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Why Shell Model?

Because to connect rigorously the free space nucleon
nucleon interaction with the experimental
spectroscopic data has been the Holy Grail of Nuclear
Physics since its inceptions.

And, indeed, the SM results relate directly to
observables, without breaking symmetries beyond
translational invariance
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Why Shell Model?

The SM is an approximate solution to the full many
body problem using effective interactions in a
restricted set of orbits of an underlying spherical
mean field (the valence space).

The two intertwined ingredients of a SM calculation
are therefore the valence space and the effective
interaction (which may naturally be of more than
two-body rank. Indeed performant algorithms and
codes are necessary to cope with the huge
dimensions of the problem.
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Why Nuclear Shape?

Because we are still heirs of the semiclassical
liquid-drop like models

The very concept of shape requires to break the
rotational (and reflection) invariance, or, equivalently
to define an intrinsic reference frame. But even if the
symmetry is broken, we need to rely on semiclassical
models, liquid-drop like, to define a vocabulary which
describes properties akin to the concept of shape.

The surface of a drop can be expressed in the basis of
the spherical harmonics Yλ,µ(θ, φ). The coefficients of
the development, αλ,µ, are the shape parameters. To
speak about nuclear shape, we need a protocol to
extract the best information about these intrinsic
shape parameters from the nuclear wave functions in
the laboratory frame.
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Elliott’s SU3

The description of the nuclear deformation and hence
the nuclear shape in the laboratory frame was found
by Elliott. Using the fact that SU3 is a symmetry of the
spherical harmonic oscillator (HO), and restricting the
two body interaction to a quadrupole-quadrupole
force, he was able to solve analytically the nuclear
many body problem using the elegant and powerful
mathematical techniques of group theory.
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Elliott’s SU3

Not only J(J + 1) spectra were obtained without
breaking the rotational invariance, furthermore the
notion of an intrinsic state appeared associated to the
choice of the chain of subgroups of SU(3) used to
label the eigenfunctions of the problem: O(3)-U(1) for
the physical states and SU(2)-U(1) for the intrinsic
ones. In the latter case, a new quantum number
emerge, the intrinsic quadrupole moment, Q0, the
sought shape parameter.

Alfredo Poves Shape Coexistence; A Shell Model View



Shape Parameters; The Case of Quadrupole
Deformation

From the value of Q0 one can get the deformation
parameter β using different recipes, for instance:

Q0 =
3√
5π

R2 Z (1 + 0.16 β) β (1)

If the nucleus is not axially symmetric, the situation
becomes more convoluted, because now we need to
recover two shape parameters, β and γ. The former
can in most cases be extracted from the B(E2)’s as in
the axial case, but for γ we have to resort to other
expediencies. Davidov and Filipov use the collective
model to extract the values of γ from the B(E2)values
of the transitions between the yrast and the γ bands.
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Shape Parameters; The Case of Quadrupole
Deformation

Another possibility is to rely on the use of the
expectation values of scalars constructed with the
quadrupole operator like (Q2 × Q2)

0 or (Q2 × Q2 × Q2)
0

as proposed by Kumar. These expectation values can
be written in terms of the shape parameters. Finally,
one could use a basis in the intrinsic frame to perform
laboratory frame calculations as in the MCSM (Monte
Carlo Shell Model), and keep track of the shape
parameter content of the physical solutions.
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Many Particles and Orbits around the Fermi Level

To solve the many body problem to spectroscopic
accuracy, Large Scale Shell Model calculations have
proven very successful when affordable.

In other cases, approximations have to be made, either
of physical (IBM) or mathematical (MCSM) nature

Only recently, Beyond Mean Field calculations using
Energy Density Functionals have been pushed to
quantitative spectroscopy. However, many things that
are trivial in LSSM, like the correct treatment of all the
pairing channels or the inclusion of triaxial and higher
multipolarity degrees of freedom, become extremely
painful for BFM.
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Where?

Physically sound and tractable SM valence spaces:

The classical 0 ~ω spaces p, sd , and pf shells can be
treated exactly.

Nuclei (or states) at the p-sd and sd -pf borders, can be
described to a very good approximation e. g. Low
lying deformed and super deformed banda in 40Ca.

Neutron rich nuclei with protons in the sd -shell and
neutrons in the pf -shell can be treated exactly as well
e. g. 32Mg, 34Si, 42Si, 44S.

The space r3g (1p 3/2, 1p1/2, 0f5/2, 0g9/2), is also solved
exactly. But its physical relevance is limited to a rather
small part of its natural span, e. g. 76Ge, 82Se.
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Where?

Physically sound and tractable SM valence spaces

The space r3gd (1p 3/2, 1p1/2, 0f5/2, 0g9/2 1d5/2) for the
neutrons and pf for the neutrons, for the very neutron
rich isotopes from Calcium to Germanium. e. g. 68Ni,
64Cr, 78Ni, 80Zn.

The space sdg around 100Sn

The space r4h comprised between N=Z=50 and N=Z=82
for a small subset of the nuclei it encompasses; the
Sn, Te , Xe and Ba isotopes up to N=82.

Protons in r4h and neutrons in r5i; the very neutron
rich Sn, Te , Xe and Ba isotopes, beyond N=82.

Around 208Pb
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Many Particles and Orbits around the Fermi Level

More is different:

Indeed, since you can treat more and heavier nuclei,
but in addition, because some of these nuclei exhibit
collective features which are better developed than in
their sd shell Elliott’s like precursors

And because their description was until now restricted
to the mean field approaches

Our approach to the SM relies on the
Monopole-Multipole decomposition of the effective
Hamiltonian

Alfredo Poves Shape Coexistence; A Shell Model View



The Spherical Mean Field (Monopole Hamiltonian)

Hm =
∑

niǫi +
∑ 1

(1 + δij)
V ij ni(nj − δij)

the coefficients V are angular averages of the two body
matrix elements, or centroı̈ds of the two body interaction:

V ij =

∑

J V J
ijij [J]

∑

J [J]

the sums running over Pauli allowed values.
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The Spherical Mean Field (Monopole Hamiltonian)

This can be written as well as:

Hm =
∑

i

ni



ǫi +
∑

j

1
(1 + δij)

V ij (nj − δij)





Thus

Hm =
∑

i

ni ǫ̂i(
[

nj
]

)

We call these ǫ̂i(
[

nj
]

) effective single particle energies
(ESPE)
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Effective Single Particle Energies

They give the evolution of the underlying (non observable)
spherical mean field (aka, shell evolution) as we add
particles in the valence space, as well as the variations of
the spherical mean field in a single nucleus for states
which have different configurations.

They are the control parameter for the nuclear dynamics,
given the universality of the nuclear multipole hamiltonia n.
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Monopole anomalies of the realistic NN
interactions

They are the more blatant in the neutron-neutron
interaction; for instance not producing a magic 48Ca, or the
location of the drip line in the Oxygen isotopes

Notably, their monopole neutron proton tensor part is
correct, and the spin orbit splittings well accounted for.

The blame probably rest in missing residual three body
effects
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The Nuclear Correlators (Multipole Hamiltonian)

The multipole hamiltonian is responsible for the
collective nuclear behavior. It is universal and well
given by the realistic NN interactions. Its main
components are:

BCS-like isovector and isoscalar pairing. When pairing
dominates, as in the case of nuclei with only neutrons
(or only protons) on top of a doubly magic nucleus, it
produces nuclear superfluids.

Quadrupole-Quadrupole and Octupole-Octupole terms
of very simple nature ( rλYλ · rλYλ) which tend to make
the nucleus deformed. In this limit, the pairing
correlations mainly show up as responsible for the
moment of inertia of the nuclear rotors.
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Why do the quadrupole correlations thrive in the
nucleus?

The fact that the spherical nuclear mean field is close
to the HO has profound consequences, because the
dynamical symmetry of the HO, responsible for the
accidental degeneracies of its spectrum, is SU(3),
among whose generators it is the quadrupole operator.

When valence protons an neutrons occupy the
degenerate orbits a major oscillator shell, and for an
attractive Q ·Q interaction, the many body problem has
an analytical solution in which the ground state of the
nucleus is maximally deformed (Elliott’s model)
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Why do the quadrupole correlations thrive in the
nucleus?

In cases when both valence neutrons and protons
occupy quasi-degenerate orbits with ∆j= 2 and ∆j=2,
including j=p+1/2 (Quasi-SU3), or quasi-spin multiplets
(Pseudo-SU3)

For example, 0f 7/2 and 1p 3/2, or 0g 9/2 1d5/2 and 2s 1/2
form Quasi-SU3 multiplets and 0f 5/2, 1p3/2 and 1p 1/2 a
Pseudo-SU3 triplet
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Quadrupole dominance in the Quasi + Pseudo SU3
frame

The Quasi + Pseudo SU3 or Quasi + Quasi SU3
scheme plus the monopole field provide a SM toolkit to
locate deformed structures in the (N, Z, E ∗) landscape.

We shall examine two model spaces; sd-pf and pf-sdg
and study the behavior of np-nh configurations across
N,Z=20 or N,Z=40

In both cases the n particles sit in Quasi-SU3 orbits
and the n holes in Pseudo-SU3, or in Quasi-SU3 as
well, thus maximizing their quadrupole moments and,
a fortiori, their quadrupole correlation energy.

Depending on the doings of the monopole field, this
can produce shape coexistence, shape transitions,
shape mixing, islands of inversion etc.
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Typical Values

The maximum single particle q 0’s are 2p ×b2 for SU(3)
and (2p-1/2)×b2 for Quasi-SU(3); p being the principal
HO quantum number E = ~ω(p + 3/2).

The intrinsic quadrupole moment of a normal
deformed (ND) nucleus in the pf -shell ( 48Cr) is about
120 fm2. The deformation β should be 0.3 in this case

For a K=0 band, in the rotational limit,
Q0= –3.5 Qspec(2+) and
Q2

0= 50.2 × B(E2)(2+→0+)

b2 values range from 3.5 fm 2 in 40Ca to 4.5 fm 2 in 72Kr
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Landscape of medium mass exotica
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48Cr a Quasi-SU3 paradigm

Four protons and four neutrons in Quasi-SU3 amount
to Q0= (4×5.5 + 4×2.5 +3)×b2

Which gives about 120 fm 2, with effective charges 1.5
and 0.5

In quite good agreement with experiment and with a
full pf -shell calculation using the KB3G interaction,
even if overshooting the quadrupole moment by 10%

This gives us a first hint of the resilience of the
quadrupole properties to deviations of the spherical
mean field from the ”ideal” SU3 one
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Extreme Shape Coexistence in 40Ca

In the valence space of two major shells

0f5/2
1p1/2
1p3/2
0f7/2

pf -shell
0d3/2
1s1/2
0d5/2

sd -shell
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Spherical, Deformed and Superdeformed states

The relevant configurations in 40Ca are:

[sd] 24 0p-0h, SPHERICAL

[sd] 20 [pf] 4 4p-4h, DEFORMED; Q 0=29 b2

[sd] 16 [pf] 8 8p-8h, SUPERDEFORMED: Q 0=48 b2

The correlation energies go roughly as Q 2
0

Alfredo Poves Shape Coexistence; A Shell Model View



The correlation energies, or why Shapes Coexist
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The valence space adequate for the N=40 isotones
contains all these ingredients as well

2s1/2 2s1/2
1d5/2 1d5/2
0g9/2 0g9/2

0f5/2 0f5/2
1p1/2 1p1/2
1p3/2 1p3/2

0f7/2 0f7/2

Neutrons Protons

For N=Z, 56Ni provides a good core. Approaching N=2Z,
one should rather switch to 48Ca
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Quadrupole dominance in the Quasi + Pseudo SU3
frame

The Quasi + Pseudo SU3 or Quasi + Quasi SU3 scheme
plus the monopole field provide a SM toolkit to locate
deformed structures in the (N, Z, E ∗) landscape as well.

The ground states of the N=Z nuclei between 68Se and
92Pd, (and their neighbors) are dominated by
configurations with np-nh jumps across N=Z=40,
which may produce oblate and prolate shapes, and
hence, sometimes shape related phenomena.

Why? Because the n particles sit in Quasi-SU3 orbits
and the n holes in Pseudo-SU3, thus maximizing their
quadrupole moments and, a fortiori, their quadrupole
correlation energy, which suffices to beat by large the
monopole energy cost of crossing the N=Z=40 gap.
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Intrinsic Quadrupole moments for Pseudo (r3g)
and Quasi-SU3 (gds): prolate states

The most favorable configurations from the quadrupole
point of view are:
72Kr
4p-4h; Q 0= ±60 b2 8p-8h; Q 0= 73 b2 12p-12h; Q 0= 74 b2

76Sr
4p-4h; Q 0= 51 b2 8p-8h; Q 0= 77 b2 12p-12h; Q 0= 79 b2

80Zr
8p-8h; Q 0= 72 b2 12p-12h; Q 0= 83 b2 16p-16h; Q 0= 85 b2
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Monopole vs Quadrupole

We have recently shown that these quadrupole
moments are resilient to departures of the SPE from
their degenerated limit (Zuker et al. PRC 92, 2015)

The key point here is that the quadrupole energy gains
grow with the square of the quadrupole moment
whereas the monopole losses are at most proportional
to the number of particle-hole jumps

In 76Sr and 80Zr the deformed configurations, 8p-8h
and 12p-12h win comfortably. In 72Kr the 4p-4h prolate
and the oblate solutions (oblate meaning (0g 9/2)4

instead of (gds) 4) are degenerated as we shall discuss
next.

From Q 0 one can deduce the B(E2)’s. The 2 +→0+ are
equal to Q 0

2/50.3 and the 4 +→2+ a factor 1.43 larger.
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Comparing with experiment

Using b 2=4.5 fm2 we obtain the following B(E2) values:
72Kr; 2 +→ 0+; 1470 e2fm4; 4+→ 2+; 2100 e2fm4

76Sr; 2+→ 0+; 2380 e2fm4; 4+→ 2+; 3410 e2fm4

80Zr; 2+→ 0+; 2800 e2fm4; 4+→ 2+; 4000 e2fm4

To compare with the available experimental results:
72Kr; 2 +→ 0+; 810(150) e2fm4; 4+→ 2+;
2720(550) e2fm4

76Sr; 2+→ 0+; 2200(270) e2fm4

80Zr; no data yet

Excellent agreement except for the 2 +→ 0+ of 72Kr. But this
is a blessing in disguise because it led us to understand
better the prolate oblate coexistence in this nucleus.
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72Kr, a case of full prolate oblate mixing

It is common lore to speak of prolate-oblate or
prolate-spherical coexistence when an excited 0 + state
appears at very low energy. This is the case in 72Kr,
whose first excited state is a 0 + at 671 keV followed by
a 2+ at 710 keV. The very large B(E2) of the transition
4+→ 2+ strongly suggest that the 2 + belongs to a
prolate band which extends up to J=16 +. But, if so,
where is the band head?

If we follow down the J(J+1) sequence from the upper
part of the band we should expect it 250 keV below the
2+, which is very close to the experimental excitation
energies of the 2 + in 76Sr and 80Kr. Obviously the
distortion must be due to the mixing of the prolate
band-head with a near lying oblate state.
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72Kr, prolate oblate mixing, a (very) simple model

The first element to take into account is that the oblate
and prolate 4p-4h states do not mix directly; i .e.
〈p|H|o〉 = 0
The mixing should then proceed through 2p-2h or
6p-6h states. Lets take these to be represented by an
auxiliary state |I〉, and further assume that it lies at
about ∆E=4 MeV (as our calculations show) and that
its coupling to both prolate and oblate states is equal
to δ. Taking them degenerated for simplicity, the
mixing matrix reads:





0 0 δ

0 0 δ

δ δ ∆E
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72Kr, prolate oblate mixing, a (very) simple model

The mixing can proceed through a cloud of N states,
then the matrix is

















0 0 β β β . . .

0 0 β β β . . .

β β ∆E 0 0 . . .

β β 0 ∆E 0 . . .

β β 0 0 ∆E . . .

. . . . . . . . . . . . . . . . . .

















Which has the same two lowest eigenvalues and
eigenvectors if δ=

√
N β
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72Kr, prolate oblate mixing, a (very) simple model

For δ ∼ 1 MeV, which is a sensible choice, the
eigenvalues are: –0.5 MeV, 0.0 MeV and +4.5 MeV. They
fit nicely the experimental energies.
The eigenstates corresponding to the two lower
eigenvalues are:
|0+

1 〉 = 43% |p〉 + 43% |o〉 + 16% |I〉 and
|0+

2 〉 = 50% |p〉 + 50% |o〉
Therefore, the B(E2)(2 +→ 0+

1 ) will be approximately
one half of the expected value for the prolate band in
full accord with the experimental data

What is the shape of an object which is an even
mixture of prolate and oblate? What is the nature of
this mixing of shapes? Or should we speak of a shape
entangled state?
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Conclusions

Shape coexistence is a consequence of the interplay
between the spherical mean field and the multipole
correlators

In valence spaces comprising two major oscillator
shell LSSM calculations explain shape related
phenomena like coexistence, mixing and
entanglement.
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