

Internally contracted multireference coupled-cluster theory

Andreas Köhn Institut for Theoretical Chemistry University of Stuttgart

ESNT Workshop 2015 at CEA Saclay

Universität Stuttgart

DFG Deutsche Forschungsgemeinschaft

Target now: Molecules

Actually: Electrons in the field of (point-like) nuclei fixed in space

(Keywords: Born-Oppenheimer approximation, clamped nuclei approximation)

We solve for (mostly) stationary states of the electronic (non-relativistic) Hamiltonian

$$h_{p}^{q} = \langle p | \begin{pmatrix} -\frac{1}{2}\Delta - \sum_{I} \frac{Z_{I}}{|\mathbf{r}_{1} - \mathbf{R}_{I}|} \end{pmatrix} | q \rangle \qquad g_{pr}^{qs} = \langle pr | \frac{1}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} | qs \rangle$$

$$\hat{H} = \sum_{pq} h_{p}^{q} a_{p}^{\dagger} a_{q} + \frac{1}{4} \sum_{pqrs} g_{pr}^{qs} a_{p}^{\dagger} a_{r}^{\dagger} a_{s} a_{q} = h_{p}^{q} a_{q}^{p} + \frac{1}{4} g_{pr}^{qs} a_{qs}^{pr}$$

$$\text{short-hand notation}$$

$$\text{creation/annihilation of spin-orbitals}$$

Many-electron states in molecules

Coupled-Cluster (CC) ansatz:

$$|\Psi_{\rm CC}\rangle = e^{\hat{T}}|\Phi_0\rangle = |\Phi_0\rangle + \hat{T}|\Phi_0\rangle + \frac{1}{2}\hat{T}^2|\Phi_0\rangle + \dots$$

Coester, Kümmel (1958) Čižek, Paldus (1966) Bartlett (1978)

Coupled-cluster expansion

Ansatz:

$$|\Psi_{\rm CC}
angle = e^{\hat{T}}|\Phi_0
angle$$
 single determinant

Features:

separability

$$\begin{split} |\Psi_{\rm CC}^{AB}\rangle &= e^{\hat{T}_A + \hat{T}_B} |\Phi_0^{AB}\rangle \\ &= \hat{\mathcal{A}} \Big(e^{\hat{T}_1} |\Phi_0^A\rangle \Big) \Big(e^{\hat{T}_2} |\Phi_0^B\rangle \Big) \\ &= \hat{\mathcal{A}} |\Psi_{\rm CC}^A\rangle |\Psi_{\rm CC}^B\rangle \end{split}$$

$$E^{AB} = E^A + E^B$$

fast convergence with cluster rank

Percentage of $E_{\rm corr}$ recovered for set of small molecules Bartlett, Mol Phys 108, 2905 (2010)

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \dots$$

MBPT

CI

Multireference cases

Overview: Different approaches

Lyakh, Musiał, Lotrich, Bartlett, Chem. Rev. 112, 182 (2012) Köhn, Hanauer, Mück, Jagau, Gauss, WIREs CMS 3, 176 (2013)

Design of a multireference CC theory

Single reference:

State-universal ansatz: (Jeziorski, Monkhorst) $|\Psi_{\rm JM}
angle = \sum_{\mu} e^{\hat{T}(\mu)} |\Phi_{\mu}
angle c_{\mu}$ $\{ |\Phi_{\mu}\rangle \}$

Intruder state problems: State-specific versions

State-specific internally contracted ansatz

+ Simpler, better control of intruders – Questionable at state crossings (!)

www.uni-stuttgart.de/theochem

$$|\Psi_{
m ic}
angle = e^{\hat{T}}\sum_{\mu}|\Phi_{\mu}
angle c_{\mu}$$

"internally contracted": originally used in CI context by Siegbahn, Mayer, Werner (1980s)

Promising features:

Genuine multireference scheme (no bias within model space) Compact amplitude manifold (no scaling with model space size) Spin adaption or spin-free formulation is easy

Orbital invariance

Evangelista, Gauss, JCP 134, 114102 (2011) Hanauer, Köhn, JCP 134, 204111 (2011)

What is scary:

Non-commuting operator manifold Linear dependencies

Simplified approaches, see e.g.

Banerjee, Simons, IJQC 19, 207 (1981) Laidig, Saxe, Bartlett, JCP 86, 887 (1987) Fink, Staemmler, TCA 87, 129 (1993)

ic-MRCC vis-à-vis single-reference CC

Reference wave function:

 $|\Phi_0
angle$

Correlated wave function:

$$|\Psi\rangle = e^{\hat{T}} |\Phi_0\rangle$$

Cluster operator:

$$\hat{T} = \sum_{ia} t_a^i a_i^a + \frac{1}{4} \sum_{ijab} t_{ab}^{ij} a_{ij}^{ab} + \dots \qquad \hat{T} = \sum_{IA} t_A^I a_I^A + \frac{1}{4} \sum_{IJAB} t_{AB}^{IJ} a_{IJ}^{AB} + \dots$$

 $|\Psi_{
m ic}
angle = e^{\hat{T}}|\Psi_0
angle$

ic-MRCC vis-à-vis single-reference CC **Correlated wave function:** $|\Psi\rangle = e^{\hat{T}}|\Phi_0\rangle$ $|\Psi_{\rm ic} angle = e^{\hat{T}}|\Psi_0 angle$ **Cluster operator:** $\hat{T} = \sum_{IA} t^I_A a^A_I$ $\hat{T} = \sum_{ia} t^i_a a^a_i$ $+ \frac{1}{4} \sum t_{AB}^{IJ} a_{IJ}^{AB}$

University of Stuttgart Germany

www.uni-stuttgart.de/theochen

Excitation types (singles&doubles):

$$\hat{\tau}_{\rho} = \begin{cases} \hat{a}_i^a \\ \hat{a}_{ij}^{ab} \end{cases}$$

 $+ \frac{1}{4} \sum t^{ij}_{ab} a^{ab}_{ij}$

 $+ \dots = \sum_{\rho} t_{\rho} \hat{\tau}_{\rho}$

 $+\ldots = \sum t_{
ho} \hat{\tau}_{
ho}$ $\hat{\tau}_{\rho} = \int_{a_{ij}^{ab}}^{\rho} \hat{a}_{uj}^{a} \hat{a}_{uj}^{ab} \hat{a}_{uj}^{ab} \hat{a}_{uj}^{ab} \hat{a}_{uv}^{ab} \hat{a}_{uv}^{ab}$ avoid active-active excitations, instead: optimize $\hat{\tau}_{\rho} = \int_{a_{ij}^{ab}}^{\rho} \hat{a}_{uj}^{ab} \hat{a}_{uj}^{ab} \hat{a}_{uv}^{ab} \hat{a}_{uv}^{ab}$ $\hat{a}_{ij}^{oldsymbol{u}b} \ \hat{a}_{oldsymbol{v}j}^{oldsymbol{u}b} \ \hat{a}_{oldsymbol{v}x}^{oldsymbol{u}b}$ $\hat{a}_{ii}^{uw} \hat{a}_{vi}^{uw}$

virtual

active

occupied

IJAB

Amplitude equations

Linear dependencies

$$0 = \left\langle \Psi_0 | (\hat{\tau}_{\rho})^{\dagger} e^{-\hat{T}} \hat{H} e^{\hat{T}} | \Psi_0 \right\rangle$$

non-orthogonal

$$S_{\rho\sigma} = \langle \Psi_0 | (\hat{\tau}_{\rho})^{\dagger} \hat{\tau}_{\sigma} | \Psi_0 \rangle \neq \delta_{\rho\sigma}$$

$$\hat{a}_{1\bar{1}}^{ab} \left(c_1 |1\bar{1}\rangle + c_2 |2\bar{2}\rangle \right) = c_1 |ab\rangle$$
$$\hat{a}_{2\bar{2}}^{ab} \left(c_1 |1\bar{1}\rangle + c_2 |2\bar{2}\rangle \right) = c_2 |ab\rangle$$

$$\sum_{u} \hat{a}_{ui}^{ua} |\Psi_0\rangle = n_a \hat{a}_i^a |\Psi_0\rangle$$

Consequences:

covariant and contravariant quantities

$$\hat{A} = \sum_{\rho} A_{\rho} \hat{\tau}_{\rho}$$
$$\bar{A}_{\rho} = \langle \Psi_0 | (\hat{\tau}_{\rho})^{\dagger} \hat{A} | \Psi_0 \rangle = \sum_{\sigma} S_{\rho\sigma} A_{\sigma}$$

projection $\langle \Psi_0 | (\hat{\tau}_{\rho})^{\dagger}$ has less degrees of freedom than operator basis $\sum_{\rho} t_{\rho} \hat{\tau}_{\rho}$ particle ranks are not orthogonal, e.g. $\langle \Psi_0 | a_{vw}^{ui} a_i^w | \Psi_0 \rangle \neq 0$

icMRCCSD: up to

3-particle density

Linear dependencies

project to orthogonalized, non-redundant basis:

technically identical to ic-MRCI, CASPT2 etc. $S_{\rho\sigma} = \langle \Psi_0 | (\hat{\tau}_{\rho})^{\dagger} \hat{\tau}_{\sigma} | \Psi_0 \rangle = S_{\rho_a \sigma_a}^{\text{act.}} \otimes 1_{\rho_i \sigma_i}^{\text{inact.}}$

$$\Rightarrow \hat{\tau}_{\tilde{\rho}}' = X_{\tilde{\rho}}^{\sigma} \tau_{\sigma} \quad \text{where} \quad \hat{\tau}' = \hat{\tau}^{||} + \hat{\tau}^{\perp} \quad \text{with} \quad \hat{\tau}_{\tilde{\rho}}^{\perp} |\Psi_{0}\rangle = 0$$

$$\Rightarrow \quad \hat{T} = \hat{T}^{||} + \hat{T}^{\perp}$$

we have the *freedom* to set $\hat{T}^{\perp} = 0$ (will still converge to full CI)*

*Evangelista, Hanauer, Köhn, Gauss, JCP 136, 204108 (2012)

Modified amplitude equations

$$0 = \langle \Psi_0 | (\hat{\tau}_{\tilde{\rho}}^{||})^{\dagger} e^{-\hat{T}^{||}} \hat{H} e^{\hat{T}^{||}} | \Psi_0 \rangle$$

! A nasty problem: near-linear dependencies !

Technical note: $X^{\sigma}_{\tilde{\rho}} = (S^{-\frac{1}{2}}_{\eta})^{\sigma}_{\tilde{\rho}}$ + Schmidt-orthog. betw. particle ranks

 $\Omega_{\tilde{\rho}}^{||} = X_{\tilde{\rho}}^{\sigma} \langle \Psi_0 | (\tau_{\sigma})^{\dagger} \bar{H} | \Psi_0 \rangle$ $\Delta t_{\rho}^{||} = (X^{\dagger})_{\rho}^{\tilde{\sigma}} \left(\Omega_{\tilde{\sigma}}^{||} / \Delta \epsilon_{\tilde{\sigma}} \right)$

proper choice important for extensivity!

Hanauer, Köhn, JCP 134, 204111 (2011) Hanauer, Köhn, JCP 137, 131103 (2012)

Numerical evaluation

$$\sum_{\nu} \langle \Phi_{\mu} | e^{-\hat{T}} \hat{H} e^{\hat{T}} | \Phi^{\nu} \rangle c_{\nu} = E c_{\mu} \qquad 0 = \langle \Psi_{0} | (\hat{\tau}_{\tilde{\rho}}^{||})^{\dagger} e^{-\hat{T}^{||}} \hat{H} e^{\hat{T}^{||}} | \Psi_{0} \rangle$$

$$e^{-\hat{T}} \hat{H} e^{\hat{T}} = \hat{H} + [\hat{H}, \hat{T}] + \frac{1}{2} [[\hat{H}, \hat{T}], \hat{T}] + \dots \qquad \hat{T} \hat{T}$$

$$[\hat{\tau}_{\rho}, \hat{\tau}_{\sigma}] \neq 0 \qquad [\hat{H}, \hat{T}] = \hat{H} \hat{T} - \hat{T} \hat{H}$$

$$icMRCCSD \text{ Energy: up to 4-fold comm.}$$
Equations: up to 8-fold comm.
$$\frac{e^{-\hat{T}} \hat{H} e^{\hat{T}} \qquad CCSD \qquad ic-MRCCSD / CAS(6,6)}{-\hat{H}}$$

$$= \hat{H} 2 27$$

$$+ [\hat{H}, \hat{T}] 13 690$$

$$+ \frac{1}{2} [[\hat{H}, \hat{T}], \hat{T}] 21 8766$$

$$+ \frac{1}{6} [[[\hat{H}, \hat{T}], \hat{T}], \hat{T}] 8 70997$$

$$+ \frac{1}{24} [[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}] 1 399839$$

$$+ \dots 0 \dots$$

Commutator approximation

Singlet-Triplet separation of m-Benzyne: icMRCCSD, cc-pVDZ basis, CAS(2,2) frozen core

N₂ stretching:

N₂, cc-pVDZ, CAS(6,6) ic-MRCCSD vs. FCI

Numerical evaluation

Dealing with complex equations:

• Derivation by automated techniques

using GeCCo program (Integrals, CASSCF: DALTON, GAMESS, Molpro)

• Approximations: Truncate after double commutator

tested: Evangelista, Gauss, JCP 134, 114102(2011) Hanauer, Köhn, J. Chem. Phys. 134, 204111 (2011)

Present implementation (GeCCo):

Certainly not perfect ...

... BUT: correct N⁶ scaling (for ic-MRCCSD and fixed active space)

GeCCo

Very new:

PYTHON powered input language for F90 back-end

define operators

symbolic algebra with operators

PRINT({STRING:'=== Cluster Operators ==='})

DEF_OP_FROM_OCC({LABEL: 'Tex', DESCR: '[PV], H|P, V|P[PV], [HV] [HV] |VV, H[HV]
DEF_ME_LIST({LIST: 'TLST', OPERATOR: 'Tex', IRREP:1, '2MS':0, AB_SYM:+1})
PRINT_MEL_INFO({LIST: 'TLST'})

CLONE_OPERATOR({LABEL: 'Tp', TEMPLATE: 'Tex'})

Formula for overlap matrix EXPAND_OP_PRODUCT({LABEL:'F_SMAT',NEW:True,OP_RES:'SSCAL', OPERATORS:['C0^+','Tv^+','Tv','C0'], IDX_SV:[1,2,3,4]}) FACTOR_OUT({LABEL_RES:'F_SMAT',LABEL_IN:'F_SMAT',INTERM:'F_GAM0'}) PRINT_FORMULA({LABEL:'F_SMAT'})

general order contraction kernel for numerical evaluation

OPTIMIZE({LABEL_OPT:'FOPT_H_C0',LABELS_IN:'F_H_C0'})

PRINT({STRING:'Prepare diagonal ...'})
PRECONDITIONER({LIST_PRC:'D0LST',LIST_INP:'H0',MODE:'dia-H'})

PRINT({STRING:'Solving equations ...'})

SOLVE_EVP({LIST_OPT:'C0LST',LIST_PRC:'D0LST',OP_MVP:'H_C0',OP_SVP:'C0', FORM:'F0PT_H_C0',MODE:'DIA',N_ROOTS:1})

A few examples

Hanauer, Köhn, JCP 136, 204107 (2012)

MRAQCC: Yanai, Chan, JCP 127, 104107 CASCC: Lyakh et al., Mol. Phys. 105, 1335 (2007) Mk-MRCCSD: Das, Kallay, Mukherjee, CP 392, 83 (2012)

Some preliminary results

2nd-order DKH transf. for scalar rel. effects

cc-pwCVTZ with geminal terms

Molecular CC calculations need large basis sets!

Example: CCSD(T) atomization energies (20 small molecules)

Error in electronic contribution compared to reference values (derived from experiment)

Values from: Helgaker, Jørgensen, Olsen, "Electronic structure theory", Wiley (2000)

F12 theory: concepts

$$|u_{ij}\rangle = \sum_{a>b} t_{ab}^{ij} |ab\rangle + \sum_{k>l} c_{kl}^{ij} \hat{Q}_{12} f(r_{12}) |kl\rangle$$

Correlation factor:

F12-theory (Ten-no):

Ansatz for pair-function:

 $\gamma \approx 1 a_0^{-1}$ is a fixed basis set parameter $\sum_{i=1}^{\infty}$

 $f(r_{12}) = \frac{1}{\gamma} (1 - e^{-\gamma r_{12}})$

Combination with CC theory (Kutzelnigg, Klopper, Noga)

$$T_{2'} = \frac{1}{8} c_{kl}^{ij} \langle \alpha \beta | \hat{Q}_{12} f(r_{12}) | kl \rangle a_{ij}^{\alpha \beta}$$

Efficient combination with CC theory possible: CCSD-F12a/b (Werner, Adler, Knizia), CCSD(F12*) (Hättig, Köhn, Tew)

Analogous development: icMRCCSD(F12*)

Liu, Hanauer, Köhn, Chem. Phys. Lett. 565, 122 (2013)

$$T_{2'} = \frac{1}{8} c_{KL}^{IJ} \langle \alpha \beta | \hat{Q}_{12} f(r_{12}) | KL \rangle a_{IJ}^{\alpha \beta}$$

From: Tew, Hättig, Klopper, Bachorz. In: "Recent Progress in Coupled Cluster Methods ...", Csarsky, Pittner, Paldus (Eds.), Springer

Kutzelnigg (1985), Kutzelnigg, Klopper (1987, 1991), Ten-no (2004), May, Manby (2004), Tew, Klopper 3) (2005)

University of Stuttgart

Exp. values: Petek et al, JCP 91, 6566 (1989) Bunker, Sears, JCP 83, 4866 (1985) Bunker, Jensen, JCP 79, 1224 (1983)

 $T_{\rm e} = 37.2 \text{ kJ/mol}$

(Exp: 37.7 kJ/mol)

T_e

The F + HCI \rightarrow CI + HF reaction

Traditional theoretical calculations overestimate experimental barrier height! **

Experimental ro-vibrational distribution not reproduced by quantum dynamics.*

⁺M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje and D. J. Nesbitt, *J. Chem. Phys.* **124**, 223403 (200) + CI
 [★]A. Li, H. Guo, Z. Sun, J. Klos and M. H. Alexander, *Phys. Chem. Chem. Phys.* **15**, 15347 (2013).
 ^{*}N. Jonathan *et al., Chem. Phys. Lett.* **7**, 257 (1970); A. M. G. *Ding et al.*, Faraday Discuss. Chem. Soc. **55**, 252 (1973).

The F + HCI \rightarrow CI + HF reaction

Barrier height and exothermicity obtained with icMRCCSD(T) theory are very close to the experimental values!

> CAS(3,3) sufficient! [MRCI uses CAS(15,9)]

⁺M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje and D. J. Nesbitt, *J. Chem. Phys.* **124**, 223403 (2006). ^{*}N. Jonathan *et al., Chem. Phys. Lett.* **7**, 257 (1970); A. M. G. *Ding et al.*, Faraday Discuss. Chem. Soc. **55**, 252 (1973).

Active-space	SIZE

Singlet-Triplet splitting of p-benzyne

$\Delta E_{S-T}/kcal mol^{-1}$	icMRCCSD	icMRCCSD(T)
CAS(2,2)	3.7	4.8
CAS(8,8)	4.7	4.9

keep the active space as small as physically necessary

cc-pVDZ basis Structures: RHF/UHF-CCSD(T)/cc-pVDZ from: Evangelista et al., JCP 127, 024102 (2007)

> Hanauer, Köhn, JCP 136, 204107 (2012) see also: Evangelista, Hanauer, Köhn, Gauss, JCP 136, 204108 (2012)

Η

F

single-reference

ic-MRCCSD

CCSD

Additional aspects (now and future)

Full spin adaptation (eigenfunctions of S^2)

Excited states via linear-response and/or EOM frameworks

Multi-state extension

Response properties

Lower-order approximations (perturbation theory, CEPA-like theories)

4.0

3.0

2.0

1.0

-106.905-106.910

-106.915

-106.920 -106.925

-106.930

-106.935 11

12

13

r_{LiF} (a₀)

15

16

17

Energy (hartree)

ΔE (eV)

www.uni-stuttgart.de/theochem

 $|\Psi_{\rm ic}\rangle = e^{\hat{T}} \sum_{\mu} |\Phi_{\mu}\rangle c_{\mu}$

Success and criticism

Full analogy to single-reference CC

Proper formal scaling, compact excitation manifold

Fully extensive energy, orbital invariance

Very accurate results

Problems, criticism:

- Threshold for near-linear dependencies
- Commutator approximation
- Some consistency problems remain (for dissociating singlets) Efficiency