Mean-field-based tools for the description of excited states of heavy nuclei

Michael Bender

Université Bordeaux 1; CNRS/IN2P3; Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR5797
Chemin du Solarium, BP120, 33175 Gradignan, France

Workshop on
Advances in experimental and theoretical studies of heavy, very heavy and super-heavy nuclei

Espace de Structure et de réactions Nucléaires Théorique
Saclay, 16-19 November 2015

Today's standards

Effective interactions

- Gogny: finite-range Gaussian central force + contact density dependence + contact spin-orbit interaction
- Skyrme: contact central interaction with gradients + contact density dependence + contact spin-orbit interaction
- Relativistic mean field (aka covariant DFT):
- relativistic Hartree models with "finite-range mesons"
- relativistic point-coupling Hartree models
- relativistic Hartree-Fock models with "finite-range mesons"

Mean-field-based models - Ongoing research

Construction of better effective interactions

- construction of better parameterizations of existing forms
- construction of new forms of the nuclear EDF
- recognition of formal constraints on the form of the nuclear EDF

Better modeling of the nuclear "wave function"

- towards symmetry-unrestricted mean-field calculations
- explicit treatment of correlation effects

Description of excited states

- single-particle excitations \Rightarrow blocked HFB
- rotational bands \Rightarrow cranked HFB
- small-amplitude shape vibrations \Rightarrow Random Phase Approximation (RPA)
- large-amplitude shape vibrations \Rightarrow Generator Coordinate Method (GCM)
- shape coexistence \Rightarrow Generator Coordinate Method

Symmetry considerations

- quasiparticle excitations (and odd- and odd-odd nuclei in general) \Leftrightarrow broken time-reversal symmetry
- rotating nuclei ("cranking") \Leftrightarrow broken time-reversal symmetry
- collectively rotating nuclei ("cranking") \Leftrightarrow broken axial symmetry
- octupole correlations \Leftrightarrow broken parity
- rotating quasiparticle excitations \Leftrightarrow broken signature symmetry

Up to now, very few calculations combine broken time-reversal symmetry and broken parity, or broken signature in addition to broken time-reversal symmetry.

Indicators of (deformed) shell structure

Mass differences

140144148152156160164168172176180184 Neutron Number N
M. B. and Heenen, to be published

Spectra of bandheads
in odd-mass nuclei

M. B. and Heenen, J. Phys. Conf. Ser. 420 (2013) 012002

FIG. 3 (color online). (a) Dynamical moment of inertia of the observed rotational band compared to the experimental results obtained in neighboring even-even nuclei. (b) Comparison with the theoretical dynamical moment of inertia, where empty (solid) symbols correspond to a negative (positive) signature.

FIG. 4. Schematic decay pattern for the three configuration candidates. The number labeling the state corresponds to the ratio $T(M 1) / T(E 2)$.
(transition rates estimated using Bohr-Mottelson-type approximation)

Kinematical moment of inertia

$$
J^{(1)} \equiv \frac{\left\langle\hat{J}_{\perp}\right\rangle}{\omega_{\perp}}
$$

evaluated at $\hbar \omega_{\perp}=20 \mathrm{keV}$.

Dobaczewski, Afanasjev, M. B., Robledo, Shi, arXiv:1504.03245

144146148150152154156144146148150152154156144146148150152154156 Neutron number N

One-quasiparticle states (bandheads) in ${ }^{249} \mathrm{Bk}$ and ${ }^{251} \mathrm{Cf}$

- intruder levels ($\nu 11 / 2$ [725] and $\pi 7 / 2[633]$) misplaced in the spectrum (which can be partially cured with local readjustment of the spin-orbit interaction, [Shi, Dobaczewski, Greenlees, PRC 89 (2014) 034309]), but that's not the only problem.

One-quasiparticle states (bandheads) in the $Z=99$ chain

Dobaczewski, Afanasjev, M. B., Robledo, Shi, arXiv:1504.03245

One-quasiparticle states (bandheads) in the $N=151$ chain

Dobaczewski, Afanasjev, M. B., Robledo, Shi, arXiv:1504.03245

Scaling with effective mass?

Washiyama, Bennaceur, Avez, M. B., Heenen, Hellemans, PRC 86 (2012) 054309

Nilsson diagrams of ${ }^{254}$ No obtained with Skyrme, Gogny, RMF

protons

neutrons

Parameterization sensitivity: the example of ${ }^{250} \mathrm{Fm}$

- Nilsson diagram of protons (top) and neutrons (bottom) going from spherical shape (left) to the prolate deformed ground state (right)
- different colours indicate different mean values of j_{z}
- compare bunching of levels, not the details.

Evolution of deformed shells with SLy4

M. B. and Heenen, to be published

Evolution of deformed shells with SLy4

M. B. and Heenen, to be published

Construction of better parameterizations

- better local control of single-particle structure possible,

Shi, Dobaczewski, Greenlees, PRC 89 (2014) 034309
but better global control of single-particle structure is difficult
Lesinski, M. B., Bennaceur, Duguet, Meyer, PRC 76 (2007) 014312
M. B., Bennaceur, Duguet, Heenen, Lesinski, Meyer, PRC 80 (2009) 064302

Kortelainen, Dobaczewski, Mizuyama, Toivanen, PRC 77 (2008) 064307
Kortelainen, McDonnell, Nazarewicz, Olsen, Reinhard, Sarich, Schunck, Wild, Davesne, Erler, Pastore, PRC 89 (2014) 054314

- better control of surface properties Kortelainen, McDonnell, Nazarewicz, Reinhard, Sarich, Schunck, Stoitsov, Wild, PRC 85 (2012) 024304 Jodon, Bennaceur, Meyer, M. B., in preparation.
- better control of symmetry energy

Li, Ramos, Verde, Vidaña [edts], Topical Issue on "Nuclear Symmetry Energy", EPJA 50 (2014)

- better control of response properties
- suppression of spurious instabilities

Pastore, Davesne, Bennaceur, Meyer, Hellemans, Phys Scr T154 (2013) 014014

Construction of new forms of effective interactions

- Skyrme-type interactions with higher-order terms in derivatives

Carlsson, Dobaczewski, Kortelainen, PRC 78 (2008) 044326
Raimondi, Carlsson, Dobaczewski, PRC 83 (2011) 054311
Davesne, Pastore, Navarro, JPG 40 (2013) 095104
Becker, Davesne, Meyer, Pastore, Navarro, JPG 42 (2015) 034001

- Skyrme-type interactions with explicit three-body interactions

Sadoudi, thèse, Université de Paris-Sud XI (2011)
Sadoudi, M. B., Bennaceur, Davesne, Jodon, Duguet, Phys Scr T154 (2013) 014013
Sadoudi, Duguet, Meyer, M. B., PRC 88 (2013) 064326

- finite-range density dependences

Chappert, thèse, Université de Paris-Sud XI (2007)
Chappert, Pillet, Girod, Berger, PRC 91 (2015) 034312

- regularised contact interactions (combining Gaussians à la Gogny with gradients à la Skyrme)

Raimondi, Bennaceur, Dobaczewski, JPG 41 (2014) 055112

- non-local three-body forces simulating density dependences Gezerlis, Bertsch, PRL 105 (2010) 212501

Lacroix, Bennaceur, PRC 91 (2015) 011302(R)

Construction of new forms of effective interactions

- Skyrme-type interactions with higher-order terms in derivatives

Carlsson, Dobaczewski, Kortelainen, PRC 78 (2008) 044326
Raimondi, Carlsson, Dobaczewski, PRC 83 (2011) 054311
Davesne, Pastore, Navarro, JPG 40 (2013) 095104
Becker, Davesne, Meyer, Pastore, Navarro, JPG 42 (2015) 034001

- Skyrme-type interactions with explicit three-body interactions

Sadoudi, thèse, Université de Paris-Sud XI (2011)
Sadoudi, M. B., Bennaceur, Davesne, Jodon, Duguet, Phys Scr T154 (2013) 014013
Sadoudi, Duguet, Meyer, M. B., PRC 88 (2013) 064326

- finite-range density dependences

Chappert, thèse, Université de Paris-Sud XI (2007)
Chappert, Pillet, Girod, Berger, PRC 91 (2015) 034312

- regularised contact interactions (combining Gaussians à la Gogny with gradients à la Skyrme)

Raimondi, Bennaceur, Dobaczewski, JPG 41 (2014) 055112

- non-local three-body forces simulating density dependences Gezerlis, Bertsch, PRL 105 (2010) 212501

Lacroix, Bennaceur, PRC 91 (2015) 011302(R)

- or try a different strategy: explicit in-medium correlations from MBPT

Going beyond the mean field: Symmetry restoration

particle-number projector
rotation in gauge space

$$
\hat{P}_{N_{0}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi_{N} \underbrace{e^{-i \phi_{N} N_{0}}}_{\text {weight }} \overbrace{e^{i \phi_{N} \hat{N}}}
$$

angular-momentum restoration operator
rotation in real space

$$
\hat{P}_{M K}^{J}=\frac{2 J+1}{16 \pi^{2}} \int_{0}^{4 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{2 \pi} d \gamma \underbrace{\mathcal{D}_{M K}^{* J}(\alpha, \beta, \gamma)}_{\text {Wigner function }} \stackrel{\overbrace{}}{\hat{R}(\alpha, \beta, \gamma)}
$$

K is the z component of angular momentum in the body-fixed frame.
Projected states are given by

$$
|J M q\rangle=\sum_{K=-J}^{+J} f_{J}(K) \hat{P}_{M K}^{J} \hat{P}^{Z} \hat{P}^{N}|\mathrm{MF}(q)\rangle=\sum_{K=-J}^{+J} f_{J}(K)|J M(q K)\rangle
$$

$f_{J}(K)$ is the weight of the component K and determined variationally
Axial symmetry (with the z axis as symmetry axis) allows to perform the α and γ integrations analytically, while the sum over K collapses, $f_{J}(K) \sim \delta_{K 0}$

Configuration mixing by the symmetry-restored Generator Coordinate Method

Superposition of projected self-consistent mean-field states $|\mathrm{MF}(\mathbf{q})\rangle$ differing in a set of collective and single-particle coordinates \mathbf{q}

$$
|N Z J M \nu\rangle=\sum_{\mathbf{q}} \sum_{K=-J}^{+J} f_{J, \kappa}^{N Z}(\mathbf{q}, K) \hat{P}_{M K}^{J} \hat{P}^{Z} \hat{P}^{N}|\mathrm{MF}(\mathbf{q})\rangle=\sum_{\mathbf{q}} \sum_{K=-J}^{+J} f_{J \nu}^{N Z}(\mathbf{q}, K)|N Z J M(\mathbf{q} K)\rangle
$$

with weights $f_{J \nu}^{N Z}(\mathbf{q}, K)$.

$$
\begin{aligned}
& \frac{\delta}{\delta f_{J \nu}^{*}(\mathbf{q}, K)} \frac{\langle N Z J M \nu| \hat{H}|N Z J M \nu\rangle}{\langle N Z J M \nu \mid N Z J M \nu\rangle}=0 \Rightarrow \text { Hill-Wheeler-Griffin equation } \\
& \sum_{\mathbf{q}^{\prime}} \sum_{K^{\prime}=-J}^{+J}\left[\mathcal{H}_{J}^{N Z}\left(\mathbf{q} K, \mathbf{q}^{\prime} K^{\prime}\right)-E_{J, \nu}^{N Z} \mathcal{I}_{J}^{N Z}\left(\mathbf{q} K, \mathbf{q}^{\prime} K^{\prime}\right)\right] f_{J, \nu}^{N Z}\left(\mathbf{q}^{\prime} K^{\prime}\right)=0
\end{aligned}
$$

with

$$
\begin{array}{ll}
\mathcal{H}_{J}\left(\mathbf{q} K, \mathbf{q}^{\prime} K^{\prime}\right)=\langle N Z J M \mathbf{q} K| \hat{H}\left|N Z J M \mathbf{q}^{\prime} K^{\prime}\right\rangle & \text { energy kernel } \\
\mathcal{I}_{J}\left(\mathbf{q} K, \mathbf{q}^{\prime} K^{\prime}\right)=\left\langle N Z J M \mathbf{q} K \mid N Z J M \mathbf{q}^{\prime} K^{\prime}\right\rangle & \text { norm kernel }
\end{array}
$$

Angular-momentum projected GCM gives the

- correlated ground state for each value of J
- spectrum of excited states for each J

Configuration mixing via the projected Generator Coordinate Method

M. B., Bonche, Duguet, Heenen, PRC 69 (2004) 064303

Spectroscopy from MR EDF

M. B., Bonche, Duguet, Heenen, PRC 69 (2004) 064303

Spectroscopy from MR EDF

M. B., Bonche, Duguet, Heenen, PRC 69 (2004) 064303

Spectroscopy from MR EDF

M. B., Bonche, Duguet, Heenen, PRC 69 (2004) 064303

Attention: $g_{i}^{2}(q)$ is not the probability to find a mean-field state with intrinsic deformation q in the collective state

Spectroscopy from MR EDF

M. B., Bonche, Duguet, Heenen, PRC 69 (2004) 064303

Attention: $g_{i}^{2}(q)$ is not the probability to find a mean-field state with intrinsic deformation q in the collective state

Other collective degrees of freedom: Octupole deformation

V. Hellemans, M. B., P.-H. Heenen, to be published?

- Skyrme SLy5
- axial Slater determinants (no pairing).
- J and parity projection

Breaking pairs: MR calculations with angular-momentum-optimized states

breaking time-reversal invariance of the reference states

- one or several broken pairs: states with seniority $\neq 0$ (and usually $J \neq 0$) in even-even nuclei, K-isomers
- one non-paired nucleon: odd- A nuclei
- two non-paired nucleons of different kinds: odd-odd nuclei
- disturbed pairs: angular-momentum optimized collectively rotating states (self-consistent cranking): alignment of single-particle states with the rotation axis and the weakening of pairing with increasing J

$$
\hat{H} \rightarrow \hat{H}-\boldsymbol{\omega} \cdot \hat{\jmath}
$$

\Rightarrow explicit coupling of single-particle states to collective motion

A word of caution before

- pure particle-number projection

M. B., T. Duguet, and D. Lacroix Phys. Rev. C 79 (2009) 044319

A word of caution before

- pure particle-number projection
- first hints from Hamiltonian-based approaches in the form of failure of approximations: Dönau, PRC 58 (1998) 872; Almehed, Frauendorf, Dönau, PRC 63 (2001) 044311.
- analysis in density-dependent-Hamiltonian-based approach: Anguiano, Egido, Robledo NPA696 (2001) 467
- First analysis in a strict energy density functional (EDF) framework and of EDF-specific consequences by Dobaczewski, Stoitsov, Nazarewicz, Reinhard, PRC 76 (2007) 054315
- Further analysis of the EDF case by Lacroix, Duguet, M. B., PRC 79 (2009) 044318; M. B., Duguet, Lacroix, PRC 79 (2009) 044319; Duguet, M. B., Bennaceur, Lacroix, Lesinski, PRC 79 (2009) 044320; M. B., Avez, Bally, Duguet, Heenen, Lacroix, still in preparation

The origin of the problem in a nutshell

- All standard energy density functionals (EDF) used for mean-field models and beyond do not correspond to the expectation value of a Hamiltonian for at least one of the following reasons:
- density dependences
- the use of different effective interactions in the particle-hole and pairing parts of the energy functional
- the omission, approximation or modification of specific exchange terms that are all introduced for phenomenological reasons and/or the sake of numerical efficiency.
- consequence: breaking of the exchange symmetry ("Pauli principle") under particle exchange when calculating the energy, leading to non-physical interactions of a given nucleon or pair of nucleons with itself, or of three nucleons among themselves etc.
- the resulting self-interactions and self-pairing-interactions remain (usually) hidden in the mean field
- in the extension to symmetry-restored GCM, these terms cause
- discontinuities and divergences in symmetry-restored energy surfaces
- breaking of sum rules in symmetry restoration
- potentially multi-valued EDF in case of standard density-dependences

Symmetry-restored GCM with Hamiltonians

First try: SLyMR0

$$
\begin{aligned}
\hat{v} & =t_{0}\left(1+x_{0} \hat{P}_{\sigma}\right) \hat{\delta}_{r_{1} r_{2}} \\
& +\frac{t_{1}}{2}\left(1+x_{1} \hat{P}_{\sigma}\right)\left(\hat{\mathbf{k}}_{12}^{\prime 2} \hat{\delta}_{r_{1} r_{2}}+\hat{\delta}_{r_{1} r_{2}} \hat{\mathbf{k}}_{12}^{2}\right) \\
& +t_{2}\left(1+x_{2} \hat{P}_{\sigma}\right) \hat{\mathbf{k}}_{12}^{\prime} \cdot \hat{\delta}_{r_{1} r_{2}} \hat{\mathbf{k}}_{12} \\
& +\mathrm{i} W_{0}\left(\hat{\boldsymbol{\sigma}}_{1}+\hat{\boldsymbol{\sigma}}_{2}\right) \cdot \hat{\mathbf{k}}_{12}^{\prime} \times \hat{\delta}_{r_{1} r_{2}} \hat{\mathbf{k}}_{12} \\
& +u_{0}\left(\hat{\delta}_{r_{1} r_{3}}{\hat{r_{2} r_{3}}}+\hat{\delta}_{r_{3} r_{2}}{\hat{r_{1} r_{2}}}+\hat{\delta}_{r_{2} r_{1}} \hat{\delta}_{r_{3} r_{1}}\right) \\
& +v_{0}\left(\hat{\delta}_{r_{1} r_{3}} \hat{\delta}_{r_{2} r_{3}} \hat{\delta}_{r_{3} r_{4}}+\hat{\delta}_{r_{1} r_{2}} \hat{\delta}_{r_{3} r_{2}} \hat{\delta}_{r_{2} r_{4}}+\cdots\right)
\end{aligned}
$$

Sadoudi, M. B., Bennaceur, Davesne, Jodon, Duguet, Physica Scripta T154 (2013) 014013

Fun with SLyMRO $-{ }^{25} \mathrm{Mg}$

Angular-momentum and particle-number projected GCM of blocked triaxial one-quasiparticle states

B. Bally, doctoral thesis, Université de Bordeaux (2014)

Bally, Avez, M. B., Heenen, PRL 113 (2014) 162501

First "beyond-mean-field" results for odd- A nuclei with SLyMR0

- spectroscopic quadrupole moment Q_{s} of the $5 / 2^{+}$ground state:
Exp: 20.1 ± 0.3 e fm ${ }^{2}$
Calc: 23.25 e fm${ }^{2}$
- magnetic moment μ of the $5 / 2^{+}$ ground state in nuclear magnetons:
Exp: -0.855
Calc: -1.054

Bally, Avez, M. B., Heenen, PRL 113 (2014) 162501
Data from Nuclear Data Sheets 110 (2009) 1691

Fun with SLyMRO $-{ }^{46} \mathrm{Ca}$

Left: Non-projected total energy of the HFB vacua (without LN correction) relative to the spherical configuration. Middle: $N=26, Z=20$ projected total energy of the HFB vacua relative to the spherical configuration. Right: Energy of the projected $N=26, Z=20$, $J=0 \mathrm{HFB}$ vacua.

Fun with SLyMRO - ${ }^{46} \mathrm{Ca}$

Top row: Right: Energy of the $J=0$ HFB vacua. Middle: Energy of the lowest K-mixed $J=2$ projected state . Right: Energy of the second K-mixed $J=2$ state . Bottom row: Right: Energy of the $J=3$ state. Middle: Energy of the lowest K-mixed $J=4$ projected state. Right: Energy of the second K-mixed $J=4$ state. The total energy is relative to the minimum of the $J=0$ energy surface. All states are projected on $N=26, Z=20$,

Fun with SLyMR0 - ${ }^{46} \mathrm{Ca}$

Nilsson diagram along the path indicated by cyan dots. Vertical bars indicate the deformation of the minima.

Nilsson diagram for a closed path through indicated by yellow dots.

Fun with SLyMRO - ${ }^{46} \mathrm{Ca}$

Lowest eigenstates of the Hamiltonian for $J=0$.

Fun with SLyMR0 - ${ }^{46} \mathrm{Ca}$

- There is a sequence of "seniority-2" states with $J^{\pi}=2^{+}, 4^{+}, 6^{+}$that in the shell-model is easily obtained by coupling two neutron holes in the $1 f_{7 / 2^{-}}$ shell to these angular momenta.
- These are non-collective; hence, cannot be described by "traditional" GCM.
M. B.\& P.-H. Heenen to be published

Fun with SLyMR0 and diabatic states $-{ }^{46} \mathrm{Ca}$

seniority 0

$N, Z, J=0$ projected $\quad N, Z, J=6$ projected

seniority 2 , lowest $N, Z, J=6$ projected

M. B. \& P.-H. Heenen to be published

Fun with SLyMR0 and diabatic states $-{ }^{46} \mathrm{Ca}$

Mean-field-based tools for the description of heavy nuclei

Ongoing improvements: 3-body terms of 2nd order in gradients

- the most general central Skyrme-type 3-body force up to 2nd order in gradients has been constructed by J. Sadoudi with a dedicated formal algebra code

$$
\begin{aligned}
\hat{v}_{123} & =u_{0}\left(\hat{\delta}_{r_{1} r_{3}} \hat{\delta}_{r_{2} r_{3}}+\hat{\delta}_{r_{3} r_{2}} \hat{\delta}_{r_{1} r_{2}}+\hat{\delta}_{r_{2} r_{1}} \hat{\delta}_{r_{3} r_{1}}\right) \\
& +\frac{u_{1}}{2}\left[1+y_{1} P_{12}^{\sigma}\right]\left(\hat{\mathbf{k}}_{12} \cdot \hat{\mathbf{k}}_{12}+\hat{\mathbf{k}}_{12}^{\prime} \cdot \hat{\mathbf{k}}_{12}^{\prime}\right) \hat{\delta}_{r_{1} r_{3}} \hat{\delta}_{r_{2} r_{3}} \\
& +\frac{u_{1}}{2}\left[1+y_{1} P_{31}^{\sigma}\right]\left(\hat{\mathbf{k}}_{31} \cdot \hat{\mathbf{k}}_{31}+\hat{\mathbf{k}}_{31}^{\prime} \cdot \hat{\mathbf{k}}_{31}^{\prime}\right) \hat{\delta}_{r_{3} r_{2}} \hat{\delta}_{r_{1} r_{2}} \\
& +\frac{u_{1}}{2}\left[1+y_{1} P_{23}^{\sigma}\right]\left(\hat{\mathbf{k}}_{23} \cdot \hat{\mathbf{k}}_{23}+\hat{\mathbf{k}}_{23}^{\prime} \cdot \hat{\mathbf{k}}_{23}^{\prime}\right) \hat{\delta}_{r_{2} r_{1}} \hat{\delta}_{r_{3} r_{1}} \\
& +u_{2}\left[1+y_{21} P_{12}^{\sigma}+y_{22}\left(P_{13}^{\sigma}+P_{23}^{\sigma}\right)\right]\left(\hat{\mathbf{k}}_{12} \cdot \hat{\mathbf{k}}_{12}^{\prime}\right) \hat{\delta}_{r_{1} r_{3}} \hat{\delta}_{r_{2} r_{3}} \\
& +u_{2}\left[1+y_{21} P_{31}^{\sigma}+y_{22}\left(P_{32}^{\sigma}+P_{12}^{\sigma}\right)\right]\left(\hat{\mathbf{k}}_{31} \cdot \hat{\mathbf{k}}_{31}^{\prime}\right) \hat{\delta}_{r_{3} r_{2}} \hat{\delta}_{r_{1} r_{2}} \\
& +u_{2}\left[1+y_{21} P_{23}^{\sigma}+y_{22}\left(P_{21}^{\sigma}+P_{31}^{\sigma}\right)\right]\left(\hat{\mathbf{k}}_{23} \cdot \hat{\mathbf{k}}_{23}^{\prime}\right) \hat{\delta}_{r_{2} r_{1}} \hat{\delta}_{r_{3} r_{1}}
\end{aligned}
$$

Sadoudi, Duguet, Meyer, M. B., PRC 88 (2013) 064326

- parameter fit is underway, leads to significantly improved phenomenology

Take-away messages

- Many efforts underway to improve the description of excited states in mean-field-based models
- construction of more general (less symmetry restricted) configurations
- improved parameterizations (better fits)
- improved effective interactions (additional terms)
- projection on good quantum numbers restores selection rules for transitions
- configuration mixing (different shapes, different qp configurations, ...)

Pertinent ingredients for MR-EDF calculations

B. Bally*
CEA Saclay - ESNT, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France

M. Bender ${ }^{\dagger}$

Université de Bordeaux, Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan, France and CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan, France

T. Duguet ${ }^{\ddagger}$

CEA Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium and National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Workshop of the Espace de Structure et de réactions Nucléaires Théoriques
to be held here at hopefully happier times in 2016

Acknowledgements

The work presented here would have been impossible without my collaborators founding fathers
Paul Bonche SPhT, CEA Saclay
Hubert Flocard
Paul-Henri Heenen
CSNSM Orsay
analysis of formal aspects
Thomas Duguet
Irfu/CEA Saclay \& KU Leuven \& NSCL/MSU
Denis Lacroix
code development and benchmarking
Benoît Avez
CEN Bordeaux Gradignan
Benjamin Bally CEN Bordeaux Gradignan, now SPhN, CEA Saclay
Veerle Hellemans
Université Libre de Bruxelles
development and benchmarking of new functionals
Karim Bennaceur
Dany Davesne
IPN Lyon \& Jyväskylä
Robin Jodon
IPN Lyon
Jacques Meyer
IPN Lyon
Alessandro Pastore Jeremy Sadoudi
Kouhei Washiyama
formerly IPN Lyon, now University of York
Irfu/CEA Saclay first, then CEN Bordeaux Gradignan
Université Libre de Bruxelles
color code: active (past) member of the collaboration

