DE LA RECHERCHE A UINDUSTRIE

ESNT

Espace de Structure Mucleaire Theorique
DEM - DAM

Octupole correlations in heavy and
superheavy nuclei

Luis M. Robledo
Universidad Autonoma de Madrid
Spain




Octupoles 1.0

4 4+ 4
3 1
- 2 2 2

QSU  Parity doublets
3 5  Strong E3 transition strengths



Vivid debate about the existence of permanent octupole deformation in atomic nuclei.

« Shell Corrections method with different (HO, WS, FW, etc) single particle potentials
(Leander, Nazarewicz, Moller, Ciowk, Chasman, etc)

« Self consistent HF, HF+BCS or HFB with Skyrme or Gogny forces (Heenen, Bonche,
Flocard, Egido, Robledo, etc)

« Algebraic: p and f bosons (lachello, Engel, Otsuka, Han, etc)

Predicted octupole deformed minima in the light Ra and Ba isotopes with depths in the
range between a few hundred keV to 1.5 MeV

But the depth of the potential is not the only
- i ingredient: collective wave functions also
depend on the collective inertias

Different alternatives for the collective inertias
used in different approximations: CSE, GCM, etc
finally led to the conclusion that some nuclei
around 224Ra (and 146Ba) can be considered
as permanent octupole deformed

Strong E3 were obtained and the behavior of the
QSD E1 was more or less understood
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Abstract: A microscopic parity-projected calculation, using as intrinsic states the ones obtained in the

mean field approach with the Gogny interaction and constraining the octupole moment is carried
The possibility of permanent octupole deformation 1n the ground state of #?Ra, **Rn and **Ra nuclet 1s studied using the out for several nuclei in the barium and radium isotope chains. Projected mean values and transition

constrained HF + BCS method and the Gogny density dependent interaction The calculation shows energy mimima for non-zero matrix elements are obtained for both, parities as well as for the 0"-17 splittings. These quantities
values of octupole moment for all three nucle: studied, the mmimum for 23*Rn being shallower than for the others This result 15 are compared to previous results obtained in collective calculations, The differences are discussed
1n agreement with the observed position of /=1~ states. The dipole moments for these nucle: are also calculated and conclusions about the importance of the correlations associated to the projection are extracted.
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i The Lipkin model is used to study the transition to a parity-breaking system with the aim of

Departamento de Fisica Tedrica, Universidad Auténoma, 28049-Madrid, Spain understanding the features of negative parity low-lying levels associated with the octupole degree of
freedom. The results of parity projection calculations for the energy splitting between the positive

Received 15 August 1988 parity ground state and the lowest-lying negative parity state as well as the negative parity transition

(Revised 19 October 1988) probability connecting them have been studied and compared to the exact results. A good agree-

ment is observed for not-deformed and for well-deformed systems but at intermediate deformations
. o L. . . he parity-projected results strongly differ from the exact ones. By analyzing the parity-projected
Abstract. The octupole degree of freedom of the nuclei *'***Ra and ***°Th is investigated in a ¥ N projes THOREY . - 24 yz ty-proj

’ " o Glvaia ia Bassds gk strained Hartree-Fock olus BCS th 1 energy curves, two characteristic configurations are observed in the problem: the mean-field and the
FCrO4COPTT Wayls i arayia 18 DEACC 0N B8 s e arree=ock pius - cory as we tunneling configurations. By mixing these two configurations, a substantial improvement over the

as on the adiabatic time-dependent Hartree-Fock in the cranking approximation (and generator P Bl v " . i S et i 5
coordinate method plus mean field). In the numerical applications we use the Gogny forces, From parity projection method is obtained for the two quantities studied in all the regions of deformation.
p " pp E eny ' It is suggested that this method could be used in realistic calculations to improve the understanding

the mean field calculations we show octupole barrier heights, dipole moments as well as the values i P i 5
of B,, B4, Bs, Bs and B, along the constrained path. From the symmetry conserving calculations of tlllleodoctupole dynamics in opposition to the most powerful but expensive generator coordinate
me! Z

we display the 0*-1" splitting, wave functions as well as the El and E3 transition probabilities.
The overall agreement with the available experimental data is very good.



The Gogny force is a popular choice but others (Skyrme, relativistic, etc) are possible

V(Fl — T ) = Vc(l, 2) —+ VLs(l, 2) + Vcoul(l, 2) + Vpp

Vo(ify — ) = Y (Wi — HiPr + BiPy — M; P, P;)exp (71 — 72)° /1)

62

Vis(1,2) = Wrs(V120(71 — 72)V12)(01 +02)  Vg(1,2) = o
0

—

Vop(1,2) =t30(r1 — 72)(1 4+ 2o P,) p™*(R)

Parameters fixed by imposing some nuclear matter properties and a few values
from finite nuclei (binding energies, s.p.e. splittings and some radii information).

¢ D1S: surface energy fine tuned to reproduce fission barriers
¢ DI1N: Realistic neutron matter equation of state reproduced

¢ D1M: Realistic neutron matter + Binding energies of essentially all nuclei with
beyond mean field effects

Pairing and time-odd fields are taken from the interaction itself
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Pa

Axially symmetric HFB with constraint in Q.

Around 900 nuclei (8<Z<110) analyzed
Finite range Gogny (D1S, D1M, etc)

100

« Z and N values must have orbits of opposite
parity and Al=3 around the Fermi level for
. ! . permanent octupole deformation
3 . 1 « Zr, Ba and Ra regions show octupole def
e 1t s et “{ e+ Mean field correlations energies = 1.5 MeV
« Many nuclei are soft against octupole
, ) , , deformation (eg Gd)
20 40 60 80 100 120 140 160 180 ° Qualitative and almost quantitative
N independence with Gogny parametrization

8 & 8 B

D1S Epamg (HFB Q30) a)

L.M.Robledo and G.F. Bertsch, PRC84, 054302 (2011)



Parity symmetry is broken when (3,20 [0(83))

But a linear combination of the two shapes restores parity symmetry

W) = Na(1 4 wll)|e(5s)) Er = (Ur|H| W)
1. the intrinsic states are those minimizing the HFB energy
2. the intrinsic states are chosen as to minimize the
projected energy E_ One intrinsic state for each parity
3. : VAP but the intrinsic states are restricted to |((/3))

0.4 0.0 0.2 0.4
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B3 Ba Ba

Ground state correlation energy €GS : non zero for reflection symmetric mean
field gs.

Transition strengths E1 and E3 computed with the rotational formula

_ e? A 14,
B(E3,3 %o+):E<\P_IQ3 5

Valid for well deformed nuclei. For spherical ones multiply by 2L+1 (see below)

D)2




Flat energy surfaces imply configuration mixing can lower the ground state energy

Generator Coordinate Method (GCM) ansatz

s) :/dQso fo(Q30)]p(@30)

The amplitude fa(Q30) has good parity under the exchange Q30 — — Q30

Parity projection recovered with J+ (Q30) — 5(@30 — Qéo) + 5(@30 + ngo)

Energies and amplitudes solution of the Hill-Wheeler equation

/ QM (@30, Qo) f Qo) = E / QN (O30, Qg ) o (Qho)

Collective wave functions

9o (Bs) = / A, N'Y2(Bs, BL) £ (55)

Transition strengths with the rotational approximation

2 ~ 1+t
B(E3,3~ — 07) = e—<x1/(,2|Qg+T

U, )2
47_‘_ | 1>



Nucleus E (MeV) W(E3)
Exp GCM RPA Theory Sph-Def Exp

’Ne 5.6 6.7 12 Def 13
208Pp 2.6 40 346 53 Sph 34 W(E3) Sph =W(E3) Def x7
158Gd 1.26 1.7 11.6 Def 12
>2°Ra 0.32 0.16 43 Def 54
Alpha clustering in light nuclei

6 . 6

Wl I « B,= 0.4 Positive parity intrinsic state

A 1Ll O |+ B,=0.95 Negative parity intrinsic state

% 0 7 | % 0 7 ‘\
2| Lol | 150+‘He
Al 1ol |
.~ ““Ne =04 | “Ne B4=0.95 ; P
° °Ps di ¢ Ps | Connected with asymmetric fission
e T physics and cluster emission in heavy
X (fm) X (im) nuclei (***Ra - ?®Pb+ *C)
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20 40 60 &0 100 120 140 160 180

GS correlation energies €GS
 HFB: Present in just a few nuclei and around 1 MeV

» Parity projection: Present in all nuclei (except
octupole deformed) = 0.8 MeV

e GCM: Present in all nuclei = 1.0 MeV

Almost all even-even nuclei have dynamic octupole
correlation and their intrinsic ground state is octupole
deformed

LMR, J. Phys. G: Nucl. Part. Phys. 42 (2015) 0551009.
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A 0.1

* The excitation energies of the K=0-are plotted vs A (GCM)

Experiment (MeV)

« and compared to experimental data (including K£0 excitations in def nuclei)

* Theory is systematically too high (~ factor 1.5) (irrespective of interaction)

« Also for 2+ (quadrupole) excitations with GCM approaches

e Other degrees of freedom ?
» Pairing, quadrupole-octupole coupling
« Time odd, momentum like collective variables
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B(E3) strength vs R,

Log scale

Good for R,,~ 3.3

Underestimation for R,<238

> B(E1) is not smooth as a function of N and Z (strongly dependent upon single particle occupancies)

> 1s the rotational formula valid ? Ans: Only for strongly deformed systems

> What is happening with %Zn ?



* The rotational formula used to relate intrinsic deformation parameters and transition
strengths can be justified in the strong deformation limit

* Not valid for spherical or near spherical nuclei

* The proper treatment involves angular momentum projected wave functions

« Contrary the rotational formula, the projected B(EL,L — 0) is not zero in the spherical limit
/Y = NjP7|¢) — p-h excitations

* For B(E3) strength the spherical limit equals a factor 7=(2L+1) times the rotational formula
value but using the parity projected wave functions instead

- The rotational formula for B(E2) is not valid for (3, values less than 0.1 (0.2) in heavy (light)
nuclei

« Simple formula to relate B(E2) and (3,

LMR, G.F. Bertsch, PRC86, 054306 (2012)




10 - . - l - : - -
[T° ) = NP7 |o(B3(-)))
i ] + _
_ W) = NP0 p(B3(+)))
o . _
u: mo
j‘u-;’ 6 e 1 | = Only RVAP intrinsic wf
5 oo |
Q 0% .  Afactor ~7 Is seen !
o 4} SO :
i) . j; 000 0 | |« B, (+) quadrupole
- L L "% o "| | deformation of the gs
o 30: . m‘bo ??Ogéwéﬁé’%;%ou &?m . Och
0 L | L | L 1 L 1 L
-0.4 0.2 0 0.2 0.4 0.6
Bs (+)

* Much better agreement with experiment: in 2°*Pb the experimental B(E3) is 34 Wu V
The parity projected value is 7.5 Wu and the angular momentum one is 24 Wu

* When both regimes are intermixed: full use of AMP is required

« Caveat: AMP is not used (yet) to determine the intrinsic states '
o



* Important in shape coexistent nuclei like ®4Zn

Epeg (MeV)
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GCM with Gogny D1S

Q,Q, Q
E (MeV) 42 720
E__(MeV) 1.63  0.72
W(E3) 6.80  Wild

Also relevant in other nuclei (see below)

Two-phonon octupole states and 0,* ?

Computationally intensive



%4; %4; Il WE ?’;4 :

s, ‘jﬂgﬁ:ggﬂ Sa

220 Rn Exp Q,-Q, Exp

E (MeV) 0.618 0.645 0.234 0.216
W(E1) 2.410° <1510 24104 <510°
W(E3) 26.50 33+4 45.7 42+3
E," (MeV) 1.35 0.94 1.75 0.97
W(E2) 48.5 48+3 92.8 98+3

Good agreement with recent experimental data (LMR and P.A. Butler, PRC 88 051302 (R))
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. L . L
Unpaired nucleon expected to polarize the even-even core
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+ Gogny D1S

+ Uniform filling approximation
+ Octupolarity changes level ordering

S. Perez, LMR PRC 78, 014304
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Fully paired even systems: p has doubly degenerated eigenvalues

— T (s + vial _( (@IBfB.|®) (@|sfsf|l®) \ _ (0
|(I)> _l;I( b k\\ 21 > K= ( <q)‘5u5vm)> <(I)’5u5”q)> ) B ( 0

Odd (number parity) systems (1gp excitation):

’(I)M> — 5;‘(1)0> — a,L H(uk —I—’Uk;ak )‘—> R, = ( Iéb ]I_O[M )

k#u

1)

Vacuum of 1, - .. aﬁu—la 5,17 5u+1a e

Two quasiparticle excitations

D) = B1B} o) = alal, T] (ur +veafal)l-)

k£ pv

L+, 0
RW‘( 0 ]I—]IM—I[V>



The and the gradient expression for blocked odd-A states, 2qp excitations,
etc are the same but replacing the generalized density matrix by the corresponding one

(1, 0 (L, +1, 0
R“_<O 1[—11“> RW‘( 0 11—11“—]1,,)

They can be written as R, = SMRSL R, = SMS“RSLSZ

I-1, I
S :( po )
g I, I-1I,

The “swapping” matrix can be re-absorbed in the Bogoliubov amplitude matrix
W, = WS,

explaining in a natural way the “swap U and V columns in the Bogoliubov amplitudes”
recipe used in solving the HFB equation for 1gp, 2gp, etc systems. It allows to extend
the gradient method to the 1gp, 2gp, etc cases (advantageous for handling many
constraints)



The solution of the HFB equation follows the strategy
@ Solve HFB (even number parity, time reversal invariant) for the target N and Z values
© Choose the quasiparticles to block (usually the 10 with the lowest gp energy)

@ Swap the appropriate U and V columns in the Bogoliubov amplitudes and start the
iterative solution of the HFB equation computing all time-odd fields

Problem
@ Orthogonality is not preserved by the iterative process
< Initial quasiparticles are orthogonal even if they have the same quantum numbers

< However, orthogonality is lost in the iterative process and usually, no matter the initial
quasiparticle is, the final solution is the same and corresponds to the lowest energy

© This is the most prominent advantage of preserving axial symmetry: K is a good quantum
number and quasiparticles with different K values are orthogonal by construction. The
orthogonality problem only matters within quasiparticles with the same K



The orthogonality issue

@ |In odd mass systems, or two- four- etc quasiparticle states it is common to
consider several excited states. Most of them are orthogonal to the others
because of symmetry considerations like the K quantum number or parity.

@ When the symmetries are not preserved or the quantum numbers are the same
the states are not necessarily orthogonal and the solution of the HFB equation
based on the minimization of the energy usually ends up in the lowest energy
solution.

@ For instance, in even-even nuclei is very difficult to reach 2qp K=0" solutions if
orthogonality is not addressed in the proper way (always converge to the
ground state)

@ |tis very difficult to obtain solutions different from the ground state with triaxial,
codes

@ Another typical situation is when two different solutions of the HFB equations have
a non-zero overlap meaning, according to the rules of QM, that they are not true
excited states and a re-orthogonalization is required (modifying excitation
energies and other properties)



To minimize the energy of |®) imposing orthogonality to  |®;)
use Lagrange multipliers — Z )\i<(1)i\q)>
Gradient Z
_ Z)\i@”a:oémq)) with (D]t af [ D) = (P|®) (A7 B)
(2:]) = (det A)'/3 A= ULU + ViV
The gradient is the product of a singular matrix A™* times a tiny number det A

To handle this situation the SVVD of A is very handy A= CoD"?

C, D are orthogonal matrices and ¢ is diagonal.

A~t = Do 10T det A=1]]o,
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Different levels react differently to
octupole deformation

Minimum not always at the same
octupole deformation

Deformation parameters and
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that of e-e neighbors

1.4

1.2

E (MeV)
o o
()] oo

0.2

?2RaD1S 2°°Ra RS

3/2° —a—
—1/2°
7/20 e
—1/2°
5/2°
—1/2
3/27 ——
——3/2* ——3/2*

223pa EXP

5/27 =g=1/0*
b og—
—e—5/2"

3/27 —e—

—e—3/2"



E (MeV)

Very preliminary results on parity projection
(time-odd fields not considered in the hamiltonian overlap)
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23%Pu ground state is reflection symmetric in our calculations but there are
several 2gp excitations with a quite large octupole deformation

Polarization effects (no weak coupling for those states)

K 3 B, B,
2+ 1.1 0.26 0.045 prot
3+ 1.15 0.26 0.044 prot
6- 1.50 0.26 0.078 prot
1- 1.67 0.25 0.075 prot
4- 1.81 0.27 0.101 prot
2- 1.82 0.26 0.103 prot

In this case, protons are very effective polarizing the nucleus
Other nuclei as well as 4qp excitations are worth exploring

The (3, of **Ra is 0.15 for comparison



224Fr and 2*°Fr are good candidates for EDM experiments: Strong octupole
correlations are expected (polarization effects)

In our calculations the 1" state (experimental gs) with the lowest energy has
strong octupole deformation but similar to the one of e-e neighbors: No
polarization effects

B, B,
22y 0.16 0.141
24y 0.18 0.136
26y 0.19 0.070

Calculation of Schiff moments will be considered soon
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Emission of heavy clusters (**C, ®°Ne, %°0O, **Mg ... ). Very asymmetric fission
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Octupoles and cluster emission
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Octupole correlations

 Static: present in a few nuclei around Zr, Ba, Ra

« Dynamic: present in all nuclei (Parity projection and configuration mixing)
Gogny GCM (Q,) is a reasonable theory

B(E3) strengths require angular momentum projected wave functions
Quadrupole-octupole coupling important

Enhancement at high spin well described by Parity Projection

Large impact in spectroscopy of odd-A nuclei

Octupoles in 2gp excitations and odd-odd systems

Microscopic basis of cluster emission

to do

Systematic Q, — Q, calculations

Consider other degrees of freedom (pairing, time odd momenta)
Extend parity projection to odd-A nuclei (time odd fields)
Extend GCM to odd-A nuclei (time odd fields)
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