 0.33$ (0.43 for A=7), $S_A = -0.015$, $S_N = -0.35$, T = 0.024 [MeV]

$Calculated from G-matrix using \Lambda N-\Sigma N force in NSC97f$										
doublet spacing		contribution of each term				(keV) keV		eV		
	J_u^{π}	J_l^{π}	ΆΣ	Δ	S_{Λ}	S_N	T	ΔE^{th}	ΔE^{exp}	
7 Li	$3/2^{+}$	$1/2^+$	72	628	-1	$^{-4}$	-9	693	692	
7Li	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471	
⁸ Li	2^{-}	1-	151	396	-14	-16	-24	450	(442)	
⁹ _A Li	$5/2^{+}$	$3/2^{+}$	116	530	-17	-18	-1	589		
⁹ _A Li	$3/2^{+}_{2}$	$1/2^+$	-80	231	-13	-13	-93	-9		
${}^9_{\Lambda}\mathrm{Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43	
$^{10}_{\Lambda}B$	2^{-}	1-	-15	188	-21	-3	-26	120	< 100	
$^{11}_{\Lambda}B$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264	
$^{11}_{\Lambda}B$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505	
$^{12}_{\Lambda}C$	2^{-}	1-	61	175	-12	-13	-42	153	161	
$^{15}_{\Lambda}N$	$1/2^+_1$	$3/2_1^+$	44	244	34	-8	-214	99		
$^{15}_{\Lambda}N$	$3/2^{+}_{2}$	$1/2^+_2$	65	451	$^{-2}$	-16	-10	507	481	
$^{16}_{\Lambda}O$	1-	0-	-33	-123	-20	1	188	23	26	
$^{16}_{\Lambda}O$	2^{-}	1^{-}_{2}	92	207	-21	1	-41	248	224	

Millener's calc. for $\Sigma \Lambda$ coupling effect makes almost perfect agreement.

He uses a simplified ΣΛ interaction (only central) (Akaishi's D2) <-> NSC: tenor dominated Why?

	J_u^a	Ji	Λ2	Δ	S_{Λ}	S_N	1	ΔE^{m}	ΔE^{-2p}
7Li	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
7 Li	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
⁸ Li	2^{-}	1-	151	396	-14	-16	-24	450	(442)
⁹ _A Li	$5/2^{+}$	$3/2^{+}$	116	530	-17	-18	-1	589	
⁹ ∆Li	$3/2^+_2$	$1/2^{+}$	-80	231	-13	-13	-93	-9	
${}_{\Lambda}^{9}Be$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{10}_{\Lambda}B$	2^{-}	1-	-15	188	-21	-3	-26	120	< 100
$^{11}_{\Lambda}B$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}B$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}C$	2^{-}	1-	61	175	-12	-13	-42	153	161
$^{15}_{\Lambda}N$	$1/2^+_1$	$3/2_1^+$	44	244	34	$^{-8}$	-214	99	
$^{15}_{\Lambda}N$	$3/2^{+}_{2}$	$1/2^+_2$	65	451	$^{-2}$	-16	-10	507	481
$^{16}_{\Lambda}O$	1-	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}O$	2^{-}	1^{-}_{2}	92	207	-21	1	-41	248	224

er.

2. Results and analysis status of E13-1

2.2 ${}^{19}_{\Lambda}$ **F**

Mass-gated γ-ray spectrum

S. Yang et al. HYP2015 Proceedings

3/2+

315

Run on 6/6~6/26, 2015

If the 580 keV is confimed to be a peak, this level scheme is reconstructed. The initial state may be able to be assigned.
 Analysis going on for assignments, search for more γ-rays and cross sections.

<u>Next step: g_{Λ} in a nucleus</u>

Hopefully run at K1.1 beam line n 2017

Next step: g_A in a nucleus

Simulation p_{κ} =1.1 GeV / c 0. $484^{+0.030}_{-0.024}$ ps -35 days at 50kW -Stat. error $\Delta \tau = 6\%$ **150** $\Rightarrow \Delta |\mathbf{g}_{\Lambda} - \mathbf{g}_{c}| \sim 3\%$ counts/ 50 **50** 650 600 700 750 E_{γ} (keV)

Λ's magnetic moment in a nucleus in a nucleus. Λ, free from Pauli eff $\Lambda - \Sigma$ mixing (Dover-Gal), K exc ~ +2--5 % for ${}^4_\Lambda$ He

Direct measurement of g_{Λ} is very c

 Λ -spin-flip M1 transition: B(M1) ->

 $B(M1) = (2J_{up} + 1)^{-1} | \langle \Psi_{low} \parallel \mu \parallel \Psi_{up}$ = $(2J_{up} + 1)^{-1} | \langle \Psi_{\Lambda\downarrow} \Psi_{c} \parallel \mu \parallel$ $\mu = g_{c}J_{c} + g_{\Lambda}J_{\Lambda} = g_{c}$

$$= \frac{3}{8\pi} \frac{2J_{low} + 1}{2J_c + 1} (g_{\Lambda} - g_c)^2 \quad [\mu_N^2]$$

⁷_ALi ~100% Doppler Shift Attenuation Method

$$\Gamma = BR / \tau = \frac{16\pi}{9} E_{\gamma}^3 B(M1)$$
 For the fr

assuming "weak coupling" between a Λ and the core.

But "core polarization" effect by a Λ ? It should be very small due to spin-dependent ΛN forces which are much smaller than NN case.

he free g_{Λ} value, B(M1) = 0.326 μ_N^2 from weak coupling, B(M1) = 0.322 μ_N^2 from a cluster model calc. Ab-initio calc. is awaited.

Hopefully run at K1.1 beam line n 2017

3. Σ -N systems

<u>What we know about Σ -N force</u>

Strong repulsion comes from

Pauli effect between quarks?

Quark Cluster Model

Lattice QCD

suggests large spin-isospin dependence

- (I,S) = (3/2,0), (1/2,1) attractive
 - (3/2,1), (1/2,0) repulsive
- -- Consistent with meson exchange models

Baryon Baryon interaction by Lattice QCD

6 independent forces in flavor SU(3) symmetry

E40: Phase shift of ³S₁ channel

4. Double Strange Systems

$\Lambda\Lambda$ hypernuclei via

Nakazawa (Hyp-X conf.)

emulsion+counter hybrid method (KEK E373)

Slide by Nakazawa

<u>ΛΛ hypernuclei (KEK E373)</u>

Slide by Nakazawa

<u>ΛΛ hypernuclei (KEK E373)</u>

Overall scanning method has been successfully developed. Reanalysis of E373 data – new events coming!

uniquely identified as ⁸Be $\bigwedge_{\alpha} B = \bigwedge_{p} A = \bigwedge_{electron} d$ $\Xi^{-} + {}^{14}N \rightarrow {}^{10}_{\Lambda}Be + {}^{5}_{\Lambda}He$

 $B_{\Xi^-} = 4.38 \pm 0.25 \text{ MeV} - 1.11 \pm 0.25 \text{ MeV}$ ¹⁰Be production: in the ground state in the highest excited state >> 3D atomic state of the Ξ^- -¹⁴N system (0.17 MeV)

10 µm

 $^{5}_{\Lambda}$ He

First evidence of a deeply bound Ξ state

J-PARC E07: S=-2 Systems by emulsion

Expected Spectrum (by Hosomi)

- 10000 stop events tagged in emulsion
- X-ray yield

Y_{stop} x Eff_x x Eff_{Ge} = Br(316 keV) 18 counts, Ag(370 keV) 33 counts

- background
 - ΞN-> $\Lambda\Lambda$ Λ -> $n\pi^0$: 580 events
 - Accidental: 150 events (Ge single rate: ~20kHz)
- Ge resolution: 2keV FWHM
 - Statistical errors Br(316 keV): \pm 400 eV, Ag(370 keV): \pm 200 eV

J-PARC E05 (Nagae et al.) $K^-p \rightarrow \Xi^-K^+$ Ξ -hypernuclear spectroscopy by (K^-,K^+)

New spectrometer (S-2S) is under construction

4. Future Plan: Extension of Hadron Hall

- 16 deg extraction ~2.1 GeV/c K⁰
 - - 30 GeV proton
 - <31 GeV/c unseparated 2ndary beams (mostly pions), ~10⁷/spill

Extended Hadron Hall (Plan)

K1.1 beam line

Intense K beams for abundant production of S=-1 hyperons and kaons

K1.1 beam line

• π^{\pm} , K $^{\pm}$, p^{bar} up to 1.2 GeV/c

- K- intensity ~10⁶ /spill (K/π~1)
- Will be moved from the existing hall

50 cm

Forward calorimeter CATCH

.H2 target

PiID counter

Make best use of the already developed methods and apparatus

- Large acceptance spectrometer: SKS
- Ge detector array for hypernuclei: Hyperball-J Hyperball-J
- Hyperon scatterinf detector: CATCH
- New detectors for weak decay particles and high-energy γ

Solve the hyperon puzzle in neutron stars

High resolution (π ,K⁺) hypernuclear spectroscopy

Precise B_Λ data for a wide range of Λ hypernuclei

- -> Density dependence of $\Lambda {\rm N}$ interaction (~ $\Lambda {\rm NN}$ 3-body force) necessary to solve the "hyperon puzzle"
- A few 100keV resolution is necessary
 - -> Momentum dispersion matching beam line and spectrometer

Very high intensity π beams can be utilized (~180Mpion/spill)

High-Intensity High-Resolution line (HIHR)

Prospect

- Selected in the 27 most important large projects in Japan Science Council's "Master Plan"
 Preparing for budget request
 Hope to start construction from 2018
 - Call for LOI will be announced near future Experimentalist: Your LOIs are very welcome Theorists: Please give us your ideas and supports
 An international workshop will be held on March 5-6 at J-PARC.
 => Please join us!

<u>Summary</u>

- Strangeness NP studies BB forces, impurity effects, inmedium baryon properties and behavior, and also provides clues for neutron star matter.
- A large CSB was observed via ${}^{4}_{\Lambda}$ He γ -ray measurement. ${}^{19}{}_{\Lambda}$ F γ -rays were also observed.
- SNP at J-PARC is entering the S=-2 world. An emulsion experiment for ΛΛ hyperuclei and Ξ atomic X-rays will run soon. A pilot run for ¹²C(K-,K+) ¹²_ΞBe was just carried out.

Hadron Hall extension plan is moving forward