

Shell evolution of neutron-deficient Xe₅₄ isotopes: A correlations laboratory above ¹⁰⁰Sn

- Octupole correlations
- Quadrupole correlation vs pairing
- Shape coexistence
- ... almost no cable will be shown but few technical considerations

E.Clément, *GANIL, France*

Shell evolution and collectivity development toward ¹⁰⁰Sn

Ν

Shell evolution and collectivity development toward ¹⁰⁰Sn

Dipole moment and breaking parity

 \Box ¹¹²Ba will correspond to the best octupole N=Z=56 for p and n

→ Enhanced octupole due to the interaction of $d_{5/2}$ and $h_{11/2}$ $\Delta L=3$, $\Delta J=3$, inverse parity

FIG. 4. Nuclear spherical single-particle levels. The most important octupole couplings are indicated.

Odd negative parity state in Xe

3⁻ states dominate by $\pi d_{5/2} \times \nu h_{11/2}$ orbital configuration

Removing neutron from the $h_{11/2}$ orbital gradually decreases the 3⁻ excitation energy and enhances the B(E3) value

Collective octupole motion in such nuclei is strongly influenced by quadrupole softness [*M. P. Metlay Phys. Rev. C* 52, 1801 (1995)]

$$E(3^{-}) = E_0 - \frac{B^2}{E(2_1^{+})}.$$

Shell evolution and collectivity development toward ¹⁰⁰Sn

So far a good harmonic octupole vibrator

E.Clément

laboratoire commun CEA/DSM

Proton-neutron Octupole correlations

G. de Angelis et al., Phys. Lett. B 535 (2002) 93 *J.F. Smith et al., Phys. Lett. B* 523 (2001) 13.

E.Clément

Microscopic calculations Xe-Ba

	¹¹⁴ Xe	¹¹² Xe	¹¹⁸ Ba
$E (3-)_{theo} (MeV) / Exp$	1.84 /1 62	1.99/1.65	2.11
B(E3: 3- \rightarrow 0+) _{theo} W.u.	17.5	19.2	18.7
B(E3: 3- \rightarrow 0+) _{exp} W.u.	77	-	-
Factor 4.5			

The puzzle in the known case ¹¹⁴Xe is that:

• Q2-Q3 does not change at all the B(E3) value even if shape coexistance is observed from the calculations

The large B(E3) might be understood in terms of dynamical coupling of the protonneutron type $\pi(v) d_{5/2} - v(\pi) h_{11/2}$

112
Xe : B(E3:3⁻ $\rightarrow 0^+$) = ??

L.M. Robledo private communication

Let's remember that the $h_{11/2}$ - $d_{5/2}$ octupole in ¹⁴⁶Gd for protons is ~ 30 W.u. nicely reproduced by the GCM HFB calculations!

Shape coexistence beyond ¹⁰⁰Sn

Shape coexistence beyond ¹⁰⁰Sn

□ Separated minima in Xe

 \rightarrow good candidates to study the shape coexistence just beyond ¹⁰⁰Sn

NRS/IN2P3

aboratoire commun CEA/DS

Shape coexistence beyond ¹⁰⁰Sn

Shape coexistence using RIB facilities

Since RIB facilities offers post accelerated beams at 3-5 MeV/A an intensive experimental work is performed on the study of shape coexistence by safe coulomb excitation

 \Box Output experimental values are B(E2), algebric Qs (prolate, oblate), mixing angle, deformation parameter

 \Box « Scanning » the potential energy surface of complex nuclei (that you can not measure) by precisely studying the low lying excited states

□ The GCM method is the good approach to reproduce such nuclei

Shape coexistence in Xe isotopes (¹¹⁸Xe case)

Odd negative parity state in Xe --

laboratoire commun CEA/DSM SPIG 2 CNR5/IN2P3

E.Clément Novembre 2011

Challenging analysis ... but may help to establish 3⁻ states

Shape coexistence in Xe isotopes (¹¹⁸Xe case)

Can we produce them ?

✤Few 10⁴ pps at the coulomb barrier for the Xe+Pt system

As coulex cross section are $Z_p^*Z_t$; probabilities are very high and difficult state (3⁻) can be populated

Approaching ¹⁰⁸Xe ?

50

60

70

Ν

80

QRPA (Pairing + Quadrupole Hamiltonian)

Delion et al, Phys. Rev. C 82, 024307 (2010)

 $\Box Q \text{ driven } : \text{Decrease } 2^+ \text{ and increase } B(E2)$ $\Box \Delta_{pn} \text{ driven } : \text{Decrease } 2^+ \text{ and } B(E2)$

 \Box No need for strong np isoscalar pairing & depletion of the ¹⁰⁰Sn core.

Calculated J=0 T=1 and J=1 T=0 pairs are small

 \Box 20% increase of quadrupole collectivity when including a 1p-1h excitation for ¹¹²Xe.

 \Box Low B(E2, 2⁺ \rightarrow 0⁺) predicted for ¹¹²Xe

¹⁰⁰Sn core breaking or confirmations of the contribution of the pairing are based on theoretical calculations supported by known spectroscopic experimental data: in the present situation, only excitation energies.

 \rightarrow B(E2) that will be experimental challenge reliable ?

Experimental details

□⁵⁸Ni(⁵⁸Ni,2p2n)¹¹²Xe at 250 MeV

 \Box ¹¹²Te(4p), ¹⁰⁹Sb(a3p), ¹¹³I(3p) and ¹¹⁰Te(a2p) which constitute respectively 46%, 16%, 12% and 10% of the reaction products \rightarrow selection by the NWALL

 \Box Plunger measurement using a Stopper foil and $\gamma - \gamma - \nu$ coincidences ; Ni Target and Au Stopper

□ Reference paper : J.F. Smith et al, Phys. Lett. B 523, 13 (2001)

□ NWALL+DIAMANT AGATA + 10 days experiment (20pnA) = $300 \times$ GS- NE213 (safely) in γ^2

□According to the SM, the 2+ should have a T1/2 of [20- 70 ps] □The 4^+ should have a T1/2 in the range of 3ps.

 \Box Extend to g-factor ? \rightarrow Theory inputs ?

Why to go to 110Xe ? Enhancement of the pairing, octupole correlations?

G. de Angelis et al., Phys. Lett. B 535 (2002) 93 *J.F. Smith et al., Phys. Lett. B* 523 (2001) 13.

Spectroscopy of ¹¹⁰Xe

 \Box ⁵⁸Ni(⁵⁴Fe,2n)¹¹⁰Xe channel with a beam energy of 195 MeV.

 \Box α -emitter, selection by the VAMOS gas-filled, selection of α - α -mother decay

 \Box trying to improve the spectroscopy applying $\gamma\gamma$ coincidences using the AGATA array placed in the backward angle coupled to EXOGAM2 detectors at 90°. In this configuration angular distribution and polarization measurements could be performed

 \Box VAMOS \approx RITU in that case

 \Box Total fusion cross section ~250 mb + 5pnA (RITU run) + VAMOS acceptance = 8.10⁴ pps in MUSETT !!

 \rightarrow limited by the VAMOS angular acceptance ?

Technical considerations

Technical considerations

Technical considerations

E. Farnea et al. Nuclear Instruments and Methods in Physics Research A 621 (2010) 331–343

Fig. 10. Photopeak efficiency (top) and peak-to-total ratio (bottom) of the AGATA 1π Array for 1 MeV photons emitted from a point source at rest.

AGATA@GANIL is a lifetime measurement factory !

AGATA@GANIL is a lifetime measurement factory !

Summary

The Xe isotopic chain structure evolution includes at low excitation energy

Octupole correlations Shape coexistence pn pairing

Experimental data exist but theories do not reproduce some featuring

What's going on with the octupole correlation?

Can we say something about the T=0 pairing ? From which observable ? direct experimental prove looks difficult; we rely on calculations

Next experimental improvements are major steps : we need to be careful in proposed numbers