Stability of V&SHE: fission barrier measurements

Stability of V&SHE: fission barrier measurements

PRL 113, 262505 and beyond...

 \sim

3

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

4

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

6

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

 \sim

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

Stability of V&SHE : fission barrier measurements – Greg Henning (IPHC) – @ Workshop ESNT, November 2015

Fission: noun, from Latin *fissio*, from *findere* 'to split'. Division or splitting into two or more parts.

Stability of V&SHE : fission barrier measurements – Greg Henning (IPHC) – @ Workshop ESNT, November 2015

But: The nucleus is a quantum object!

 \rightarrow Tunneling through the barrier,

Shell effects are present. (Actually: Z protons and N neutrons in Coulomb and nuclear interaction at the quantum scale.)

12

But: The nucleus is a quantum object!

 \rightarrow Tunneling through the barrier,

Shell effects are present. (Actually: Z protons and N neutrons in Coulomb and nuclear interaction at the quantum scale.)

 \rightarrow Calculation of B_f is not that easy...

13

But: The nucleus is a quantum object!

 \rightarrow Tunneling through the barrier,

Shell effects are present. (Actually: Z protons and N neutrons in Coulomb and nuclear interaction at the quantum scale.)

\rightarrow Calculation of B_f is not that easy...

Several frameworks for calculation/determination:

- Microscopic-Macroscopic
- Density functional theory
- Phenomenological determination

B_f and SHE synthesis

${\sf B}_{\!_{\rm f}}$ is a key parameter for the stability of SHE

Yuri Oganessian J. Phys. G: Nucl. Part. Phys. 34 (2007) R165–R242

Study of ²⁵⁴No

Why measure B_f in ²⁵⁴No ?

- Production cross section *large* enough $\rightarrow \sim 1 \mu \text{barns}$
- Several prediction exist:
- Previously: exprimental lower bound limit

 $B_f > 5 \text{ MeV}$

• Shell effect strength is large ($B_{f}^{LD} = 0.9 \text{ MeV}$)

▼ 16

Method: competition Fission/Gamma

P_v from calorimetric measurements :

• Detecting gamma emitted by the ER, vs. E*, I

• E* is the sum of the energies of particle evaporated by the nucleus, ending in its ground state.

 $E^* \approx \sum E_{\gamma}$

 \bullet I is linked to the multiplicity of γ rays emitted

 $I = \sum \delta I_{\gamma} \approx \langle \delta I_{\gamma} \rangle \times M_{\gamma}$

18

P_v from calorimetric measurements :

• Detecting gamma emitted by the ER, vs. E*, I

• E* is the sum of the energies of particle evaporated by the nucleus, ending in its ground state.

 $E^* \approx \sum E_{\gamma}$

 \bullet I is linked to the multiplicity of γ rays emitted

 $I = \sum \delta I_{\gamma} \approx \langle \delta I$

Some knowledge of the level structure needed.

Experimental setup

⁴⁸Ca @ 219, 223 MeV + ²⁰⁸Pb \rightarrow 2n + ²⁵⁴No*

Gammasphere

Fragment Mass Analyzer

Focal plane detectors

- ~ 100 modules (Ge+BGO)
- Detection efficiency:
 - Ge: 10%
 - Ge+BGO: 78%

- High selectivity in m/Q
- Poor transmission (7%)

 Identify the evaporation residues

Data processing: unfolding

Collecting the total energy and multiplicity of emitted γ rays

Emitted

- M γ-rays
- → Total energy E_{sum}

Measured

- → Number of hits k (fold)
- ➔ Total energy H

Data processing: unfolding

Collecting the total energy and multiplicity of emitted γ rays

Emitted

- M γ-rays
- → Total energy E_{sum}

Measured

- → Number of hits k (fold)
- ➔ Total energy H

Calibrate the relation between k and M, H and E

Data processing: unfolding

Detected energy - H, keV

Detected multiplicity (k)

1200

1000

Collecting the total energy and multiplicity of emitted γ rays

- M γ-rays
- → Total energy E_{sum}
- Measured
 - → Number of hits k (fold)
 - ➔ Total energy H

Calibrate the relation between k and M, H and E

Calorimetric Efficiency: H/E = 63 % Detection Efficiency: k/M = 70 %

Stability of V&SHE : fission barrier measurements – Greg Henning (IPHC) – @ Workshop ESNT, November 2015

Using a Statistical unfolding method

Reconstructing emitted distribution Mgamma, Egamma

Reconstructing Entry distribution

 \sim

Reconstructing Entry distribution

 $E_{electrons} = 900 \ keV$

M. Leino et al., Eur. Phys. J. A 6, 63–69 (1999) P. Reiter et al., Phys. Rev. Lett., vol 82 (1999) 509 S. K. Tandel et al., Phys. Rev. Lett. **97**, 082502 (2006) F.P. Heßberger et al., Eur. Phys. J. A 43, 55–66 (2010) R.M. Clark et al., Physics Letters B 690 (2010) 19–24 R.-D. Herzberg et al., Nature 442 (2006) 896

 \sim

 \sim

Stability of V&SHE : fission barrier measurements – Greg Henning (IPHC) – @ Workshop ESNT, November 2015

▼ 32

Tail toward high E* from random summing with reaction background

Maximum E* at a given spin ?

To account for the distribution of formed ER, study with calculation codes :

- NRV,
- KEWPIE2.

Extract relationship between the energy $E_{1/2}$ where $N_v(E^*, I)=1/2$ and $E_{saddle}(I) : \Delta(I)=E_{1/2}-E_{saddle}$

 $\Delta(0\hbar) \approx 1 \, MeV$ $\Delta(20\hbar) \approx 0 \, MeV$

E_{1/2}

Range of interest for the Entry distribution

Where the fission has an impact on the entry distribution

Stability of V&SHE : fission barrier measurements – Greg Henning (IPHC) – @ Workshop ESNT, November 2015

$E_{1/2}$: experiment vs. calculation

$E_{1/2}$: experiment vs. calculation

▼ 38

- Multiple unfoldings to take care of statistical variation in the process,
- For each resulting entry distribution, extract $E_{1/2}$,

40

- Multiple unfolding to take care of statistical variation in the process,
- For each resulting entry distribution, extract $E_{1/2}$

- Multiple unfolding to take care of statistical variation in the process,
- For each resulting entry distribution, extract $E_{1/2}$

$$B_{f}(0) = 6.6 \pm 0.9 \text{ MeV}$$

 $J_{saddle} = 125 \pm 60 \text{ }\hbar^{2}/\text{MeV}$

(corr = 0,95)

Results compared to existing predictions

J.L. Egido, L. M. Robledo, Phys. Rev. Lett. 85, 1198.
J.P. Delaroche et al., Nuclear Physics A 771 (2006) 103.
L. Bonneau, et al., Eur. Phys. J. A 21, 391 (2004).
T. Duguet et al., Nuclear Physics A 679 (2001) 427.
M. Warda and J. L. Egido, Phys. Rev. C 86, 014322. 2012

7 M. Kowal et al., Phys. Rev. C 82, 014303. 8 P. Moller et al., Phys. Rev. C 79, 064304.

10 P. Reiter, et al., Phys. Rev. Lett. 82, 509 (1999). 11 G. Henning et al., Phys. Rev. Lett. 113, 262505

Experimental improvements Data interpretation and theory

Experimental improvements @ ANL

Coming soon...

Digital Gammasphere

- Make use of GRETINA digitizer
- Will allow higher count rate
- \rightarrow resolve difficulties with calorimetry

AGFA

- Argonne Gas Filled Analyzer
- Quadrupole + Dipole
- Short length and large acceptance
- → improve recoil detection efficiency (70% foreseen for ²⁵⁴No)

Experimental improvements elsewhere

S³

- Super Separator Spectrometer
- Good reaction product separation
- Diversity of focal plane instrumentation But... Calorimetry at the target position ?

AGATA or GRETA

- Arrays of Ge crystal with pulse shape analysis and tracking
- May be useful for calorimetry once reaching 4π

PARIS

- Photon Array for studies with Radioactive Ion and Stable beams
- Medium resolution spectroscopy and calorimetry of γ-rays in large energy range
- Aimed at reaction mechanism studies

Your favorite Gamma array and separator ?

- Some energy resolution and detection efficiency required
- Try it!

▼ 45

Interpretation scheme followed in this work:

46

Interpretation scheme followed in this work:

Limitations:

- **x** Formatted data is not an observable (case of B_f).
- X Some assumptions on physics used.

Interpretation scheme: Experimental data is a benchmark of theory

Theory

Experimental data

Interpretation scheme: Experimental data is a benchmark of theory

Experimental data

Stability of V&SHE : fission barrier measurements – Greg Henning (IPHC) – @ Workshop ESNT, November 2015

- Can test many codes, theories with one data set.
- Allow exploration of model parameters, production of uncertainty, covariance data.

Interpretation scheme: Experimental data is a benchmark of theory

Limitations:

- Need precise characterization of setup confidence in simulations. The two schemes are complementary and are simulations. A should wield converging regults.
- x Need code produshould yield converging results,
- Need a measure of (otherwise, something's wrong) simulated data.
- **x** Result dependent on the theory, code used.

Benefits:

- ✓ Takes into account the full physics, event by event.
- Can test many codes, theories with one data set.
- Allow exploration of model parameters, production of uncertainty, covariance data.

Experimental data

✓ Calorimetry experiment allowed the successful extraction of ²⁵⁴No's B_f

✓ $B_f(0)$ = 6,6 ± 0,9 MeV, J_{saddle} = 125 ± 60 ħ²/MeV

Experimental B_f in better agreement with mic-mac prediction than DFT

- Calorimetry experiment allowed the successful extraction of ²⁵⁴No's B_f
- ✓ B_f(0)= 6,6 ± 0,9 MeV, J_{saddle} = 125 ± 60 ħ²/MeV
- Experimental B, in better agreement with mic-mac prediction than DFT

Looking to the future for :

- → Systematic measurement in other nuclei (²⁵⁵Lr, ²⁵³No ?)
- → Benefit from experimental improvements
- \rightarrow Other facilities, setups to perform the measurement
- \rightarrow Improvement in theory, code, data interpretation

58

- Calorimetry experiment allowed the successful extraction of ²⁵⁴No's B_f
- ✓ $B_f(0)$ = 6,6 ± 0,9 MeV, J_{saddle} = 125 ± 60 \hbar^2 /MeV
- Experimental B_f in better agreement with mic-mac prediction than DFT

Looking to the future for :

- → Systematic measurement in other nuclei (²⁵⁵Lr, ²⁵³No ?)
- ➔ Benefit from experimental improvements
- \rightarrow Other facilities, setups to perform the measurement
- \rightarrow Improvement in theory, code, data interpretation
- ? What other measurement can benchmark fission barrier (and other) properties ?
- ? How **accurately** can we measure, predict them ?

Read more:

- → P. Reiter, T. L. Khoo, et al., Phys. Rev. Lett. 84, 3542 (2000).
- → A. Heinz, T. Khoo, P. Reiter, et al., Nucl. Phys. A682, 458 (2001).
- → G. Henning, A. Lopez-Martens, T.L. Khoo, D. Seweryniak et al., EPJ Web of Conferences, 66, 02046 (2014)
- → G. Henning, Ph.D. thesis, Université Paris Sud, 2012.
- → G. Henning, A. Lopez-Martens, T.L. Khoo, D. Seweryniak et al., Phys. Rev. Lett. 113, 262505(2014)

Greg Henning,^{1,2,*} T. L. Khoo,² A. Lopez-Martens,¹ D. Seweryniak,² M. Alcorta,² M. Asai,³ B. B. Back,² P. Bertone,² D. Boilley,^{4,5} M. P. Carpenter,² C. J. Chiara,^{2,6} P. Chowdhury,⁷ B. Gall.⁸ P. T. Greenlees,⁹ G. Gurdal,¹⁰ K. Hauschild,¹ A. Heinz,¹¹ C. R. Hoffman,² R. V. F. Janssens,² A. V. Karpov,¹² B. P. Kay,² F. G. Kondev,² S. Lakshmi,⁷ T. Lauristen,² C. J. Lister,⁷ E. A. McCutchan,² C. Nair,² J. Piot,⁸ D. Potterveld,² P. Reiter,¹³ N. Rowley,¹⁴ A. M. Rogers,² and S. Zhu² ¹CSNSM, IN2P3-CNRS and Université Paris Sud, Bat. 104-108, F-91405 Orsay, France ²Argonne National Laboratory, Argonne, Illinois 60439 ³Advance Science Research Center, Japan Atomic Energy Agency, Tokai, Japan ⁴GANIL, CEA-DSM and IN2P3-CNRS, B.P. 55027, F-14076 Caen Cedex, France ⁵Université de Caen Basse Normandie, Caen, France ⁶University of Maryland, College Park, MD, USA ⁷University of Massachusetts Lowell, Lowell, MA, USA ⁸IPHC, IN2P3-CNRS and Universite Louis Pasteur, F-67037 Strasbourg Cedex 2, France ⁹Departement of Physics, University of Jyväskylä, Jyväskylä, Finland ¹⁰DePaul University, Chicago, IL ¹¹Fundamental Fysik, Chalmers Tekniska Hogskola, 412–96 Goteborg, Sweden 12 Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Moscow Region, Russia 13 Universität zu Köln, Köln, Germany 14 IPN, CNRS/IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex, France

This work is supported by the U.S. Department of Energy, under Contract Nos. DE-AC02-06CH11357, DE-FG02-91ER-40609 and DE-FG02-94ER40848, and by the labex P2IO.

60