Fock-space multi-reference coupled cluster method

Monika Musiał

University of Silesia Institute of Chemistry Katowice, Poland

Workshop of the *Espace de Structure Nucleaire Theorique* CEA Saclay, France

- Coupled cluster (CC) method: exponential Ansatz
- Multireference (MR) approach: basic definitions (model space, wave operator, effective Hamiltonian)
- Exponential form of the MR wave operator = multireference coupled cluster (MRCC) method
- Fock space (FS) realization of the MRCC theory:
 - a) sector structure of the model space
 - b) amplitude equations for the particular
 - sectors
 - crucial point: iterative solving of the FS-MRCC equations
- Fundamental drawback of the standard FS-MRCC approach: diverging solutions

- Coupled cluster (CC) method: exponential Ansatz
- Multireference (MR) approach: basic definitions (model space, wave operator, effective Hamiltonian)
- Exponential form of the MR wave operator = multireference coupled cluster (MRCC) method
- Fock space (FS) realization of the MRCC theory:
 - a) sector structure of the model space
 - b) amplitude equations for the particular
 - sectors
 - crucial point: iterative solving of the FS-MRCC equations
- Fundamental drawback of the standard FS-MRCC approach: diverging solutions

- Coupled cluster (CC) method: exponential Ansatz
- Multireference (MR) approach: basic definitions (model space, wave operator, effective Hamiltonian)
- Exponential form of the MR wave operator = multireference coupled cluster (MRCC) method
- Fock space (FS) realization of the MRCC theory:
 - a) sector structure of the model space
 - b) amplitude equations for the particular
 - sectors
 - crucial point: iterative solving of the FS-MRCC equations
- Fundamental drawback of the standard FS-MRCC approach: diverging solutions

- Coupled cluster (CC) method: exponential Ansatz
- Multireference (MR) approach: basic definitions (model space, wave operator, effective Hamiltonian)
- Exponential form of the MR wave operator = multireference coupled cluster (MRCC) method
- Fock space (FS) realization of the MRCC theory:
 - a) sector structure of the model space
 - amplitude equations for the particular sectors
 - c) crucial point: iterative solving of the FS-MRCC equations
- Fundamental drawback of the standard FS-MRCC approach: diverging solutions

- Coupled cluster (CC) method: exponential Ansatz
- Multireference (MR) approach: basic definitions (model space, wave operator, effective Hamiltonian)
- Exponential form of the MR wave operator = multireference coupled cluster (MRCC) method
- Fock space (FS) realization of the MRCC theory:
 - a) sector structure of the model space
 - b) amplitude equations for the particular sectors
 - c) crucial point: iterative solving of the FS-MRCC equations
- Fundamental drawback of the standard FS-MRCC approach: diverging solutions

- Remedy: replacement of the iterative scheme with the diagonalization of the intermediate Hamiltonian (IH) matrix
- Construction of the IH matrix via canonical Bloch equation (CBE)
- Wide range of applications of the FS-MRCC approach in the IH formalism:
 - potential energy curves
 - excitation energies
 - ionization potentials
 - electron affinities
- IH-FS-MRCC as a useful tool in theoretical spectroscopy
- Conclusions

- Remedy: replacement of the iterative scheme with the diagonalization of the intermediate Hamiltonian (IH) matrix
- Construction of the IH matrix via canonical Bloch equation (CBE)
- Wide range of applications of the FS-MRCC approach in the IH formalism:
 - potential energy curves
 - excitation energies
 - ionization potentials
 - electron affinities
- IH-FS-MRCC as a useful tool in theoretical spectroscopy
- Conclusions

- Remedy: replacement of the iterative scheme with the diagonalization of the intermediate Hamiltonian (IH) matrix
- Construction of the IH matrix via canonical Bloch equation (CBE)
- Wide range of applications of the FS-MRCC approach in the IH formalism:
 - potential energy curves
 - excitation energies
 - ionization potentials
 - electron affinities
- IH-FS-MRCC as a useful tool in theoretical spectroscopy
- Conclusions

- Remedy: replacement of the iterative scheme with the diagonalization of the intermediate Hamiltonian (IH) matrix
- Construction of the IH matrix via canonical Bloch equation (CBE)
- Wide range of applications of the FS-MRCC approach in the IH formalism:
 - potential energy curves
 - excitation energies
 - ionization potentials
 - electron affinities
- IH-FS-MRCC as a useful tool in theoretical spectroscopy
- Conclusions

- Remedy: replacement of the iterative scheme with the diagonalization of the intermediate Hamiltonian (IH) matrix
- Construction of the IH matrix via canonical Bloch equation (CBE)
- Wide range of applications of the FS-MRCC approach in the IH formalism:
 - potential energy curves
 - excitation energies
 - ionization potentials
 - electron affinities
- IH-FS-MRCC as a useful tool in theoretical spectroscopy
- Conclusions

Coupled cluster (CC) method

exponential parametrization of the wave function

$$|\Psi_{\mathbf{o}}
angle=\mathbf{e}^{\mathbf{T}}|\Phi_{\mathbf{o}}
angle$$

$$\mathbf{T} = \mathbf{T}_1 + \mathbf{T}_2 + \mathbf{T}_3 ... + \mathbf{T}_N$$

where

$$\mathbf{T_n}~=~(\mathbf{n}!)^{-2} \mathbf{\Sigma_{ab...}} \mathbf{\Sigma_{ij...}} \mathbf{t_{ij...}^{ab...}} \mathbf{a^\dagger b^\dagger ... ji}$$

Coupled cluster (CC) method

• amplitude equation:

$$\langle \Phi^{\mathrm{ab...}}_{\mathrm{ij...}} | \mathrm{e}^{-\mathrm{T}} \mathrm{H} \mathrm{e}^{\mathrm{T}} | \Phi_{\mathrm{o}}
angle = \langle \Phi^{\mathrm{ab...}}_{\mathrm{ij...}} | \mathbf{ar{H}} | \Phi_{\mathrm{o}}
angle = \mathbf{0}$$

• energy expression:

$$\mathbf{E} \;\; = \;\; \langle \boldsymbol{\Phi}_{\mathbf{o}} | \mathbf{e}^{-\mathbf{T}} \mathbf{H} \mathbf{e}^{\mathbf{T}} | \boldsymbol{\Phi}_{\mathbf{o}} \rangle = \langle \boldsymbol{\Phi}_{\mathbf{o}} | \bar{\mathbf{H}} | \boldsymbol{\Phi}_{\mathbf{o}} \rangle$$

where $\overline{\mathbf{H}}$ – similarity transformed Hamiltonian.

Single reference CC method

Single reference calculations

$\mathbf{H} \boldsymbol{\Psi} = \mathbf{E} \boldsymbol{\Psi}$

H – Hamiltonian operator to be diagonalized in large configurational space (size: milions, bilions, ...)

Multireference CC method

Multireference solution

$$H_{\rm eff}\Psi^o=E\Psi^o$$

 \mathbf{E} – the same eigenvalue

 H_{eff} – effective Hamiltonian (complicated operator) to be diagonalized within small configurational subspace (model space with P projector, size: tens, hundreds, ...)

Multireference CC method

MULTIREFERENCE FORMALISM

 $\begin{array}{rcl} \mbox{Model space:} & M_o & P \\ \mbox{Orthogonal space:} & \mbox{M} & Q \\ \\ \Psi^o_k & = & P\Psi_k = \sum\limits_m^{m_o} c_{mk} \Phi_m \end{array}$

Important quantity: wave operator Ω

$$\Psi_{
m k}~=~{f \Omega}\Psi_{
m k}^{
m o}$$

recovers the exact wave function from the model one.

Multireference CC method

Ω operator is found by solving <u>Bloch equation</u> $H\Omega P = \Omega P H\Omega P$

Energy E is found by diagonalizing of <u>effective Hamiltonian</u>

 $H_{\rm eff}~=~PH\Omega P$

Model space \equiv <u>valence Fock space</u>

Valence Fock space is a configurational space consisting of:

- 0 valence quasiparticle:
- 1 valence quasiparticle:
 - 1 valence hole
 - 1 valence particle
- 2 valence quasiparticles:
 - 2 valence holes
 - 1 valence hole, 1 valence particle
 - 2 valence particles

Active space vs. model space

Active space is defined by the number of active particle levels and active hole levels.

$$\Sigma_{\bar{a}} = \Sigma_a + \Sigma_\mu$$
$$\Sigma_{\bar{a}} = \Sigma_i + \Sigma_\alpha$$

Active space vs. model space

Model space: spanned by the configurations generated by the excitations within active levels.

Model space is divided into sectors.

Ground state

Single electron attached states

Singly ionized states

Double electron attached states

Doubly ionized states

Important step: definition of the Fock space wave operator

Wave operator:
$$\Omega = \{ e^{\tilde{\mathbf{S}}^{(\mathbf{k},l)}} \} P$$

- k number of valence particles
- I number of valence holes
- { } normal ordering
- P model space projector

 $\tilde{\mathbf{S}}^{(k,l)}$ is responsible for excitations from model space to orthogonal one.

Cluster structure of the wave operator

 $ilde{\mathbf{S}}^{(\mathbf{k},\mathbf{l})} = ilde{\mathbf{S}}^{(\mathbf{k},\mathbf{l})}_{\mathbf{1}} + ilde{\mathbf{S}}^{(\mathbf{k},\mathbf{l})}_{\mathbf{2}} + \dots + ilde{\mathbf{S}}^{(\mathbf{k},\mathbf{l})}_{\mathbf{n}}$

 $\begin{array}{l} \text{Definition of the } \tilde{S}_{n}^{(k,l)} \text{ operator} \\ \tilde{\mathbf{S}}_{n}^{(k,l)} &= \frac{1}{(n!)^{2}} \Sigma'_{\bar{\mathbf{a}}\bar{\bar{\mathbf{b}}}\cdots\bar{\bar{\mathbf{jj}}}\cdots} \mathbf{s}_{\bar{\mathbf{ij}}\cdots}^{\bar{\mathbf{a}}\bar{\bar{\mathbf{b}}}\cdots} \{ \bar{\mathbf{a}}^{\dagger} \bar{\bar{\mathbf{b}}}^{\dagger} \cdots \bar{\mathbf{ji}} \} \end{array}$

 $\begin{array}{l} \prime - \text{excitations within model space excluded} \\ s_{\overline{i}\overline{j}...}^{\overline{a}\overline{b}...} - \text{sought amplitudes (coefficients)} \\ \overline{a}^{\dagger}\overline{b}^{\dagger} \cdots \overline{j}\overline{i} - \text{creation-annihilation operators} \end{array}$

$$\Sigma_{\bar{a}} = \Sigma_a + \Sigma_\mu$$
$$\Sigma_{\bar{a}} = \Sigma_i + \Sigma_\alpha$$

Sector structure of the \hat{S}_n operator

$$\begin{split} \tilde{\mathbf{S}}_{1} &= \sum_{\bar{\mathbf{a}}\bar{\mathbf{i}}} \left\{ \mathbf{s}_{\bar{\mathbf{i}}}^{\bar{\mathbf{a}}} \bar{\mathbf{a}}^{\dagger} \bar{\mathbf{i}} \right\} \\ &= \sum_{ai} \left\{ \mathbf{s}_{i}^{a} \mathbf{a}^{\dagger} \mathbf{i} \right\} + \sum_{\bar{\mathbf{a}}\alpha} \left\{ \mathbf{s}_{\alpha}^{\bar{\mathbf{a}}} \bar{\mathbf{a}}^{\dagger} \alpha \right\} + \sum_{\mu \bar{\mathbf{i}}} \left\{ \mathbf{s}_{\bar{\mathbf{i}}}^{\mu} \mu^{\dagger} \bar{\mathbf{i}} \right\} + \sum_{\mu \alpha} \left\{ \mathbf{s}_{\alpha}^{\mu} \mu^{\dagger} \alpha \right\} \\ &= \mathbf{S}_{1}^{(0,0)} + \mathbf{S}_{1}^{(1,0)} + \mathbf{S}_{1}^{(0,1)} + \mathbf{S}_{1}^{(1,1)} \\ & \checkmark \qquad \uparrow \qquad \uparrow \qquad \checkmark \qquad \end{split}$$

Sector structure of the S_n operator

$$\begin{split} \tilde{\mathbf{S}}_{2} &= \frac{1}{4} \sum_{\bar{a}\bar{b}\bar{i}\bar{j}} \langle \mathbf{s}_{\bar{i}\bar{j}}^{\bar{a}\bar{b}} \bar{\bar{a}}^{\dagger} \bar{\bar{b}}^{\dagger} \bar{\bar{j}}\bar{\bar{a}} \rangle \\ &= \frac{1}{4} \sum_{abij} \{ \mathbf{s}_{ij}^{ab} \mathbf{a}^{\dagger} \mathbf{b}^{\dagger} \mathbf{j} \mathbf{i} \} + \frac{1}{2} \sum_{ab\alpha j} \{ \mathbf{s}_{\alpha j}^{ab} \mathbf{a}^{\dagger} \mathbf{b}^{\dagger} \mathbf{j} \alpha \} + \frac{1}{2} \sum_{\mu b i j} \{ \mathbf{s}_{ij}^{\mu b} \mu^{\dagger} \mathbf{b}^{\dagger} \mathbf{j} \mathbf{i} \} + \sum_{\mu \alpha b j} \langle \mathbf{s}_{\alpha j}^{\mu b} \mu^{\dagger} \mathbf{b}^{\dagger} \mathbf{j} \alpha \} \\ &= \mathbf{S}_{2}^{(0,0)} + \mathbf{S}_{2}^{(1,0)} + \mathbf{S}_{2}^{(0,1)} + \mathbf{S}_{2}^{(1,1)} + \cdots \end{split}$$

with the terms for the sectors (2,0), (0,2), (2,1), (1,2) and (2,2) are skipped and in the definition of the $S_2^{(1,1)}$ operator the case where the both creation lines are active is excluded

Sector structure of the $\tilde{S}^{(k,l)}$ operator

$$\mathbf{\tilde{S}}^{(k,l)} ~=~ \boldsymbol{\Sigma}_{i=0}^{k} \boldsymbol{\Sigma}_{j=0}^{l} \mathbf{S}^{(i,j)}$$

 $\mathbf{\tilde{S}^{(1,1)}} = \mathbf{S^{(0,0)}} + \mathbf{S^{(1,0)}} + \mathbf{S^{(0,1)}} + \mathbf{S^{(1,1)}}$

 $\mathbf{S}^{(\mathbf{0},\mathbf{0})} = \mathbf{T}$

Fock space equations are obtained by introduction just defined Ω operator

$$\mathbf{\Omega} = \{\mathbf{e}^{\mathbf{ ilde{S}^{(k,l)}}}\}$$

into the Bloch equation:

$$H\Omega P = \Omega \underbrace{PH\Omega P}_{H_{eff}}$$

The general FS-CC equation for the (k, l) sector formulated in the operator form can be written as:

$$H\{e^{\tilde{S}^{(k,l)}}\}P^{(k,l)} = \{e^{\tilde{S}^{(k,l)}}\}P^{(k,l)}H_{eff}^{(k,l)}P^{(k,l)}$$
(1)

It is convenient to separate from the \tilde{S} the operator corresponding to the (0,0) sector:

$$\tilde{\mathbf{S}}^{(\mathbf{k},\mathbf{l})} = \mathbf{S}^{(\mathbf{0},\mathbf{0})} + \tilde{\mathbf{\tilde{S}}}^{(\mathbf{k},\mathbf{l})} = \mathbf{T} + \tilde{\mathbf{\tilde{S}}}^{(\mathbf{k},\mathbf{l})}$$
(2)

Rewriting Eq. (1) on the basis of the equality in Eq. (2) and multiplying from the left with e^{-T} we obtain:

$$\mathbf{e^{-T}He^{T}\{e^{\tilde{\tilde{\mathbf{S}}}^{(k,l)}}\}P^{(k,l)}} = \{e^{\tilde{\tilde{\mathbf{S}}}^{(k,l)}}\}P^{(k,l)}\mathbf{H}_{\mathbf{eff}}^{(k,l)}P^{(k,l)}$$
The final form of the FS-CC equation is obtained upon projection of the last equation on the excited determinants in each sector represented by the projector $\mathbf{Q}^{(\mathbf{k},\mathbf{l})}$ and remembering that $\mathbf{e}^{-\mathbf{T}}\mathbf{H}\mathbf{e}^{\mathbf{T}} = \mathbf{\bar{H}}$:

$$\mathbf{Q}^{(\mathbf{k},l)}\mathbf{\bar{H}}\{\mathbf{e}^{\mathbf{\tilde{\tilde{S}}}^{(\mathbf{k},l)}}\}\mathbf{P}^{(\mathbf{k},l)} = \mathbf{Q}^{(\mathbf{k},l)}\{\mathbf{e}^{\mathbf{\tilde{\tilde{S}}}^{(\mathbf{k},l)}}\}\mathbf{P}^{(\mathbf{k},l)}\mathbf{H}_{\mathbf{eff}}^{(\mathbf{k},l)}\mathbf{P}^{(\mathbf{k},l)}$$

whereas the model space projection produces \mathbf{H}_{eff} $\mathbf{P}^{(k,l)}\mathbf{H}_{eff}\mathbf{P}^{(k,l)} = \mathbf{P}^{(k,l)}\mathbf{\bar{H}}\{\mathbf{e}^{\tilde{\mathbf{\tilde{S}}}^{(k,l)}}\}\mathbf{P}^{(k,l)}$

Hierarchical solving of the FS-CC equations:

- solving of the (0,0) sector
- \bigcirc solving of the (1,0) and (0,1) sectors
- solving of the (1,1) sector

Hierarchy of the FS solutions: DEA calculations

Hierarchy of the FS solutions: DIP calculations

- solve the (0,0) sector (i.e. single reference CC)
 - 2) construct $ar{H}$ elements using converged T amplitudes
 - 3 solve iteratively the (1,0) sector constructing in each iteration $H_{eff}^{(1,0)}$
- if (1,0) sector done solve iteratively equations for the (2,0) sector constructing in each iteration H^(2,0)_{eff}
- once amplitude got converged diagonalize the H^(2,0)_{eff} matrix to obtain the sought eigenvalues

- solve the (0,0) sector (i.e. single reference CC)
- 2 construct \bar{H} elements using converged T amplitudes
 - 3 solve iteratively the (1,0) sector constructing in each iteration $H_{eff}^{(1,0)}$
- if (1,0) sector done solve iteratively equations for the (2,0) sector constructing in each iteration H^(2,0)_{eff}
- once amplitude got converged diagonalize the H^(2,0)_{eff} matrix to obtain the sought eigenvalues

- solve the (0,0) sector (i.e. single reference CC)
- 2 construct \bar{H} elements using converged T amplitudes
- solve iteratively the (1,0) sector constructing in each iteration $H_{eff}^{(1,0)}$
- (a) if (1,0) sector done solve iteratively equations for the (2,0) sector constructing in each iteration $H_{eff}^{(2,0)}$
- once amplitude got converged diagonalize the H^(2,0)_{eff} matrix to obtain the sought eigenvalues

- solve the (0,0) sector (i.e. single reference CC)
- 2 construct \bar{H} elements using converged T amplitudes
- solve iteratively the (1,0) sector constructing in each iteration $H_{eff}^{(1,0)}$
- (a) if (1,0) sector done solve iteratively equations for the (2,0) sector constructing in each iteration $H_{eff}^{(2,0)}$
 - once amplitude got converged diagonalize the H^(2,0)_{eff} matrix to obtain the sought eigenvalues

- solve the (0,0) sector (i.e. single reference CC)
- 2 construct \bar{H} elements using converged T amplitudes
- solve iteratively the (1,0) sector constructing in each iteration $H_{eff}^{(1,0)}$
- (a) if (1,0) sector done solve iteratively equations for the (2,0) sector constructing in each iteration $H_{eff}^{(2,0)}$
- $^{(5)}$ once amplitude got converged diagonalize the $H_{\rm eff}^{(2,0)}$ matrix to obtain the sought eigenvalues

The <u>FS-CC method</u> described here is usually referred to as a <u>standard</u> or H_{eff} based scheme.

The characteristic feature of it is an iterative solving of the FS-CC equations.

IMPORTANT FS-CC PAPERS

- D. Mukherjee, R. K. Moitra, A. Mukhopadhyay, *Mol. Phys.*, **30**, 1861 (1975).
- I. Lindgren, Int. J. Quantum Chem. Symp., 12, 33 (1978).
- M. Haque, D. Mukherjee, *J. Chem. Phys.*, **80**, 5058 (1984).
- D. Mukherjee, *Chem. Phys. Lett.*, **125**, 207 (1986).
- S. Pal, M. Rittby, R. J. Bartlett, D. Sinha, D. Mukherjee, *J. Chem. Phys.*, 88, 4357 (1988).
- U. Kaldor, *Int. J. Quantum Chem. Symp.*, **20**, 445 (1986)

Fundamental problems of the standard FS-CC method

• intruder states

• diverging solutions \equiv convergence difficulties

New approach to the FS-CC theory

Intermediate Hamiltonian (IH) formalism provides the way to avoid troublesome iterative procedure of the FS problems

Iterative FS scheme \equiv diagonalization of the IH matrix

Bloch equation in the diagonalization of the $\bar{\mathbf{H}}_{SD}$ matrix in the subspace of singly and doubly excited configurations

$$\bar{\mathbf{H}}_{\mathbf{SD}} = \mathbf{e}^{-(\mathbf{T}_1 + \mathbf{T}_2)} \mathbf{H} \mathbf{e}^{\mathbf{T}_1 + \mathbf{T}_2}$$

$\label{eq:matrix} \begin{array}{l} \mbox{Matrix eigenvalue problem}\\ \Bar{HC} = CE \end{array}$

Partition Technique (PT)

$$\left[\begin{array}{cc} \bar{\mathbf{H}}_{\mathbf{PP}} & \bar{\mathbf{H}}_{\mathbf{PQ}} \\ \bar{\mathbf{H}}_{\mathbf{QP}} & \bar{\mathbf{H}}_{\mathbf{QQ}} \end{array} \right] \left[\begin{array}{c} \mathbf{C}_{\mathbf{P}} \\ \mathbf{C}_{\mathbf{Q}} \end{array} \right] = \left[\begin{array}{c} \mathbf{C}_{\mathbf{P}} \\ \mathbf{C}_{\mathbf{Q}} \end{array} \right] \mathbf{E}_{\mathbf{P}}$$

$$\begin{split} &\bar{H}_{PP}C_P + \bar{H}_{PQ}C_Q \ = \ C_PE_P \\ &\bar{H}_{QP}C_P + \bar{H}_{QQ}C_Q \ = \ C_QE_P \end{split}$$

Multiplying both equations from the right with C_P^{-1} we obtain:

$$\begin{split} \bar{\mathbf{H}}_{\mathbf{P}\mathbf{P}} + \bar{\mathbf{H}}_{\mathbf{P}\mathbf{Q}}\mathbf{C}_{\mathbf{Q}}\mathbf{C}_{\mathbf{P}}^{-1} &= \mathbf{C}_{\mathbf{P}}\mathbf{E}_{\mathbf{P}}\mathbf{C}_{\mathbf{P}}^{-1} \\ \bar{\mathbf{H}}_{\mathbf{Q}\mathbf{P}} + \bar{\mathbf{H}}_{\mathbf{Q}\mathbf{Q}}\mathbf{C}_{\mathbf{Q}}\mathbf{C}_{\mathbf{P}}^{-1} &= \mathbf{C}_{\mathbf{Q}}\mathbf{C}_{\mathbf{P}}^{-1}\mathbf{C}_{\mathbf{P}}\mathbf{E}_{\mathbf{P}}\mathbf{C}_{\mathbf{P}}^{-1} \end{split}$$

Defining:

$$\begin{array}{rcl} \mathbf{H}_{\mathrm{eff}} &=& \mathbf{C}_{\mathbf{P}}\mathbf{E}_{\mathbf{P}}\mathbf{C}_{\mathbf{P}}^{-1} \\ \mathbf{S}_{\mathbf{Q}} &=& \mathbf{C}_{\mathbf{Q}}\mathbf{C}_{\mathbf{P}}^{-1} \end{array}$$

we may rewrite the equations

$$\begin{split} \bar{H}_{PP} + \bar{H}_{PQ} C_Q C_P^{-1} &= C_P E_P C_P^{-1} \\ \bar{H}_{QP} + \bar{H}_{QQ} C_Q C_P^{-1} &= C_Q C_P^{-1} C_P E_P C_P^{-1} \end{split}$$

as

$$\begin{split} &\bar{H}_{PP}+\bar{H}_{PQ}S_Q ~=~ H_{eff} \\ &\bar{H}_{QP}+\bar{H}_{QQ}S_Q-S_QH_{eff} ~=~ 0 \end{split}$$

The eigenvalue equation for iterative solving

$$\begin{array}{rcl} \mathbf{H}_{\mathrm{eff}} &=& \mathbf{\bar{H}}_{\mathrm{PP}} + \mathbf{\bar{H}}_{\mathrm{PQ}} \mathbf{S}_{\mathrm{Q}} \\ - \mathbf{\bar{H}}_{\mathrm{QQ}}^{\mathrm{d}} \mathbf{S}_{\mathrm{Q}} &=& \mathbf{\bar{H}}_{\mathrm{QP}} + \mathbf{\bar{H}}_{\mathrm{QQ}}^{\prime} \mathbf{S}_{\mathrm{Q}} - \mathbf{S}_{\mathrm{Q}} \mathbf{H}_{\mathrm{eff}} \\ \mathbf{\bar{H}}_{\mathrm{QQ}} &=& \mathbf{\bar{H}}_{\mathrm{QQ}}^{\mathrm{d}} + \mathbf{\bar{H}}_{\mathrm{QQ}}^{\prime} \mathbf{S}_{\mathrm{Q}} \end{array}$$

 \bar{H}_{PP} - constant contribution to the effective Hamiltonian $\bar{H}_{PQ}S_Q$ - contribution from S_Q to H_{eff} \bar{H}_{QP} - constant contribution to S_Q \bar{H}_{QQ}^d - diagonal part of \bar{H}_{QQ} $\bar{H}_{QQ}^dS_Q$ - nondiagonal part of \bar{H}_{QQ} operating on vector S_Q

Diagrammatic representation

EOM-CCSD via canonical Bloch equation

EOM-CCSD via canonical Bloch equation

EOM-CCSD via canonical Bloch equation

Diagrammatic canonical Bloch equation in compact form for the EOM-CC problem

$$- \overline{\mathbf{H}}_{\mathbf{QQ}}^{\mathbf{d}} \mathbf{S}_{\mathbf{Q}} = \overline{\mathbf{H}}_{\mathbf{QP}} + \overline{\mathbf{H}}_{\mathbf{QQ}}^{\prime} \mathbf{S}_{\mathbf{Q}} - \mathbf{S}_{\mathbf{Q}} \mathbf{H}_{\text{eff}}$$

$$D_{2} = \mathbf{P}_{\mathbf{QQ}} \mathbf{S}_{\mathbf{Q}} + \mathbf{P}_{\mathbf{QQ}} \mathbf{S}_{\mathbf{Q}} - \mathbf{S}_{\mathbf{Q}} \mathbf{H}_{\mathbf{P}} \mathbf{H}_{\mathbf{Q}}$$

$$\mathbf{H}_{\mathbf{eff}} = \mathbf{\bar{H}}_{\mathbf{PP}} + \mathbf{\bar{H}}_{\mathbf{PQ}} \mathbf{S}_{\mathbf{Q}}$$

In general the form of the Bloch Equation (BE) depends on the form of the wave operator Ω . Here we constructed the simplest BE with the purpose to diagonalize the matrix.

We call this BE a Canonical Bloch Equation (CBE).

Hence, if we have the Bloch equation in the CBE form we may replace the tedious iterative solving of the Bloch equation with the direct diagonalization of the matrix.

The question is:

Can we rewrite the Fock space equations in such a way that they assume the CBE form ?

If so, we would be able to replace the (frequently diverging) iterative scheme with diagonalization of a certain properly constructed matrix.

The answer is **YES**

GOAL:

TO REORGANIZE THE FS-CC EQUATIONS IN THE (1,1) SECTOR IN SUCH A WAY THAT IT CAN BE REPLACED BY DIAGONALIZING THE MODIFIED HAMILTONIAN MATRIX IN THE CONFIGURATIONAL SUBSPACE

$$D_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The diagrammatic representation in skeleton form of the FS S_2 equation for the (1,1) sector at the CCSD level in standard formulation

In order to bring the standard FS equations into the CBE form it is enough to do the following transformation, i.e. replacing the $S_2^{(1,1)}$ operator with $\bar{S}_2^{(1,1)}$:

$$\begin{split} \bar{\mathbf{S}}_{2}^{(1,1)} &= \mathbf{S}_{2}^{(1,1)} + \mathbf{S}_{1}^{(0,1)} \mathbf{S}_{1}^{(1,0)} + \mathbf{S}_{1}^{(0,1)} \mathbf{E}^{(1,0)} + \mathbf{S}_{1}^{(1,0)} \mathbf{E}^{(0,1)} \\ \\ &\mathbf{E}^{(1,0)} = \sum_{\alpha} \{ \alpha^{\dagger} \alpha \} \qquad \mathbf{E}^{(0,1)} = \sum_{\mu} \{ \mu^{\dagger} \mu \} \end{split}$$

or for amplitudes:

$$\bar{\mathbf{S}}_{\mathbf{i}\alpha}^{\mu\mathbf{a}} = \mathbf{S}_{\mathbf{i}\alpha}^{\mu\mathbf{a}} + \mathbf{S}_{\bar{\mathbf{i}}}^{\mu}\mathbf{S}_{\alpha}^{\bar{\mathbf{a}}} + \mathbf{S}_{\bar{\mathbf{i}}}^{\mu}\delta_{\alpha\mathbf{a}} + \delta_{\mu\mathbf{i}}\mathbf{S}_{\alpha}^{\bar{\mathbf{a}}}$$

In diagrammatic form it looks like:

Replacement of S_2 with \bar{S}_2 made it possible to bring the FS equation into canonical Bloch equation form

IH-FS-CCSDT (1,1) variant

We replace $S_3^{(1,1)}$ with $\bar{S}_3^{(1,1)}$:

$$\bar{\mathbf{S}}_3^{(1,1)} = \mathbf{S}_3^{(1,1)} + \mathbf{S}_1^{(0,1)} \mathbf{S}_2^{(1,0)} + \mathbf{S}_1^{(1,0)} \mathbf{S}_2^{(0,1)} + \mathbf{S}_2^{(0,1)} \mathbf{E}^{(1,0)} + \mathbf{S}_2^{(1,0)} \mathbf{E}^{(0,1)}$$

which diagrammatically can be expressed as:

IH-FS-CCSD (2,0) variant
IH-FS-CCSD for DEA

Amplitude transformation for the $S_2^{(2,0)}$ cluster operator

IH-FS-CCSD for DEA

Structure of the matrix to be diagonalized

∜

IH-FS-CCSD (0,2) variant

IH-FS-CCSD for DIP

$\begin{array}{c} \mbox{Amplitude transformation for the} \\ S_2^{(0,2)} \mbox{ cluster operator} \end{array}$

IH-FS-CCSD for DIP

IH-FS-CCSD for DIP

FS-CCSD (1,0) and (0,1) variants

FS-CCSD for EA and IP

Standard FS equations for the one valence sectors are in CBE form !

Hence, we may replace the iterative solving with the diagonalization of the EOM matrix.

Conclusion

IP(EA)-EOM-CC gives identically the same results as FS-CC (0,1)((1,0)) method.

RELEVANT IH PAPERS

- J.-P. Malrieu, Ph. Durand, J.-P. Daudey, J. Phys. B, 18, 809 (1985) IH for perturbation theory
- L. Meissner, R. J. Bartlett, J. Chem. Phys., 102, 7490 (1995) IH for FS-CCSD (1,1)
- L. Meissner, J. Chem. Phys., 108, 9227 (1998) IH for FS-CCSD (1,1)
- M. Musiał, R. J. Bartlett, J. Chem. Phys., 129, 134105 (2008) – IH for FS-CCSDT (1,1)
- M. Musiał, R. J. Bartlett, J. Chem. Phys., 135, 044121 (2011) - IH for FS-CCSD (0,2)
- M. Musiał, J. Chem. Phys., 136, 134111, (2012). IH for FS-CCSD (2,0)

RELEVANT REVIEWS

- D. Mukherjee, S. Pal, Adv. Quantum Chem., 20, 292 (1989).
- R. J. Bartlett, M. Musiał, *Rev. Mod. Phys.*, **79**, 291 (2007).
- D. I. Lyakh, M. Musiał, V. Lotrich, R. J. Bartlett, *Chem. Rev.*, **112**, 182 (2012).

APPLICATIONS

Potential energy curves for the alkali metal diatomics

with FS-CCSD (2,0) method based on the RHF(restricted Hartree-Fock) reference function.

Standard way for alkali diatomics is full CI for two valence electrons with all inner electrons replaced with effective potential (FCI=CISD)

Double electron attached states

• DEA: double electron attachment

 ${f A} \Longrightarrow {f A}^{-2}$ ${f DEA} = {f E}_{f A} - {f E}_{{f A}^{-2}}$

Double electron attached states

• DEA: double electron attachment

$$\mathrm{A} \Longrightarrow \mathrm{A}^{-2}$$
 $\mathrm{DEA} = \mathrm{E}_{\mathrm{A}} - \mathrm{E}_{\mathrm{A}^{-2}}$

Reference function: A^{+2} DEA calculations: A

Double electron attached states

• DEA: double electron attachment

$$\mathrm{A} \Longrightarrow \mathrm{A}^{-2}$$
 $\mathrm{DEA} = \mathrm{E}_{\mathrm{A}} - \mathrm{E}_{\mathrm{A}^{-2}}$

Reference function: A⁺² DEA calculations: A

$$A^{+2} \xrightarrow{DEA} A$$

DEA example: calculation of PECs for the Na_2 molecule

• Neutral molecule

 Na_2

Ňa _____- _____- Ňa

- Double ionized molecule \mathbf{Na}_{2}^{+2}

$$Na^+$$
 — — Na^+

 Na_2^{+2} system separates into two closed shell subunits (<u>isoelectronic with Ne atom</u>). Very convenient reference function.

IH-FS-CCSD (2,0) for DEA

- GS part, i.e. (0,0) sector: $T = T_1 + T_2$ (scaling $n^6(n_o^2 n_v^4)$)
- EA part, i.e. (1,0) sector: $S = S_1 + S_2$ (scaling $n^5(n_o^1 n_v^4)$)
- DEA part, i.e. (2,0) sector: $S = S_2$ (scaling $n^5(n_o^2 n_v^3)$)

Prescription for the correct generation of the PEC

- remove two electrons from the AB molecule
- ② do the RHF calculations for the AB^{+2} system
- If or the AB⁺² system do the correlated calculations with the DEA type method: FS-CCSD (2.0) (capable to accurately describe to
 - electronic states resulting from the attachment of a pair of electrons to the reference)
- do such calculations for all interatomic distances

Prescription for the correct generation of the PEC

- remove two electrons from the AB molecule
 do the RHF calculations for the AB⁺² system
 for the AB⁺² system do the correlated calculations with the DEA type method: FS-CCSD (2,0) (capable to accurately describe the
 - electronic states resulting from the attachment of a pair of electrons to the reference)
- do such calculations for all interatomic distances

Prescription for the correct generation of the PEC

remove two electrons from the AB molecule 2 do the RHF calculations for the AB^{+2} system **(a)** for the AB^{+2} system do the correlated do such calculations for all interatomic

Prescription for the correct generation of the PEC

- remove two electrons from the AB molecule
- **2** do the RHF calculations for the AB^{+2} system
- for the AB⁺² system do the correlated calculations with the DEA type method: FS-CCSD (2,0) (capable to accurately describe the electronic states resulting from the attachment of a pair of electrons to the reference)
- do such calculations for all interatomic distances

Prescription for the correct generation of the PEC

- remove two electrons from the AB molecule
- **2** do the RHF calculations for the AB^{+2} system
- for the AB⁺² system do the correlated calculations with the DEA type method:
 FS-CCSD (2,0) (capable to accurately describe the electronic states resulting from the attachment of a pair
 - of electrons to the reference)
- do such calculations for all interatomic distances

DEA calculations: Li₂

Li_2 molecule

- Basis set: uncontracted ANO-RCC with additional two diffuse functions for s, p, d, f shells (228 basis functions)
- model space: 7396 configurations

Potential energy curves for 34 electronic states dissociating into the following asymptotic limits:

2s+2s	2 states	(2)
2s+2p	8 states	(12)
2s+3s	4 states	(4)
2p+2p	12 states	(18)
2s+3p	8 states	(12)

DEA calculations: PECs of Li₂ Dissociation limit: 2S+2S

Li2 (ANO-RCC+ basis set)

Dissociation limit: 2s+2s

DEA calculations: PECs of Li_2

Dissociation limit: 2S+2S – comparison with experiment

Li2 (ANO-RCC+ basis set)

Dissociation limit: 2s+2s

83 / 124

DEA calculations: PECs of Li₂ $1^3\Sigma_u^+$ state

DEA calculations: PECs of Li₂ $1^{3}\Sigma_{u}^{+}$ state – comparison with experiment

Li2 (ANO-RCC+ basis set)

Dissociation limit: 2s+2s

DEA calculations: $1^{3}\Sigma_{u}^{+}$ of Li₂ potential energy curve

lonika Musiał FS-CC method

DEA calculations: $1^3 \Sigma_u^+$ of Li₂ Vibrational levels - R. J. Le Roy LEVEL 8.0 package

Li2 (ANO-RCC)

DEA calculations: $1^{3}\Sigma_{u}^{+}$ of Li₂

Vibrational levels - comparison with experiment

Li2 (ANO-RCC)

$1^{3}\Sigma_{u}^{+}$: vibrational levels - comparison with experiment

-	$E_v \ (cm^{-1})$					
v	IH-FS-CCSD (2,0)	Δ	$EXP^{a)}$			
0	31.6	-0.3	31.9			
1	90.3	-0.2	90.5			
2	142.3	-0.2	142.5			
3	188.2	0.0	188.2			
4	227.7	0.0	227.7			
5	260.9	0.1	260.8			
6	287.8	0.1	287.7			
7	308.3	0.2	308.1			
8	322.3	0.1	322.2			
9	330.3	0.1	330.2			
10	333.6	0.3	333.3			
MAD		0.15				

^{a)} C.Linton, et al., *J. Mol. Spec.*, **196**, 20 (1999).

$1^{3}\Sigma_{u}^{+}$: comparison with experiment and other theoretical works

	$E_v \ (cm^{-1})$					
v	IH-FS-CCSD (2,0)	Δ	EXP	$QCISDT^{a)}$	$\Delta^{a)}$	
0	31.6	-0.3	31.9	32.2	0.3	
1	90.3	-0.2	90.5	91.2	0.7	
2	142.3	-0.2	142.5	143.6	1.1	
3	188.2	0.0	188.2	189.6	1.4	
4	227.7	0.0	227.7	229.4	1.7	
5	260.9	0.1	260.8	262.8	2.0	
6	287.8	0.1	287.7	289.7	2.0	
7	308.3	0.2	308.1	310.0	1.9	
8	322.3	0.1	322.2	323.7	1.5	
9	330.3	0.1	330.2	331.1	0.9	
10	333.6	0.3	333.3	333.8	0.5	
MAD		0.15			1.27	

^{a)} M. D. Halls, et al., Chem. Phys. Lett., **339**, 427 (2001).
$1^{3}\Sigma_{u}^{+}$: comparison with experiment and other theoretical works

		E_v (cr	$n^{-1})$		
v	IH-FS-CCSD (2,0)	Δ	EXP	SAC-Cl ^{a)}	$\Delta^{a)}$
0	31.6	-0.3	31.9	32.4	0.5
1	90.3	-0.2	90.5	92.2	1.7
2	142.3	-0.2	142.5	145.3	2.8
3	188.2	0.0	188.2	192.0	3.8
4	227.7	0.0	227.7	231.3	3.6
5	260.9	0.1	260.8	265.2	4.4
6	287.8	0.1	287.7	291.6	3.9
7	308.3	0.2	308.1	312.4	4.3
8	322.3	0.1	322.2	326.1	3.9
9	330.3	0.1	330.2	333.8	3.6
10	333.6	0.3	333.3	337.7	4.4
MAD		0.15			3.35

^{a)} D.-H. Shi, et al., *Chin. Phys. Soc.*, **16**, 2701 (2007).

$1^{3}\Sigma_{u}^{+}$: comparison with experiment and other theoretical works

		E_v (c)	$m^{-1})$		
v	IH-FS-CCSD (2,0)	Δ	EXP	Eff.pot. ^{a)}	$\Delta^{a)}$
0	31.6	-0.3	31.9	31	-0.9
1	90.3	-0.2	90.5	89	-1.5
2	142.3	-0.2	142.5	140	-2.5
3	188.2	0.0	188.2	184	-4.2
4	227.7	0.0	227.7	223	-4.7
5	260.9	0.1	260.8	255	-5.8
6	287.8	0.1	287.7	281	-6.7
7	308.3	0.2	308.1	300	-8.1
8	322.3	0.1	322.2	313	-9.2
9	330.3	0.1	330.2	-	-
10	333.6	0.3	333.3	-	-
MAD		0.15			4.84

^{a)} I. Schmidt-Mink et al., *Chem. Phys.*, **92**, 263 (1985).

$1^{3}\Sigma_{u}^{+}$: comparison with experiment and other theoretical works

		E_v (cr	$m^{-1})$		
v	IH-FS-CCSD (2,0)	Δ	EXP	Eff.pot. ^{a)}	$\Delta^{a)}$
0	31.6	-0.3	31.9	32.4	0.5
1	90.3	-0.2	90.5	92.4	2.0
2	142.3	-0.2	142.5	145.9	3.4
3	188.2	0.0	188.2	193.0	4.8
4	227.7	0.0	227.7	233.7	6.0
5	260.9	0.1	260.8	268.0	7.2
6	287.8	0.1	287.7	295.7	8.0
7	308.3	0.2	308.1	317.1	9.0
8	322.3	0.1	322.2	331.6	9.4
9	330.3	0.1	330.2	339.8	9.6
10	333.6	0.3	333.3	343.5	10.2
MAD		0.15			6.37

^{a)} P. Jasik et al., *Chem. Phys.*, **323**, 563 (2006).

DEA calculations: Li₂ $1^{3}\Sigma_{u}^{+}$ state

Spectroscopic constants

$$R_e$$
 (Å) D_e (cm⁻¹) ω_e (cm⁻¹) T_e (eV)

FS-CCSD (2,0)	4.169	334	65	1.008
$exp.^{a)}$	4.171	333	65	1.014
$exp.^{b)}$	4.170	334	-	-

a) X. Xie et al., J. Chem. Phys., 83, 6193 (1985);
 C. Linton et al., J. Chem. Phys, 91, 6036 (1989).
 b) N. S. Dattani et al., J. Mol. Spect. 268, 199 (2011).

DEA calculations: PECs of Li₂ Dissociation limit: 2P+2P

Li2 (ANO-RCC+ basis set)

Dissociation limit: 2p+2p

DEA calculations: PECs of Li_2

Dissociation limit: 2P+2P – comparison with experiment

Li2 (ANO-RCC+ basis set)

Dissociation limit: 2p+2p

96 / 124

DEA calculations: PECs of Li₂ $2^{1}\Pi_{q}$ state

siał FS-CC method

DEA calculations: PECs of Li₂ $2^{1}\Pi_{a}$ state – comparison with experiment

Li2 (ANO-RCC+ basis set)

Dissociation limit: 2s+2p

DEA calculations: $2^{1}\Pi_{g}$ of Li₂ potential energy curve

DEA calculations: $2^{1}\Pi_{g}$ of Li₂

Vibrational levels

DEA calculations: $2^{1}\Pi_{g}$ of Li₂

Vibrational levels

DEA calculations: $2^{1}\Pi_{g}$ of Li₂ Vibrational levels - comparison with experiment

$2^{1}\Pi_{g}$: vibrational levels - comparison with experiment

	$E_v \ (cm^{-1})$					
v	IH-FS-CCSD (2,0)	Δ	$EXP^{a)}$			
0	112.3	-1.9	114.2			
1	338.4	-1.9	340.3			
2	561.4	-1.7	563.1			
3	781.0	-1.7	782.7			
4	997.4	-1.7	999.1			
5	1210.7	-1.7	1212.4			
6	1420.7	-1.8	1422.5			
7	1627.6	-1.8	1629.4			
8	1831.3	-1.9	1833.2			
9	2031.8	-2.0	2033.8			
10	2229.2	-1.9	2231.1			

^{a)} R.A. Bernheim, et al., J. Chem. Phys., **74**, 749 (1981).

$2^{1}\Pi_{g}$: vibrational levels - comparison with experiment

	$E_v \ (cm^{-1})$				
v	IH-FS-CCSD (2,0)	Δ	$EXP^{a)}$		
11	2423.3	-2.0	2425.3		
12	2614.3	-2.0	2616.3		
13	2802.0	-2.0	2804.0		
14	2986.5	-1.9	2988.4		
15	3167.8	-1.7	3169.5		
16	3345.7	-1.5	3347.2		
17	3520.2	-1.4	3521.6		
18	3691.3	-1.1	3692.4		
19	3859.0	-0.8	3859.8		
20	4023.1	-0.6	4023.7		
			•••		
49	6469.7	-	-		
MAD		1.66			

^{a)} R.A. Bernheim, et al., J. Chem. Phys., **74**, 749 (1981).

Vibrational energy levels E_v (cm⁻¹)

	MAD
FS-CCSD $(2,0)^{a}$	1.66
$SAC-CI^{b)}$	58.02
$Eff.pot.^{c)}$	9.79

^{a)} This work; ^{b)} D.-H. Shi, et al., *Commun Theor. Phys.*, **47**, 1114 (2007); ^{c)} P. Jasik, et al., *Chem. Phys.*, **323**, 563 (2006)

DEA calculations: Li₂ $2^{1}\Pi_{g}$ state

Spectroscopic constants

R_e (Å) D_e (cm⁻¹) ω_e (cm⁻¹) T_e (eV)

FS-CCSD (2,0)	3.201	6481	230	3.944
$\exp^{(a)}$	3.201	6455	230	3.951

^{a)} R. A. Bernheim et al., J. Chem. Phys., 74, 2749 (1981)

DEA calculations: Li₂ Spectroscopic constants: dissociation limit 2S+2P states: $2^{1}\Sigma_{g}^{+}$, $1^{3}\Sigma_{g}^{+}$, $1^{1}\Sigma_{u}^{+}$, $2^{3}\Sigma_{u}^{+}$, $1^{1}\Pi_{g}$, $1^{3}\Pi_{g}$, $1^{1}\Pi_{u}$, $1^{3}\Pi_{u}$ $R_e({\rm \AA}) \ D_e(cm^{-1}) \ \omega_e(cm^{-1}) \ T_e(eV)$ $MAE_{present work}^{a)}$ 0.004 $\mathbf{21}$ 1 0.003 $\mathbf{MAE}_{IS}^{b)}$ 0.010 79 0.0071 $\mathbf{MAE}_{PS}^{(c)}$ 0.010107 2 0.015

^{a)} M. Musial, S. A. Kucharski, J. Chem. Theory Comput., 10, 1200 (2014).

- ^{b)} JS: P. Jasik, J. Sienkiewicz, J. E. Chem. Phys., 323, 563 (2006).
- ^{c)} PS: R. Poteau, F. Spiegelmann, J. Mol. Spectrosc., 171, 299 (1995).

DEA calculations: Li₂ Spectroscopic constants: dissociation limit 2S+3S states: $3^{1}\Sigma_{a}^{+}$, $2^{3}\Sigma_{a}^{+}$, $2^{1}\Sigma_{u}^{+}$, $3^{3}\Sigma_{u}^{+}$ $R_{e}(\text{\AA}) \ D_{e}(cm^{-1}) \ \omega_{e}(cm^{-1}) \ T_{e}(eV)$ $MAE_{present work}^{a)}$ 0.015 33 1 0.009 $\mathbf{MAE}_{IS}^{b)}$ 0.016 57 0.0061

0.017

 $\mathbf{MAE}_{PS}^{(c)}$

a) M. Musial, S. A. Kucharski, J. Chem. Theory Comput., 10, 1200 (2014).

67

 $\mathbf{2}$

0.009

- ^{b)} JS: P. Jasik, J. Sienkiewicz, J. E. Chem. Phys., 323, 563 (2006).
- ^{c)} PS: R. Poteau, F. Spiegelmann, J. Mol. Spectrosc., 171, 299 (1995).

DEA calculations: Li₂ Spectroscopic constants: dissociation limit 2P+2P states: $4^{1}\Sigma_{g}^{+}$, $4^{3}\Sigma_{u}^{+}$, $5^{3}\Sigma_{u}^{+}$, $5^{1}\Sigma_{g}^{+}$, $2^{1}\Pi_{g}$, $2^{3}\Pi_{g}$, $2^{1}\Pi_{u}$, $2^{3}\Pi_{u}$, $1^{1}\Delta_{g}$, $1^{3}\Delta_{u}$, $1^{1}\Sigma_{u}^{-}$, $1^{3}\Sigma_{g}^{-}$

	$R_e(\text{\AA})$	$D_e(cm^{-1})$	$\omega_e(cm^{-1})$	$T_e(eV)$
$\mathbf{MAE}_{present \ work}^{a)}$	0.024	18	2	0.009
$\mathbf{MAE}_{LS}^{b)}$	0.030	174	2	0.006

96

3

0.009

^{a)} M. Musial, S. A. Kucharski, J. Chem. Theory Comput., 10, 1200 (2014).

0.059

 $\mathbf{MAE}_{PS}^{c)}$

DEA calculations: Na₂

Na_2 molecule

- Basis set: uncontracted ANO-RCC with additional two diffuse functions for s, p, d shells (248 basis functions)
- model space: 7396 configurations

Potential energy curves for 34 electronic states dissociating into the following asymptotic limits:

3s+2s	2 states	(2)
3s+2p	8 states	(12)
3s+4s	4 states	(4)
3s+3d	12 states	(20)
3s+4p	8 states	(12)

DEA calculations: Na₂ **Dissociation limit: 3S+4S**

Na₂ (ANO-RCC+ basis set)

DEA calculations: Na₂ double minimum $2^{1}\Sigma_{u}^{+}$ state

DEA calculations: Na₂ double minimum $2^{1}\Sigma_{u}^{+}$ state from

DEA calculations: Na₂ double minimum $2^{1}\Sigma_{u}^{+}$ state

Spectroscopic constants

$$R_e$$
 (Å) D_e (cm⁻¹) ω_e (cm⁻¹) T_e (eV)

inner well	3.676 3.688	3317 3304	106 106	3.502 3.528
outer well	6.750	3878	52	3.432
exp.	6.736	3880	53	3.457

DEA calculations: NaLi

NaLi molecule

Basis set: same as before (238 basis functions)
model space: 4489

Potential energy curves for 20 electronic states dissociating into the following asymptotic limits:

2s+2s	2 states	(2)
3p+3s	4 states	(6)
3s+3p	4 states	(6)
2s+4s	2 states	(2)
3s+3s	2 states	(2)
2s+3d	6 states	(10)

DEA calculations: NaLi GS and EEs ANO-RCC+ basis set: 238 basis functions; active space: 68

Multireference Fock space CC method

APPLICATIONS (1,1) sector

Applications of (1,1) sector

Vertical excitation energies (in eV) for N_2^{a} as obtained with the FS-CC at the CCSD and CCSDT levels with the aug-cc-pVQZ basis set.

Mal	Sym.	IH-FS		
WI01.				Exp.
		CCSD	CCSDT	±np:
\mathbf{N}_2	$^{1}\Pi_{ m g}$	9.325	9.333	9.340
$(12,\!4)$		(-0.015)	(-0.007)	
	$^{1}\Sigma_{\mathrm{u}}^{-}$	10.035	9.863	9.880
		(0.155)	(-0.017)	
	$^{1}\Delta_{\mathrm{u}}$	10.518	10.270	10.270
		(0.248)	(0.000)	
	${}^{1}\Pi_{\mathrm{u}}$	13.396	13.136	13.050
		(0.346)	(0.086)	
MAE		0 191	0.028	

0.1	J I	0.020	
Monika Musiat	ES C	Cmothod	

Applications of (1,1) sector

Vertical excitation energies (in eV) for CO^{a} as obtained with the FS-CC at the CCSD and CCSDT levels with the aug-cc-pVQZ basis set.

Mol.	Sym.	IH-FS		
		\mathbf{CCSD}	CCSDT	Exp.
$\begin{array}{c} \mathrm{CO} \\ (12,4) \end{array}$	$^{1}\Pi$	8.605 (0.085)	8.482 (-0.038)	8.520
	$^{1}\Sigma-$	10.167 (0.267)	9.958 (0.058)	9.900
	$^{1}\Delta$	$10.365 \\ (0.235)$	10.091 (-0.039)	10.130
	$^{1}\Sigma^{+}$	11.133 (0.353)	10.923 (0.143)	10.780

MAE	0.235		0.070	
	Monika Musiał	ES-	C method	

CONCLUSIONS

- It is well known for about three decades that the Fock space coupled cluster approach provides a reliable size-extensive results for excitation energies, ionization potentials and electron affinities.
- The computational problems in reaching efficient solutions within the standard FS formulation significantly slowed down its development.
- The new opening for the wider applications of the FS-CC method is connected with the introduction by Meissner and Bartlett new formalism for the (1,1) sector based on the intermediate Hamiltonian approach.

CONCLUSIONS

- It is well known for about three decades that the Fock space coupled cluster approach provides a reliable size-extensive results for excitation energies, ionization potentials and electron affinities.
- The computational problems in reaching efficient solutions within the standard FS formulation significantly slowed down its development.
- The new opening for the wider applications of the FS-CC method is connected with the introduction by Meissner and Bartlett new formalism for the (1,1) sector based on the intermediate Hamiltonian approach.

CONCLUSIONS

- It is well known for about three decades that the Fock space coupled cluster approach provides a reliable size-extensive results for excitation energies, ionization potentials and electron affinities.
- The computational problems in reaching efficient solutions within the standard FS formulation significantly slowed down its development.
- The new opening for the wider applications of the FS-CC method is connected with the introduction by Meissner and Bartlett new formalism for the (1,1) sector based on the intermediate Hamiltonian approach.

CONCLUSIONS - continued

- Applying the same scheme to other sectors made the FS-CC method a robust and accurate tool for high level calculations.
- Particularly attractive scheme is based on the DEA strategy used for the calculations for accurate PECs based on FS (2,0) sector.

CONCLUSIONS - continued

- Applying the same scheme to other sectors made the FS-CC method a robust and accurate tool for high level calculations.
- Particularly attractive scheme is based on the DEA strategy used for the calculations for accurate PECs based on FS (2,0) sector.
THANK YOU FOR YOUR ATTENTION