# Investigation on the collectivity in the transfermium region

#### Julien Piot

ESNT Workshop November 16th-19th 2015

Advances in experimental and theoretical studies of heavy, very heavy and super-heavy nuclei



#### Knowledge of the transfermium region



#### Spectroscopy at the University of Jyväskylä



#### Recoil Decay Tagging for low cross-sections

Prompt γ-ray spectroscopy Sustain high counting rates Focal Plane Recoiling nuclei identification - tagging Delayed α, γ and e- spectroscopy



### Detection limits for spectroscopy

#### γ-ray spectroscopy requires important statistics

- Cold Fusion
   + Low E\*
  - Neutron deficient nuclei
- Hot Fusion
  - + More nuclei accessible
  - High E\*
- Cross section drops with A
- Analogue electronics is overwhelmed above 20kHz i.e. 100 nb

# Faster electronics required



TNT2-

DIGITAL

![](_page_5_Figure_1.jpeg)

J. Piot et al, Phys. Rev. C 85, 041301

- <sup>208</sup>Pb(<sup>40</sup>Ar,2n) <sup>246</sup>Fm
- Measured cross-section 11 nb
- Experiment ran in dec. 2009 in Jyväskylä on JUROGAM 2 RITU GREAT
- Rotating target
- Full digital electronics for JUROGAM 2
- Record 71 pnA beam on target for prompt spectroscopy

![](_page_6_Figure_1.jpeg)

First evidence of a rotationnal band in <sup>246</sup>Fm

BUT Insufficient statistics  $\Rightarrow$  Enlarge selection

![](_page_7_Figure_1.jpeg)

#### Rotationnal Band up to 16ħ

![](_page_8_Figure_1.jpeg)

![](_page_9_Figure_1.jpeg)

Confirm the spin assignement ?

Missing two transitions ?

lf

![](_page_10_Figure_1.jpeg)

$$\frac{E\gamma}{2} = \hbar\omega$$

$$I = J_1\omega + J_0\omega^3 + 1/2 \mu$$
Fit for I = 4 (4+-2+)  
and I = 2 (2+-0+)

| Transition | Energy (keV) |
|------------|--------------|
| 4+→2+      | 108,5        |
| 2+→0+      | 46,8         |

![](_page_11_Figure_3.jpeg)

![](_page_12_Figure_1.jpeg)

# A difficult nucleus to produce

➡Increase the beam intensity
 Higher heat deposition in the target
 Rotating target
 Increased count rates in HPGe
 Digital ADCs

 $50Ti_{22} + 208Pb_{126} = > 258Rf_{154}(CN) = > 256Rf_{152} + 2n$ 

➡Produce <sup>50</sup>Ti beam

![](_page_13_Picture_3.jpeg)

 $\sigma_{\text{fus-evap}} = 17 \text{ nb}$ 

![](_page_13_Picture_4.jpeg)

TNT2D, IPHC 2006 L. Arnold et al. IEEE TNS 53, 723 (2006) Lyrtech, 2010

![](_page_14_Picture_0.jpeg)

With the 2210 identified  $^{256}$ Rf nuclei... a **R-F-** $\gamma$  selection

![](_page_14_Figure_2.jpeg)

![](_page_15_Figure_0.jpeg)

Characterisation of the rotational band using the Harris method

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

16

# Missing transitions: convertion electrons

| Transition            | Conv. Coef. (Bricc Calc.) |
|-----------------------|---------------------------|
| 4+ → 2+               | 31.5 (15)                 |
| $2 + \rightarrow 0 +$ | 1640 (19)                 |

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

#### Comparison in transfermia region

|   |                   | Z   | N   |  |
|---|-------------------|-----|-----|--|
| - | <sup>256</sup> Rf | 104 | 152 |  |
|   | <sup>254</sup> No | 102 | 152 |  |
|   | <sup>252</sup> No | 102 | 150 |  |
|   | <sup>250</sup> Fm | 100 | 150 |  |

- => in agreement with gaps @ N=152 and Z=100
- => suggest no significant shell gap @ Z=104

P.T. Greenlees, J. Rubert, J. Piot et al. PRL **109** 012501 (2012)

![](_page_17_Figure_5.jpeg)

## Conclusion & Outlook

- A rotational band in 256Rf has been observed
- The data does not support the Z = 104 gap
- There is evidence for isomeric states ...

![](_page_18_Figure_4.jpeg)

H.B. Jeppesen et al. PRC 79, 031303(R) (2009)

A.P. Robinson et al. PRC 83, 064311 (2011)

# Where do we go now ?

• How do we improve these measurements ?

Conversion electrons, Higher selectivity, Better tagging

• What observable can we look for ?

I, Q0, μ, S2n, Mass

• Which nuclei can we access ?

Up to Z=115, more neutron rich

Prompt Spectroscopy of Rf isotopes with AGATA & VAMOS

- Look for prompt excited states in isomeric bands and ground state bands in Rf isotopes
- Consolidate Level schemes for <sup>256,257</sup>Rf
- Search isomeric levels in <sup>254,255</sup>Rf

# Spectroscopy of <sup>256</sup>Rf

![](_page_21_Figure_1.jpeg)

• Evidence for 3 K-isomer

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

# Spectroscopy of <sup>254,255</sup>Rf

- Other N=150 and 151 nuclei show isomers
- Do they exist in <sup>254,255</sup>Rf?
- Is there collective excitation in these nuclei ?

![](_page_22_Figure_4.jpeg)

![](_page_23_Picture_0.jpeg)

- Evidence for 11/2- isomeric state
- Are there others K-isomers ?
- How does the ground state band behave ?

![](_page_23_Figure_4.jpeg)

B. Streicher et al. EPJA 45 (2010) 275

# Experimental Setup

- ♦ Fusion-evaporation <sup>50</sup>Ti on <sup>206,207,208</sup>Pb
- ♦ AGATA + EXOGAM in pulled configuration
- VAMOS in gas-filled mode
- MUSETT modified for isomer tagging
- Beam intensity up to 100 pnA if possible (more likely 70 pnA)
- Rotating target for cooling + Gas cooling if differential pumping is available

## Production

|                                         | $\mathbf{b}_{SF}$ | bα   | $\gamma\text{-}\text{Recoil}$ for 21 UT | $\sigma$ (nb) |
|-----------------------------------------|-------------------|------|-----------------------------------------|---------------|
| $^{208}$ Pb( $^{50}$ Ti,2n) $^{256}$ Rf | 99.7%             | 0.3% | 27000                                   | 17            |
| $^{206}Pb(^{50}Ti,2n)^{254}Rf$          | 100%              | -    | 3811                                    | 2.4           |
| $^{207}Pb(^{50}Ti,2n)^{255}Rf$          | 48%               | 52%  | 20700                                   | 12            |
| $^{208}Pb(^{50}Ti,n)^{257}Rf$           | -                 | 100% | 14850                                   | 10            |

2 weeks of beam time at 100 pnA for each nucleus

# Physics for VHE-SHE with S<sup>3</sup>

- Improve data in the transactinide region
- Decay spectroscopy up to Z=115
- Access I, Q0 and µ through LASER spectroscopy
- Accurate Masses and Separation energies through Penning traps measurements
- Further ?