

Hypernuclear physics studies with FINUDA: setup, method, results, inheritance

Elena Botta INFN-Torino and Torino University

Overview

- the FINUDA experiment
- physics program
- methods & results
- inheritance

ALMA UNIVERSITAS TAURINENSIS

FINUDA: FIsica NUcleare a $DA\Phi NE$

DAΦNE

Double Annular Φ -factory for Nice Experiments

facility for low momentum not collimated K⁻ beam

		ϕ
Energy (GeV)	0.51 🔶	1 ⁶
Luminosity (cm-2 s-1)	10 ³²	20
Beam Hor. Dim. at IP (mm)	2.11	
Beam Vert. Dim. at IP (mm)	0.021	S S
R.M.S. Bunch length (mm)	30	4
Crossing angle (mrad)	25 🔶	5
Collision frequency (MHz)	380.44	+ 2
Bunches/ring	120	
Max number of particles/bunch	9.0 10 ¹⁰	
Max total mean current (A)	5.5	

FINUDA: FIsica NUcleare a DA Φ NE

The very first example of a (hyper)nuclear physics fixed-target experiment carried on at a collider ($DA\Phi NE @ LNF$)

FINUDA: the Collaboration

Collaborating institutes

Data takings

data taking	oct 2003 - jan 04	nov 2006 - jun 07		
int. luminosity	220 pb ⁻¹	960 pb ⁻¹		
daily luminosity	6 pb ⁻¹	10 pb ⁻¹		
Total events (M)	30	200		
Targets	⁶ Li (2), ⁷ Li (1), ¹² C (3), ²⁷ Al (1), ⁵¹ V (1)	⁶ Li (2), ⁷ Li (2), ⁹ Be (2), ¹³ C (1), D ₂ O (1)		

 very thin targets (0.1 ÷ 0.3 g/cm²) transparency ⇒ "high" resolution spectroscopy

- different targets in the same run
 high degree of flexibility
- coincidence measurement with large acceptance
 complete event b decay mode study

The FINUDA detector

hadronic systems by *full event reconstruction*

FINUDA: the interaction region

FINUDA: the tracking/outer regions

outer region • 72 scintillator slab system • trigger • n detection

tracker

10 silicon microstrip layer (OSIM)
2x8 Low Mass Drift Chamber layers
6x404 stereo straw tube layer system
B=1 T

He bag

FINUDA Scientific Program - Results

Main topics (.. not complete!):

Hypernuclear spectroscopy: PLB 622 (2005) 35: ¹²_AC PLB 698 (2011) 219: ⁷_ALi, ⁹_ABe, ¹³_AC, ¹⁶_AO

Weak Decay: NPA 804 (2008) 151: NMWD ⁵_AHe, ⁷_ALi, ¹²_AC PLB 681 (2009) 139: MWD (⁵_AHe,) ⁷_ALi, ⁹_ABe, ¹¹_AB, ¹⁵_AN

> PLB 685 (2010) 247 PLB 701 (2011) 556 NMWD & 2N ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, ${}^{9}_{\Lambda}$ Be, ${}^{11}_{\Lambda}$ B, ${}^{12}_{\Lambda}$ C, ${}^{13}_{\Lambda}$ C, ${}^{15}_{\Lambda}$ N, ${}^{16}_{\Lambda}$ O

NPA 881 (2012) 322 : (n, n, p) events from 2N PLB 738 (2014) 499: NMWD $\Gamma_{2N}/\Gamma_{NM} \& \Gamma_p/\Gamma_{\Lambda} {}^5_{\Lambda}He, {}^7_{\Lambda}Li, {}^9_{\Lambda}Be, {}^{11}_{\Lambda}B, {}^{12}_{\Lambda}C, {}^{13}_{\Lambda}C, {}^{15}_{\Lambda}N, {}^{16}_{\Lambda}O$ (PLB 748 (2015) 86: $\Gamma_p, \Gamma_n, \Gamma_{2N} {}^5_{\Lambda}He, {}^{11}_{\Lambda}B$)

Rare Decays: NPA 835 (2010) 439; ⁴_AHe, ⁵_AHe 2-body decays

Neutron-rich Hypernuclei: PLB 640 (2006) 145: upper limits ${}^6_\Lambda$ H, ${}^7_\Lambda$ H and ${}^{12}_\Lambda$ Be PRL 108 (2012) 042501: ${}^6_\Lambda$ H observation NPA 881 (2012) 269: ${}^6_\Lambda$ H observation PRC 86 (2012) 057301: ${}^9_\Lambda$ He upper limit

Hypernuclear Spectroscopy: ${}^{12}_{\Lambda}C$

(we know from the K⁺ $\rightarrow\mu\nu$ - <u>self calibrated apparatus</u>) momentum resolution: 0.5-0.9% FWHM ($\sigma(B_{\Lambda})$ = 0.4 MeV)

12

calculated taking into account acceptances and efficiencies

 $(K^+ \rightarrow \mu \nu - rate calibrated apparatus)$

M.Agnello et al., PLB 698 (2011) 219

Fig. 7. Formation probabilities from FINUDA (a) and cross section from E336 [2] (b) for bound states, see text for details. In (c) the ratio between the two is shown.

A.Cieply et al., PLB 698 (2011) 226

Constraints on the threshold K-nuclear

slightly favors a deep K- nuclear potential 15

Hypernuclear weak decay studies: p-shell Coincidence measurement

charged Mesonic channel

charged Non-Mesonic channel

MWD & NMWD in FINUDA: strategy

NMWD: p spectra

coincidence measurement: method

- Spectrum of negative pions for events in which a proton is detected in coincidence with a π^{-}
- Asking for the proton coincidence a clear peak emerges at 272 MeV/c (ground state)
- Background: K⁻ np $\rightarrow \Sigma^{-}$ p $\Sigma^{-} \rightarrow n(\pi^{-})$

M. Agnello et al., NPA 804 (2008), 151: ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li and ${}^{12}_{\Lambda}$ C

Comparisons with theory and KEK results

NMWD: Γ_{2N} from (π -, p) events M.Agnello et al., PLB 685 (2010) 247

NMWD: Γ_{2N} from (π -, p, n) events M.Agnello et al., PLB 701 (2011) 556 $N_n (\cos \theta \ge -0.8, E_p < \mu - 20 \text{ MeV})$ $N(\Lambda np \rightarrow nnp) + N^{FSI}$ $\mathsf{R}(A) = N_p$ ($E_p > \mu p$ single spectra fit) 0.5 N(∧p→np) + N^{FSI} $\Gamma_{nn} \Gamma_{nn} \Gamma_{nn} = 0.83 : 0.12 : 0.04$ Bauer et al., NPA 828 (2009) 29 $R(A) = a + b A = \frac{\Gamma_2}{0.5 \Gamma_n} + b A$ Γ_2/Γ_p not dependent on A Γ_2/Γ_p 0.39±0.16_{stat} +0.04_{sys}-0.03_{sys} a 1.2 N N N N systematics: all p-shell Γ_2/Γ_{NM} 0.21±0.07_{stat}+0.03_{sys} -0.02_{sys} 0.8 0.6 M. Kim et al., PRL 103 (2009) 182502: 0.29 ± 0.13^{12} 0.4 FINUDA Coll. et al., PLB 685 (2010) 247: 0.24± 0.10 0.2 low statistics 0^L 2 12 16 18 6 8 10 14 • direct measurement (n, p) Α reduced error 24

NMWD: evidence for (π^-, p, n, n) events

- 3 fourfold coincidence $(\pi$ -,n,n,p) events:
- 1 exclusive ${}^{9}_{\Lambda}Be \rightarrow {}^{6}Li + p + n + n$ event
- 2 exclusive $\Lambda np \rightarrow nnp {}^{7}{}_{\Lambda}Li \rightarrow {}^{4}He + p + n + n$ decay events

p $_{\pi^-}$ = 276.93 MeV/c E_{tot} = 178.3 MeV Q-value = 167 MeV p miss = 216.6 MeV/c

E(n1) = 110.2 MeV E(n2) = 16.9 MeV E(p) = 51.0 MeV

 θ (n1 n2) = 95° θ (n1 p) = 102° θ (n2 p) = 154° no n-n or p/n scattering

First direct experimental evidence of 2N-induced NMWD !! 25

Revisited analysis of the proton spectra

Attempt of improving the fits by shifting down the lower edge for the fits to 50, 60 and 70 MeV:

better value of $\chi^2/n = 1.33$ when choosing the starting point at 70 MeV

M.Agnello et al., PLB 738 (2014) 499

$$R_1(A) = \frac{A_{low}(A)}{A_{low}(A) + A_{high}(A)}$$

$\Gamma_{2N} / \Gamma_p = 0.50 \pm 0.24$	(Γ _{2N} /Γ _{NMWD} = 0.25 ± 0.12)
$\Gamma_{2N} / \Gamma_p = 0.43 \pm 0.25$	(Γ _{2N} /Γ _{NMWD} = 0.24 ± 0.10) PLB 685 (2010) 247

$$R_2(A) = \frac{N_{np}[\cos \vartheta(np) \ge -0.8, E_p \le (\mu - 20) \text{ MeV}]}{N_p(E_p > \mu \text{ p single spectra fit})}$$

First determination of Γ_p / Γ_A for 8 Hypernuclei

First determination of Γ_p / Γ_A for 8 Hypernuclei

Complementarity of Γ_{p} / Γ_{Λ} and $\Gamma_{\pi^{-}}$ / Γ_{Λ}

Completion of decay pattern for ${}^{5}\text{He}_{\Lambda}$ and ${}^{11}\text{B}_{\Lambda}$

${}^{6}_{\Lambda}$ H and ${}^{7}_{\Lambda}$ H (${}^{12}_{\Lambda}$ Be) search with FINUDA Inclusive measurement oct 2003 - jan 2004: 190 pb⁻¹ (K⁻_{stop}, π⁺) M. Agnello et al. Phys. Lett. B 640 (2006) 145 ${}^{6}_{\Lambda}$ H (6 Li) U.L.= (2.5 ± 1.4) 10 ${}^{-5}$ /K ${}^{-}_{stop}$ $^{7}_{\Lambda}$ H(⁷Li) U.L.= (4.5± 1.4) 10⁻⁵/K⁻_{stop} $K^{-}_{stop} + {}^{6}Li \rightarrow {}^{6}_{\Lambda}H + \pi^{+}$ 12 Be(12 C) U.L.= (2.0 ± 0.4) 10⁻⁵/K⁻¹ stop $K^{-}_{stop} + {}^{7}Li \rightarrow {}^{7}_{\Lambda}H + \pi^{+}$ counts/(1 MeV/c) K + ⁶Li → π⁺ + X B_A (MeV) raw inclusive spectra not acceptance corrected 200

250 255 $K' + {^7Li} \rightarrow \pi^* + X$ B. (MeV) $\Sigma^+ \rightarrow n \pi^+$ 200 250 300 π⁺ momentum (MeV/c) 300 350

200

100

150

acceptance cut for "long" tracks background:

 $\mathbf{K}^{-}_{\mathsf{stop}} + \mathbf{p} \rightarrow \Sigma^{+} + \pi^{-} \qquad \mathbf{K}^{-}_{\mathsf{stop}} + \mathbf{p}\mathbf{p} \rightarrow \Sigma^{+} + \mathbf{n}$ $\Sigma^+ \rightarrow n \pi^+$ (~130-250 MeV/c) (~100-320 MeV/c)

cut on K⁻/ π^+ distance: 2 mm

background subtracted spectra not acceptance corrected

Coincidence measurement

nov 2006 - jun 2007: 960 pb⁻¹

FINUDA π^{\pm} momentum calibration and resolution: physical "monochromatic" signals

production of ${}^4_\Lambda H$ hyperfragment on ${}^6\text{Li}$ and decay at rest

by-products: continuous monitoring stability

FINUDA π + momentum resolution (235 MeV/c): K_{µ2} decay (PLB 698 (2011) 219)

Coincidence measurement

$$\begin{array}{c} K^{-}_{stop} + {}^{6}Li \rightarrow {}^{6}_{\Lambda}H + \pi^{*} \\ {}^{6}_{\Lambda}H \rightarrow {}^{6}He + \pi^{-} \\ (\tau({}^{6}He) \sim 801 \text{ ms}) \end{array} \end{array} if {}^{6}_{\Lambda}H \text{ is a stable (bound) system} \\ independent 2-body reactions: \\ decay at rest \\ \end{array} \\ \begin{array}{c} M(K^{-}) + 3 M(n) + 3M(p) - B({}^{6}Li) = M({}^{6}_{\Lambda}H) + T({}^{6}_{\Lambda}H) + M(\pi^{+}) + T(\pi^{+}) \\ \hline M({}^{6}_{\Lambda}H) = 4 M(n) + 2M(p) - B({}^{6}He) + T({}^{6}He) + M(\pi^{-}) + T(\pi^{-}) \\ {}^{6}He \\ \hline \sqrt{M^{2}({}^{6}_{\Lambda}H) + p^{2}(\pi^{-})} - M({}^{6}_{\Lambda}H) \\ \hline T(\pi^{+}) + T(\pi^{-}) = \\ M(K^{-}) + M(p) - M(n) - B({}^{6}Li) + B({}^{6}He) - T({}^{6}He) - T({}^{6}_{\Lambda}H) - M(\pi^{+}) - M(\pi^{-}) \\ = 203.0 \pm 1.3 \text{ MeV} (203.5 \div 203.3 \text{ MeV with } B_{\Lambda} = 0 \div 6 \text{ MeV}) \end{array}$$

cut on $T(\pi^+) + T(\pi^-)$: 202÷204 MeV

Search for bound ${}^{6}_{\Lambda}H$

 $T(\pi^+)+T(\pi^-)$ cut : systematics

 $T(\pi^{+})+T(\pi^{-}) = 202 \div 204 \text{ MeV}$

 $T(\pi^{+})+T(\pi^{-}) = 200 \div 206 \text{ MeV}$

${}^{6}_{\Lambda}H/K^{-}_{stop}$ production rate

Background sources

 $T(\pi+)+T(\pi-)(202\div204 \text{ MeV}) \& p(\pi+)(250\div255 \text{ MeV/c}) \& p(\pi^-)(130\div137 \text{ MeV/c}):$

fake coincidences

0.27±0.27 ev.

Main physical sources ($K_{stop}^{-}N$, $K_{stop}^{-}NN$)

•
$$K_{stop}^{-}$$
 + ⁶Li $\rightarrow \Sigma^{+} + \pi^{-} + {}^{4}He + n$ (end point ~190 MeV/c)
 $\longrightarrow n + \pi^{+}$ (end point ~282 MeV/c)
0.16±0.07 ev.

•
$$K_{stop}^{-}$$
 + ${}^{6}Li \rightarrow {}^{4}_{\Lambda}H + n + n + \pi^{+}_{\Lambda}$
 $\longrightarrow {}^{4}He + \pi^{-}_{\Lambda}$

(end point ~252MeV/c) ($p(\pi^{-}) = 133 \text{ MeV/c}$) negligible Background sources: Σ + production and decay

$$K_{stop}^{-} + {}^{6}Li \rightarrow \Sigma^{+} + \pi^{-} + {}^{4}He + n$$

$$\longrightarrow n + \pi^{+}$$
• quasi free approach: 0.743 ± 0.019
• 4-body interaction: 0.257 ± 0.017 x²/ndf = 40.0/39
• ⁴He + n and "⁵He" final state
$$\boxed{\frac{39}{5}}_{350}^{400}$$

Finuda Coll. and A. Gal, NPA 881 (2012) 269.

Background sources:

⁴_ΛH + n + n + π⁺
(end point ~252MeV/c)
⁴He + π⁻
(p(π⁻) = 133 MeV/c)
negligible • K_{stop}^- + ${}^6Li \rightarrow {}^4_\Lambda H$ + n + n + π^+ $(p(\pi^+) \text{ cut: phase space strong reduction})$ P ~ (2.8±0.5)•10⁻⁸ • K_{stop}^- + ${}^6Li \rightarrow \Sigma^+$ + 3H + d + π^- (p(π⁻) < 165 MeV/c) \rightarrow n + π^+ $(p(\pi^+) < 250 \text{ MeV/c})$ • K_{stop}^- + ${}^{6}Li \rightarrow {}^{3}_{\Lambda}H + 3n + \pi^+$ $\square {}^{3}He + \pi^-$ (p(π⁺) < 242 MeV/c) $(p(\pi^{-}) \sim 115 \text{ MeV/c})$ • K_{stop}^- + ${}^6Li \rightarrow \Lambda + {}^3H + 2n + \pi^+$ (p(π⁺) < 247 MeV/c) $(p(\pi^{-}) < 195 \text{ MeV/c})$ **L→** p + π⁻ (p(π⁰) ~ 280 MeV/c) • K_{stop}^- + ${}^6Li \rightarrow {}^6_\Lambda He + \pi^0$ $\mathbf{L} \mathbf{h} \mathbf{h} \mathbf{i} + \mathbf{\pi}^{-}$ $(p(\pi^{-}) \sim 108 \text{ MeV/c})$ π^0 + ⁶l i \rightarrow ⁶He + π^+ $(p(\pi^+) \sim 280 \text{ MeV/c forw. dir.})$

${}^{6}_{\Lambda}H/K^{-}_{stop}$ production rate

Total background: BGD1 + BGD2 = 0.43 ± 0.28 events on ⁶Li

Poisson statistics: 3 events DO NOT belong to pure background: C.L.= 99% (S=3.9)

R * BR(π -) = (3 - BGD1 - BGD2) ($\epsilon(\pi$ -))⁻¹ ($\epsilon(\pi$ +))⁻¹ / (n. K⁻_{stop} on ⁶Li)

first evidence of ${}^6_\Lambda$ H based on 3 events that cannot be attributed to pure instrumental and physical background

kinematics

T _{tot} (MeV)	p(π⁺) (MeV/c)	p(π⁻) (MeV/c)	M(⁶ _A H) formation (MeV/c²)	M(⁶ _A H) decay (MeV/c²)	∆M (⁶ _∧ H) (MeV)
202.5±1.3	251.3±1.1	135.1±1.2	5802.33±0.96	5801.41±0.84	0.92±1.28
202.7±1.3	250.0±1.1	136.9±1.2	5803.45±0.96	5802.73±0.84	0.71±1.28
202.1±1.3	253.8±1.1	131.2±1.2	5799.97±0.96	5798.66±0.84	1.31±1.28

FINUDA Coll. and A. Gal, PRL 108 (2012) 042501, NPA 881 (2012) 269

 $\checkmark \textbf{B}_{\Lambda}$ determination

✓ formation - decay mass difference

${}^{6}_{\Lambda}H$ binding energy

(N+Y)/Z=5

Dalitz et al., N. Cim. 30 (1963) 489 (binding energy 4.2 MeV)

В ÅНе 2.39 Л	⁵ лНе 3.12 Л		⁸ He 7.16 n 1.49 xxx	♠ ³ ∧He (8.5) n 3.9 halo	L. Majling, NPA 585 (1995) 211c - binding energy - prod. rate ~ 10 ⁻² * hyp. prod. rate in (K- _{stop} , π ⁻)
³ ΛH 0.13 Λ		 ⁶ H (4.2) 2n -5 xxx 		4.2	MeV Superheavy hydrogen 1.7

Y. Akaishi et al., AIP Conf. Proc. 1011 (2008) 277
K.S. Myint, et al., Few Body Sys. Suppl. 12 (2000) 383
Y. Akaishi et al., Frascati Phys. Series XVI (1999) 16

"coherent" Λ - Σ coupling in O+ states $\rightarrow \Lambda NN$ three body force: $B_{\Lambda NN} = 1.4 \text{ MeV}, \Delta E(0^{+}_{g.s.} - 1^{+}) = 2.4 \text{ MeV}$ model originally developed for ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$

$B_{\Lambda}(^{6}_{\Lambda}H)$ determination

mass mean value = 5801.4 ± 1.1

 $B_{\Lambda} = 4.0 \pm 1.1 \text{ MeV} (^{5}\text{He} + \Lambda)$ $B = 0.3 \pm 1.1 \text{ MeV} (^{4}_{\Lambda}\text{H} + 2n)$

 B_{Λ} = 5.8 MeV (⁵He + Λ) Λ NN force: 1.4 MeV

formation – decay = 0.98 ± 0.74 MeV

formation – decay ΔM

Spin flip is forbidden in production at rest:

```
K^-_{stop}+ <sup>6</sup>Li (L<sub>i</sub>=0, S=1) \rightarrow {}^6_{\Lambda}H(L_f, S=1) + \pi^+
```

```
\begin{array}{l} L_{f}=0\rightarrow {}^{6}{}_{\Lambda}H(1^{+}_{exc.}) \text{ followed by :} \\ (i) {}^{6}{}_{\Lambda}H(1^{+}exc.)\rightarrow\gamma + {}^{6}{}_{\Lambda}H(0^{+}g.s.) \left( \mbox{-}10^{-13}\,\text{s} \right) \qquad \text{M1} \\ (ii) {}^{6}{}_{\Lambda}H(0^{+}g.s.)\rightarrow\pi - + {}^{6}He(0^{+}g.s.) \left( \mbox{-}10^{-10}\,\text{s} \right) \\ ({}^{6}{}_{\Lambda}H(1^{+}exc.)\rightarrow {}^{4}{}_{\Lambda}H(0^{+}g.s.) + n + n: p-wave&spin-flip) \end{array}
```

 \rightarrow B_{Λ}($^{6}_{\Lambda}$ H) = (4.5 ± 1.2) MeV vs 5 He+ Λ from decay mass only little neutron-excess effect compared to B_{Λ}($^{6}_{\Lambda}$ He) = (4.18 ± 0.10) MeV

Excitation energy of the 1⁺ spin-flip state from a systematic difference $\Delta M = 0.98 \pm 0.74$ MeV between values of ${}^6_{\Lambda}H$ mass derived separately from production and from decay. 1⁺ particle stable? 0⁺ particle stable?

J-PARC E10

Recent searches: J-PARC - E10

(π⁻, K⁺)

H.Sugimura et al., PLB 729 (2014) 39

J-PARC K1.8 beamline p_{π^-} = 1.2 GeV/c no peak structure in the MM spectrum $^{6}_{\Lambda}$ H (⁶Li) d\sigma/d Ω : U.L. 1.2 nb/sr 90% C.L.

${}^{9}_{\Lambda}$ He search with FINUDA

${}^{9}_{\Lambda}$ He search with FINUDA

 $\begin{array}{c} \mathsf{K}^{-}_{\mathsf{stop}} + {}^{9}\mathsf{Be} \rightarrow {}^{9}_{\Lambda}\mathsf{He} + \pi^{+} \\ {}^{9}_{\Lambda}\mathsf{He} \rightarrow {}^{9}\mathsf{Li} + \pi^{-} \\ (\pi ({}^{9}\mathsf{Li}) \sim 178 \text{ ms}) \end{array} \right] \quad \text{independent 2-body reactions:} \\ \begin{array}{c} \mathsf{decay \ at \ rest} \end{array}$

 $M(K^{-}) + 5 M(n) + 4 M(p) - B(^{9}Be) = M(^{9}_{\Lambda}He) + T(^{9}_{\Lambda}He) + M(\pi^{+}) + T(\pi^{+})$

 $M({}^{9}_{\Lambda}He) = 6 M(n) + 3M(p) - B({}^{9}Li) + T({}^{9}Li) + M(\pi^{-}) + T(\pi^{-})$

cut on $T(\pi^+) + T(\pi^-)$: 194.5÷197.5 MeV

${}^{9}_{\Lambda}$ He/K ${}^{-}_{stop}$ production rate

upper limit evaluation

✓ 0 observed events

✓
$$\epsilon(\pi^{-}), \epsilon(\pi^{+})$$
✓ n. K⁻_{stop} on ⁹Be (2.5 10⁷ K⁻_{stop} events)
R * BR(π^{-}) < (2.3±1.9)•10⁻⁶ / (n. K⁻_{stop} on ⁹Be) (90% C.L.)

 $\Gamma({}^{9}_{\Lambda}He_{gs} \rightarrow {}^{9}Li_{gs} + \pi^{-}) = 0.261 \Gamma_{\Lambda}$ from A. Gal, Nucl. Phys. A 828, 72 (2009)
R < 1.6 10⁻⁵ / (n. K⁻_{stop} on ⁹Be) (90% C.L.)
PRC 86 (2012) 057301

K.Kubota et al, NPA 602 (1996) 327. ⁹ AHe (⁹Be) U.L.=2.3 10⁻⁴/K⁻ stop

... coincidence method limits

target	hypernucleus	2-b MWD daughter nucleus	lifetime	MWD 'model'	MWD 'model' BR(π-) R*BR(π-)
۴Li	⁶ _л Н	⁶ He	801 ms	⁴ _A H	0.49 H. Tamura, et al., PRC 40 (1989) R479
⁷ Li	7 _л H	⁷ He	unstable	⁴ _Λ Η	0.49 H. Tamura, et al., PRC 40 (1989) R479
⁹ Be	⁹ _A He	⁹ Li	178 ms	⁹ ∧He	0.261 A. Gal, Nucl. Phys. A 828, 72 (2009)
¹² C	¹² _A Be	¹² B	20 ms	⁹ ∧Be	0.154 FINUDA PLB 681 (2009) 139
¹³ C	¹³ _A Be	¹³ B	17.3 ms	°₁Be	0.154 FINUDA PLB 681 (2009) 139
¹⁶ O	¹⁶ _A C	¹⁶ N	7.13 s	¹² _A C	0.099 Y.Sato et al., PRC 71 (2005) 025203
			1		1
product from th	ion and decay ne same energ	decreasing MWD BR			

Overview of n-rich (K⁻_{stop}, π^+) production rate vs A

FINUDA: inclusive spectra

¹⁶ $_{\Lambda}C$ FINUDA: coincidence ⁹ $_{\Lambda}$ He: R < 1.6 10⁻⁵ / (n. K⁻_{stop} on ⁹Be) (90% C.L.), PRC 86 (2012) 057301

KEK K.Kubota et al, NPA 602 (1996) 327

full bars: U.L., 90% C.L.

Α

theoretical interest for ⁶_AH E. Hiyama et al., NPA 908 (2013) 29 D.J. Millener, NPA 881 (2012) 298 A.Gal, D.J.Millener, PLB 725 (2013) 445

... inheritance

- very thin targets (0.1 ÷ 0.3 g/cm²): transparency 🛏 "high" resolution spectroscopy
- different targets in the same run high degree of flexibility
- coincidence measurement with large acceptance 🛏 decay mode study
- simultaneous tracking of μ^+ from the K⁺ decay \rightarrowtail energy and rate calibration
- systematic study of p-shell nuclei

Spectroscopy

Decay: MWD & NMWD

n-rich hypernuclei

- low statistics
- lifetime measurement
- (K⁺, $\pi^+\pi^-$) method

indications for new, high statistics measurements with "complete" apparatuses