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Statistical approach in nuclear reactions:
conception of equilibrium

Preequlibrium emission
+ equilibration

N.Bohr (19306)

/ Compound-nucleus decay
channels (sequential evaporation
or fission) dominate at low
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4.3.3 Evaporation from hot fragments

The successive particle emission from hot primary fragments with A>16 is assumed to be their basic
de-excitation mechanism. Due to the high excitation energy of these fragments, standard Weisskopf
evaporation scheme [2] was modified to take into account the heavier ejectiles up to '*O, besides light
particles (nucleons, d, t, ), in ground and particle-stable excited states [81]. This corresponds to the
excitation energies €V of the ejectiles not higher than 7-8 MeV. By analogy with standard model the
width for the emission of a particle j from the compound nucleus (A,Z) is given by:
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Here the sum is taken over the ground and all particle-stable excited states ¢ (i=0,1,...n) of
the fragment j, g"=(2s"+1) is the spin degeneracy factor of the ith excited state, u, and B, are
corressponding reduced mass and seperation energy, E*,, is the excitation energy of the initial
nucleus (55), E is the kinetic energy of an emitted particle in the centre of mass frame. In Eq.
(60) p,, and p,.,.are the level densities of the initial (A,Z) and final (A’,Z’) compound nuclei.
They are calculated using the Fermi-gas formula (41). The cross section o; (E) of the inverse
reaction (A’,Z°)+j=(A,Z) was calculated using the optical model with nucleus-nucleus
potential from Ref.[117]. The evaporational process was simulated by the Monte Carlo
method using the algorithm described in Ref.[118]. The conservation of energy and
momentum was strictly controlled in each emission step.



4.3.4. Nuclear fission

An 1mportant channel of de-excitation of heavy nucler (A>200) is
fission. This process competes with particle emission. Following the
Bohr-Wheeler statistical approach we assume that the partial width for
the compound nucleus fission 1s propotional to the level density at the

saddle point p (E) [1]:
Eiz =B
Py = pomemmee / pyEy, = B, ~ E) dE. (61)

Where B. 1s the height of the fission barrier which 1s determined by the
Myers-Swiatecki prescription [120]. For approximation of p, we used
the results of the extensive analysis of nuclear fissibility and I'/T'.

branching ratios [121]. The influence of the shell structure on the level
densities p,, and p,, 1s disregarded since in the case of

multifragmentation we are dealing with very high excitation energies
E*>30-50 MeV when shell effects are expected to be washed out [122].



sequential evaporation of fragments

nuclear fission

J.P. Bondorf et al. Phys. Reports 257 (1995)133-221.

[ o . |

Y. 5| o pil2.3 MeV] + ®Ra |

| o (10,0 ey ¢ TR

dov/dil, tLb/sr

&l 100 120 1410 A

a3t 100 (et 20
"n
EH‘EIE fles/

Fig. 4.1. Cross section for heavy cluster emission at
backward angles (6=120-160°) in the reaction *He+Ag as a
function of the laboratory kinetic energy of 3He. The data
are from Ref.[119], and the curves show the results of the
evaporation model calculation described in the text.
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Multifragmentation in intermediate and high energy nuclear reactions

Experimentally established:

1)few stages of reactions leading to multifragmentation,
2)short time ~100fm/c for primary fragment production,
3) freeze-out density is around 0.1p, ,

4) high degree of equilibration at the freeze-out,

9) primary fragments are hot.
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Au(35MeV/N)+Au, peripheral
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Fig.8. Charge distributions for peripheral and midperipheral collisions

(open point:experimental data; histogram:SMM predictions).
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124,107-Sn, 124-La (600 A MeV) + Sn — projectile (multi-)fragmentation

Very good description is obtained within Statistical Multifragmentation Model, including fragment

R.Ogul et al. PRC 83, 024608 (2011) ALADIN@GSI

Isospin-dependent multifragmentation of relativistic projectiles

charge yields, isotope yileds, various fragment correlations.

T T T T [T T T T [ T T T T [T T T T [ T T T T T TT7TT1]
_- . ‘ -
: "'.- 124g, __J_H_\?; 10- :

™ —
= J =
_‘5' p—

Zhﬂund;zﬂ' -
e 0.1 |
B o 0.3 N
= x 1077 v 05 7
- ® a 07 3
— ¥ ] D- 4 ] U.g ]
L - — SMM
_I AN T T T T T T T Y T O Y |_
0 10 20 30 40 50 60
7
Statistical (chemical) equilibrium
is established at break-up of hot
projectile residues ! In the case of

strangeness admixture we expect
it too !

do/ dA (mb) do/ dA (mb)

do/ dA (mb)

—
shF LI e

——
e 124g

I_
n 3

[}

do/ dA (mb) do/ dA (mb) do/ dA (mb)

do/ dA (mb)

10!

10°

107

102

10!

100

.
07
| N ;ra Sn iR
I/
4
y =
®
\ 4
————— stand.™. 3
— mod.
1 1 1 1
12 14 186 18




Two-stage multifragmentation of 1A GeV Kr, La, and Au
J. A. Hauger et al. Phys. Rev. C 62, 024616 (2000)
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Fig.24. Second stage fragment charge distribution as a

Fig. 19. Caloric curves (Tf vs E*,/A) for Kr, La and, Au. function of Z/Zprojectile. Results are shown For three

" Points are experimental and curves are from SMM. reduced multiplicity intervals for both data and SMM.



FRS data @ GSI

FRS projectile fragmentation of two symetric systems '**Sn + 12*Sn and '"”Sn + ''>Sn at an

incident beam energy of 1 A GeV measured with high-resolution magnetic spectrometer FRS Z HSn MNEn
(V.Féhr, et al., Phys. Rev. C 84, (2011) 054605) interval v(MeV) ~ (MeV)
10-17 16 16
Experimental data are well reproduced with statistical calculations in the SMM—ensemble . 18-25 19 18
To reproduce the FRS data symmetry energy term is reduced as shown in the table. 26-31 21 20
We have also found a decreasing trend of the symmetry energy with increasing charge 39-37 23 19
number, for the neutron-rich heavy fragments resulting from '**Sn projectile. 38-45 25 18

H. Imal, A.Ergun, N. Buyukcizmeci, R.Ogul, A.S. Botvina, W. Trautmann, C 91, 034605 (2015)
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Multifragmentation versus sequential evaporation
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FIG. 3. Left panel: dots present the raw measured probability to
detect an event with at least one heavy-fragment, Z=8, and solid
(dotted) line presents the SMM (GEMINI} model prediction filtered
with the experimental detection efficiency. An mmutial angular mo-
mentum of L=20f for the hot nucleus was assumed for GEMINI
model calculations. Right panel: as m left panel. but for the prob-
ability of detecting events with at least two heavy-fragments, Z
=8.
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4.3.2. The Fermi break-up

For light primary fragments (with A < 16) even a relatively small excitation energy may be
comparable with their total binding energy. In this case we assume that the principal mechanism of
de-excitation is the explosive decay of the excited nucleus into several smaller clusters (the secondary
break-up). To describe this process we use the famous Fermi model [105]. It is analogous to the
above-described statistical model, but all final-state fragments are assumed to be in their ground or
low excited states. In this case the statistical weight of the channel containing n particles with masses
m; (i=1,...,n) in volume V, may be calculated in microcanonical approximation:

3/2 .
S Vi =T my (2qr) 3/ 2= o\ (3/2n=-5/2
A Jmie il E.

where my = Y., m; is the mass of the decaying nucleus, § =[], (2s; + 1) is the spin degeneracy

factor (s; is the ith particle spin), G = Hj.;, n;! 1s the particle identity factor (n; is the number of
particles of kind j). Ey, is the total kinetic energy of particles at infinity which is related to the
prefragment excitation energy E7, as

Eyn = E5, + mpc”® — Zm,-cz. (59)
i

US is the Coulomb interaction energy between cold secondary fragments given by Eq. (49), U§ and
V; are attributed now to the secondary break-up configuration.

(VY dipy e d'p Py py)
'Q‘J Qmh) ™ S(E“""")S(l , B4

AL Az 2Maz Az



7= 4+ PO nt rest

J.P. Bondorf et al. Phys. Reports 257 (1995)133-221.
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Discovery of a Strange nucleus:
Hypernucleus

First-hypernucleus was observed in a stack of photographic emulsions
exposed to cosmic rays at about 26 km above the ground.

Incoming high energy proton from cosmic ray

colliding with a nucleus of the emulsion, breaks it in
several fragments forming a star. Multifragmentation !

All nuclear fragments stop in the emulsion after a short path

From the first star, 21 Tracks => 9o+ 1MTH +1 X

The fragment ,X disintegrates later , makes the bottom
star. Time taken ~ 10-'2 sec (typical for weak decay)

This particular nuclear fragment, and the others
obtained afterwards in similar conditions, were called
hyperfragments or hypernuclei.




A.S.Botvina and J.Pochodzalla, Phys. Rev.C76 (2007) 024909

Generalization of the statistical de-excitation model for nuclei with Lambda hyperons
In these reactions we expect analogy with

multifragmentation in intermediate and high energy nuclear reactions

+ nuclear matter with strangeness
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Statistical approach for fragmentation of hyper-matter

AY? 1 mean yield of fr
- _* _ yield of fragments with mass
azn = gaznVy- A e [ T Fazw — pazn) number A. charge Z. and A-hyperon
number H
pazg = Ay +Zv+ HE
Faza(T.V)=FF + F§ + F{Y™ +F§, +FYF liquid-drop description of fragments:

bulk, surface, symmetry. Coulomb (as in
Wigner-Seitz approximation). and hyper

: ¢ h energy contributions
FeT) = (-'wo - —) 4, T Bondorf et al.. Phys. Rep. 257 (1995) 133

£p

o oy, Ofd . g e 2 L . :
FS(T) = (;i ;i;) (23 parameters = Bethe-Weizsicker formula:
wp = 16 MeV, Bp = 18 MeV, T, = 18 MeV
Fizn = *pH _f _HEZ}' : v = 25 MeV £o 716 MeV

Y AYazu =Ao. ) ZYagn =Zp. ) HYazn = Ho.  chemical potentials are from mass, charge
AZH AZH AZH and Hyperon number conservations

F¥P — Ebve — H . (—10.68 + 48.7/(A%/3)). -- C.Samanta et al. J. Phys. G: 32 (2006) 363
) ' ' (motivated: single A in potential well)

FXYP — (H/A) - (—10.684 + 21.274%7), -- liquid-drop description of hyper-matter

A.S Botvina and J.Pochodzalla, Phys. Rev.C76 (2007) 024909
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Toward a fission of low

PHYSICAL REVIEW C B0, 037603 (2009)

Fission studies with 140 MeV @ particles
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FIG. 4. (Color online) The fission probability as a function of the
Assility parameter. The dots with error bars are the present resulis
and diamonds are from Ref. [21]. The lines are to guide the eve. The
squares are for proton-induced fission at energies 150 o 200 MeV
[22,23]. The other data shown were measured with 190 MeV protons:
trizngles dovn [24], triangles up [25]. and those shown by crossed
squares werne measured by radiochemical methods [26].

excited hyper-sources

Properties of normal fission

TABLE IlI. Cross section for fission for the different target
nuclei. Also given are estimates for the fission barmiers obtained
by the lincar dependence of the fission parameter [denoted by (T)]
and on the exponential given in the text [denoted by (1T)].

Target g (Mb) B (MeV) (I B (MeV) (IT)
“ag 0.030 + 0.007 358 49.1
13 a 0.007 £ 0.001 495 628
S Ho 0.600 + 0.050 408 454
197 Ay 128 + 18 26.9 257




F. Minato et al. / Nuclear Physics A 8§31 (2009) 150-162 155
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Fission of heavy hypernuclei formed in antiproton annihilation

T.A. Armstrong et al., PRC 47 (1993) 1957

Heavy hypernuclei are produced in the annihilation of antiprotons in ***U. The delayed fission
of heavy hypernuclel and hypernuclei of fission fragments are observed by using the recoll-distance
method in combination with measurement of secondary electron multiplicity. The lifetime of hy-
pernuclei in the region of uranium is found to be (1.25 £ 0.15) x 107 sec. It is ohserved that A
hyperons predominantly stick to the heavier fission fragments. The yield of hypernuclel is found to
be (7.4 = 1.7) x 10°? per stopped antiproton. No coincidences with K* were found. Statistical and
systematic errors on the number of events expected do not rule out this possibility.
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FIG. 1. Schematic representation of the recoll-distance
method as applied to the study of (o) delayed fission of heavy
hypernuclel, and (b) decay of hypernuclei of Assion fragments,
Both types of events can provide hits in the shadowed region
(hatched) of the detectors while prompt fission cannot.

The main results of the present experiment are the
following. (i) The annihilation of antiprotons in 23U
leads to the production of hypernuclei of fission frag-
ments and of heavy hypernuclel in the region of uranium.
(if) The lifetime of the heavy hypernuclei is found to be
(1.25 +0.15) x 10~ sec. (iii) When the fission of an ex-
cited hypernucleus occurs, the A hyperon predominantly
sticks to the heavy fragment; this fact can be used in the
analysis of the dynamics of fission [17]. (iv) The proba-
bility of A-hyperon attachment to a heavy nucleus, fol-
lowing $ annihilation, is estimated to be about 25%. (v)
We do not find with significant confidence that K+ are
produced in coincidence with the hypernuclear events.
However, this conclusion depends on complex and poorly
known features of kaon production in heavy nuclei.
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FIG. 2. Scheme of the experimental setup (not to scale).
PPAC is the parallel plate avalanche counter; KRT is the
Kaon range telescope.



A-hyperon lifetime in very heavy hypernuclei produced in the p+U interaction

The recoil shadow method for the detection of fission fragments has been used to mvestigate delayed fission
of very heavy A hypemucle1 produced in the p-U interaction at the projectile energy of 1.5 GeV. From the
measured distribution of delayed fission events in the shadow region and the calculated momenta of hypemnu-
cler leaving the target the lifetime of the A hyperon mn very heavy hypemucle: was determuned to be
7=2.40% 60 ps. The comparison of the number of delayed fission events with that of the prompt events leads
to an estimation of the cross section for the production of A hypemucle: 1n p+ U collisions at 1.5 GeV of
o, = 150750 ub. [S0556-2813(97)04506-8]
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FIG. 1. Schematic presentation of the experimental setup. The
thickness of the target holder 1s enhanced in the drawmg to show

the details. The real distances are given.
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Strangeness in neutron stars (p>3-4p,)
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Conclusions

We have investigated the evaporation and fission of middle and heavy hypernuclei since they were
not considered up to now because of scarce experimental data [H. Ohm et al., Phys. Rev. C 55, 3062
(1997)]. They should be dominating decay channels at low excitation energies. We are going to
develop such models to use them also for the complementary study of producing exotic hypernuclei,
e.g., neutron-rich and neutron-poor ones. Because of novelty of such processes there is an
uncertainty in knowledge of level densities, shell corrections and some other parameters of
hypernuclei.

In the beginning, the hypernuclear mass formulae obtained by Botvina-Pochodzalla (2007) is used.
The level densities are calculated in the Fermi-gas approximation by taking into account protons,
neutrons and hyperons, similar as it was done for normal nuclei. For the fission, we included the
deformation of nuclear surface around the saddle point. We want to obtain a reasonable estimate of
these decay channels in order to simulate future experiments.

We should emphasize that modification the parameters of the model in the presence of hyperons can
be important for future comparison with experimental data.

In the future, we plan to analyze theoretically the formation of multi-hyperon nuclei, which can be
abundantly produced in these reactions.

Our invetigations open the posibility to study formation of exotic hypernuclei (may be formed) via
the secondary evaporation, fission, and multifragmentation-like processes.
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