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Octupoles 1.0

● Parity doublets
● Strong E3 transition strengths 



  

Back in the 80's

Vivid debate about the existence of permanent octupole deformation in atomic nuclei.

● Shell Corrections method with different (HO, WS, FW, etc) single particle potentials 
(Leander, Nazarewicz, Moller, Ciowk, Chasman, etc)

● Self consistent HF, HF+BCS or HFB with Skyrme or Gogny forces (Heenen, Bonche, 
Flocard, Egido, Robledo, etc)

● Algebraic: p and f bosons (Iachello, Engel, Otsuka, Han, etc)

Predicted octupole deformed minima in the light Ra and Ba isotopes with depths in the 
range between a few hundred keV to 1.5 MeV 

But the depth of the potential is not the only 
ingredient: collective wave functions also 
depend on the collective inertias

Different alternatives for the collective inertias 
used in different approximations: CSE, GCM, etc 
finally led to the conclusion that some nuclei 
around 224Ra (and 146Ba) can be considered 
as permanent octupole deformed 

Strong E3 were obtained and the behavior of the 
E1 was more or less understood 



  

First calculations with the Gogny force



  

Gogny force

Parameters fixed by imposing some nuclear matter properties and a few values 
from finite  nuclei (binding energies, s.p.e. splittings and some radii information).

D1S: surface energy fine tuned to reproduce fission barriers

D1N: Realistic neutron matter equation of state reproduced

D1M: Realistic neutron matter + Binding energies of essentially all nuclei with 
beyond mean field effects

Pairing and time-odd fields are taken from the interaction itself

The Gogny force is a popular choice but others (Skyrme, relativistic, etc) are possible



  

Mean field: Octupole constrained calculations 

●  Axially symmetric HFB with constraint in Q
30

 
●  Around 900 nuclei (8<Z<110) analyzed
●  Finite range Gogny (D1S, D1M, etc)

● Z and N values must have orbits of opposite 
parity and ∆l=3 around the Fermi level for 
permanent octupole deformation

● Zr, Ba and Ra regions show octupole def
● Mean field correlations energies ≈ 1.5 MeV
● Many nuclei are soft against octupole 

deformation (eg Gd)
● Qualitative and almost quantitative 

independence with Gogny parametrization

L.M.Robledo and G.F. Bertsch, PRC84, 054302 (2011) 



  

First step beyond the mean field: Parity projection

Parity symmetry is broken when β
3
≠0

But a linear combination of the two shapes restores parity symmetry

1.Projection after variation (PAV): the intrinsic states are those minimizing the HFB energy
2.Projection before variation (VAP): the intrinsic states are chosen as to minimize the 

projected energy E
π
 One intrinsic state for each parity

3.Restricted VAP: VAP but the intrinsic states are restricted to 

PAV

RVAP

PAV & 
RVAP



  

First step beyond the mean field: Parity projection

Excitation energy of K=0- band

Transition strengths E1 and E3 computed with the rotational formula

Valid for well deformed nuclei. For spherical ones multiply by 2L+1 (see below)

Ground state correlation energy           : non zero for reflection symmetric mean 
field gs. 



  

Second step beyond mean field: configuration mixing

Flat energy surfaces imply configuration mixing can lower the ground state energy

Generator Coordinate Method (GCM) ansatz

The amplitude                  has good parity under the exchange 

Parity projection recovered with 

Energies and amplitudes solution of the Hill-Wheeler equation

Collective wave functions

Transition strengths with the rotational approximation



  

Assorted GCM results

Nucleus E
-
 (MeV) W(E3)

Exp GCM RPA Theory Sph-Def Exp
20Ne 5.6 6.7 12 Def 13
208Pb 2.6 4.0 3.46 53 Sph 34
158Gd 1.26 1.7 11.6 Def 12
226Ra 0.32 0.16 43 Def 54

W(E3) Sph =W(E3) Def x7

Alpha clustering in light nuclei

● β
3
=  0.4 Positive parity intrinsic state

● β
3
=0.95 Negative parity intrinsic state

Connected with asymmetric fission 
physics and cluster emission in heavy 
nuclei (223Ra → 209Pb+ 14C)

16O+4He



  

Beyond mean field: Correlation energies

GS correlation energies
  
● HFB: Present in just a few nuclei and  around 1 MeV

● Parity projection: Present in all nuclei (except 
octupole deformed) ≈ 0.8 MeV
 

● GCM; Present in all nuclei ≈ 1.0 MeV

Almost all even-even nuclei have dynamic octupole 
correlation and their intrinsic ground state is octupole 
deformed

LMR, J. Phys. G: Nucl. Part. Phys. 42 (2015) 055109.



  

Excitation energies

● The excitation energies of the K=0- are plotted vs A (GCM) 
● and compared to experimental data (including K≠0 excitations in def nuclei)

● Theory is systematically too high (~ factor 1.5) (irrespective of interaction)
● Also for 2+ (quadrupole) excitations with GCM approaches

● Other degrees of freedom ?
● Pairing, quadrupole-octupole coupling
● Time odd, momentum like collective variables 



  

Electromagnetic strengths

✔ B(E3) strength vs R
42

 

✔ Log scale

✔ Good for  R
42 

~ 3.3

✔ Underestimation for R
42 

< 2.8

➢ B(E1) is not smooth as a function of N and Z (strongly dependent upon single particle occupancies)

➢ Is the rotational formula valid ? Ans: Only for strongly deformed systems

➢ What is happening with 64Zn ?



  

Transition strengths 

● The rotational formula used to relate intrinsic deformation parameters and transition 
strengths can be justified in the strong deformation limit

● Not valid for spherical or near spherical nuclei

● The proper treatment involves angular momentum projected wave functions

● Contrary the rotational formula, the projected B(EL,L→0) is not zero in the spherical limit

● For B(E3) strength the spherical limit equals a factor 7=(2L+1) times the rotational formula 
value but using the parity projected wave functions instead

● The rotational formula for B(E2) is not valid for β
2
 values less than 0.1 (0.2) in heavy (light) 

nuclei 

●  Simple formula to relate B(E2) and  β
2
 

LMR, G.F. Bertsch, PRC86, 054306 (2012)



  

Projected B(E3) transition strengths 

● Only RVAP intrinsic wf

● A factor ~7 is seen !

●  β
2
 (+) quadrupole 

deformation of the gs

● Much better agreement with experiment: in 208Pb the experimental B(E3) is 34 Wu
The parity projected value is 7.5 Wu and the angular momentum one is 24 Wu

● When both regimes are intermixed: full use of AMP is required

● Caveat: AMP is not used (yet) to determine the intrinsic states 



  

Quadrupole-octupole coupling 

● Important in shape coexistent nuclei like 64Zn

GCM with Gogny D1S

Also relevant in other nuclei (see below)

Two-phonon octupole states and 0
2

+ ?

Computationally intensive 

Q
2
-Q

3
Q

3

E
-
 (MeV) 4.2 7.20

E
corr

 (MeV) 1.63 0.72

W(E3) 6.80 Wild



  

Quadrupole-octupole coupling 

220 Rn Q
2
-Q

3
Exp

E
-
 (MeV) 0.618 0.645

W(E1) 2.4 10-5 < 1.5 10-3

W(E3) 26.50 33±4

E
2

+ (MeV) 1.35 0.94

W(E2) 48.5 48±3

224 Ra Q
2
-Q

3
Exp

E
-
 (MeV) 0.234 0.216

W(E1) 2.4 10-4 < 5 10-5

W(E3) 45.7 42±3

E
2
+ (MeV) 1.75 0.97

W(E2) 92.8 98±3

Good agreement with recent experimental data (LMR and P.A. Butler, PRC 88 051302 (R))

E
HFB

Coll WF 
π=+1

Coll WF 
π=-1



  

Octupoles at high spin

E. Garrote et al PRL 75, 2466



  

Odd-A and octupole deformation 

Unpaired nucleon expected to polarize the even-even core

 Gogny  D1S
 Uniform filling approximation
 Octupolarity changes level ordering

No time odd fields
“States” are not orthogonal

S. Perez, LMR PRC 78, 014304



  

Full blocking with the Hartree- Fock- Bogoliubov

Fully paired even systems: ρ has doubly degenerated eigenvalues  

Odd (number parity) systems (1qp excitation):

Two quasiparticle excitations

Vacuum of 



  

Full blocking with Hartree- Fock- Bogoliubov

The HFB equation and the gradient expression for blocked odd-A states, 2qp excitations, 
etc are the same but replacing the generalized density matrix by the corresponding one

They can be written as

The “swapping” matrix can be re-absorbed in the Bogoliubov amplitude matrix

explaining in a natural way the “swap U and V columns in the Bogoliubov amplitudes” 
recipe used in solving the HFB equation for 1qp, 2qp, etc systems. It allows to extend 
the gradient method to the 1qp, 2qp, etc cases (advantageous for handling many 
constraints)



  

The blocking strategy

The solution of the HFB equation follows the strategy 

Solve HFB (even number parity, time reversal invariant) for the target N and Z values

Choose the quasiparticles to block (usually the 10 with the lowest qp energy)

Swap the appropriate U and V columns in the Bogoliubov amplitudes and start the 
iterative solution of the HFB equation computing all time-odd fields

Problem

Orthogonality is not preserved by the iterative process

Initial quasiparticles are orthogonal even if they have the same quantum numbers

However,  orthogonality is lost in the iterative process and usually, no matter the initial 
quasiparticle is, the final solution is the same and corresponds to the lowest energy

This is the most prominent advantage of preserving axial symmetry: K is a good quantum 
number and quasiparticles with different K values are orthogonal by construction. The 
orthogonality problem only matters within  quasiparticles with the same K



  

The orthogonality constraint

The orthogonality issue

In odd mass systems, or two- four- etc quasiparticle states it is common to 
consider several excited states. Most of them are orthogonal to the others 
because of symmetry considerations like the K quantum number or parity.

When  the symmetries are not preserved or the quantum numbers are the same 
the states are not necessarily orthogonal and the solution of the HFB equation 
based on the  minimization of the energy  usually ends up in  the lowest energy 
solution.

For instance, in even-even nuclei is very difficult to reach 2qp K=0+ solutions if 
orthogonality is not addressed in the proper way (always converge to the 
ground state)

It is very difficult to obtain solutions different from the ground state with triaxial, 
codes

Another typical situation is when two different solutions of the HFB equations have 
a non-zero overlap meaning, according to the rules of QM, that they are not true 
excited states and a re-orthogonalization is required (modifying excitation 
energies and other properties)



  

The orthogonality constraint

 use Lagrange multipliers

Gradient

The gradient is the product of a singular matrix A-1 times a tiny number det A 

To handle this situation the SVD of A is very handy

C, D are orthogonal matrices and σ is diagonal.  

with

To minimize the energy of  imposing orthogonality to 



  

Odd-A and octupole deformation (full blocking) 

Different levels react differently to 
octupole deformation

Minimum not always at the same 
octupole deformation

Deformation parameters and 
correlation energies very similar to 
that of  e-e neighbors



  

Beyond the mean field 

Very preliminary results on parity projection 
(time-odd fields not considered in the hamiltonian overlap)

Very significant change in excitation energies and ordering of levels !



  

2QP excitations and octupole deformation 

236Pu ground state is reflection symmetric in our calculations but there are 
several 2qp excitations with a quite large octupole deformation

Polarization effects (no weak coupling for those states)

K E
exc

β
2

β
3

2+ 1.1 0.26 0.045 prot

3+ 1.15 0.26 0.044 prot

6- 1.50 0.26 0.078 prot

1- 1.67 0.25 0.075 prot

4- 1.81 0.27 0.101 prot

2- 1.82 0.26 0.103 prot

In this case, protons are very effective polarizing the nucleus

Other nuclei as well as 4qp excitations are worth  exploring

The β
3 
of 224Ra is 0.15 for comparison 



  

Odd-Odd systems and octupole deformation 

224Fr and 226Fr are good candidates for EDM experiments: Strong octupole 
correlations are expected (polarization effects)

In our calculations the 1- state (experimental gs) with the lowest energy has
strong octupole deformation but similar to the one of e-e neighbors: No 
polarization effects   

β
2

β
3

222Fr 0.16 0.141
224Fr 0.18 0.136
226Fr 0.19 0.070

Calculation of Schiff moments will be considered soon



  

Octupoles and cluster emission 

Emission of heavy clusters (14C, 20Ne, 20O, 30Mg … ). Very asymmetric fission



  

Octupoles and cluster emission 
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Summary and conclusions 

● Octupole correlations
● Static: present in a few nuclei around Zr, Ba, Ra
● Dynamic: present in all nuclei (Parity projection and configuration mixing)

● Gogny GCM (Q
3
) is a reasonable theory

● B(E3) strengths require angular momentum projected wave functions
● Quadrupole-octupole coupling important
● Enhancement at high spin well described by Parity Projection
● Large impact in spectroscopy of odd-A nuclei
● Octupoles in 2qp excitations and odd-odd systems 
● Microscopic basis of cluster emission

to do

● Systematic Q
2
 − Q

3
 calculations

● Consider other degrees of freedom (pairing, time odd momenta)
● Extend parity projection to odd-A nuclei (time odd fields)
● Extend GCM to odd-A nuclei (time odd fields)
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