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Outline

• Hamiltonian

• Three-nucleon forces

• Coupled-cluster summary

• Examples from spherically coupled EOM-CCSD
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𝐻Ψ = 𝐸Ψ

The nuclear Schrödinger equation
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The basis

Single particle picture

Fermions
𝑁

𝐴
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Basis size
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Hamiltonian
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The interaction

V
Interactions 

between point 
particles

Complicated 
many-body 

forces

Three-nucleon forces are crucial!
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Chiral effective field theory

• Direct link to QCD

• Perturbative expansion 

in momentum

• Hierarchy of nuclear 

forces
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Computing the interaction

• Not possible to do “on the fly”.

• Three-nucleon forces takes weeks to transform to 
single particle coordinates.

The interaction elements have to be 
stored in memory!
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Memory usage
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Memory usage
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Spherically coupled scheme

Expose invariant subspaces labelled by the 
total angular momentum
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Transformation of a twobody scalar 

operator

1. Different single particle spaces.
2. Matrix elements are independent of projections.

𝑎𝑏; 𝑗𝑎𝑚𝑎𝑗𝑏𝑚𝑏 𝑋 𝑐𝑑; 𝑗𝑐𝑚𝑐𝑗𝑑𝑚𝑑 =

 

𝐽𝑀

𝐶𝑚𝑎𝑚𝑏𝑀
𝑗𝑎𝑗𝑏𝐽 𝐶𝑚𝑐𝑚𝑑𝑀

𝑗𝑐𝑗𝑑𝐽 〈𝑎𝑏; 𝑗𝑎𝑗𝑏𝐽 𝑋 𝑐𝑑; 𝑗𝑐𝑗𝑑𝐽〉

𝑎𝑏; 𝑗𝑎𝑗𝑏𝐽 𝑋 𝑐𝑑; 𝑗𝑐𝑗𝑑𝐽 =

1

2𝐽 + 1
 

𝑚𝑎𝑚𝑏𝑚𝑐𝑚𝑑𝑀

𝐶𝑚𝑎𝑚𝑏𝑀
𝑗𝑎𝑗𝑏𝐽 𝐶𝑚𝑐𝑚𝑑𝑀

𝑗𝑐𝑗𝑑𝐽 𝑎𝑏; 𝑗𝑎𝑚𝑎𝑗𝑏𝑚𝑏 𝑋 𝑐𝑑; 𝑗𝑐𝑚𝑐𝑗𝑑𝑚𝑑
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Single particle states
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Memory usage
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Memory usage
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Three nucleons forces

• Hartree-Fock with full three-nucleon force
– Current limit: Nmax=14, E3max=18

• ~10 TB total memory

• Titan : 10-20% for 1 hour

• Need larger modelspaces beyond 52𝐶𝑎

• Normal-ordered twobody approximation (NO2B)
– Keep only contributions to:

• Vacuum energy

• Onebody operator

• Twobody operator

• Residual three-nucleon force with 𝑇3
(1)

(MBPT2).
– 1 % effect (0.1 MeV per Nucleon)
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Pros and cons

Pros

• Preserve symmetries.

• Dramatic reduction in 
memory usage.

• Dramatic reduction in 
computational cost.

Cons

• Complicated algebra.

• Every diagram is coupled 
differently.

• Antisymmetry is non-trivial.

• Lots of opportunities for 
bugs.

• Limited set of nuclei are 
accessible.
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NUCCOR coverage
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Closed (sub-)shell nuclei
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NUCCOR coverage (PA/PR)
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One particle attached or removed

𝐻 = 𝑒−𝑇𝐻𝑒𝑇

𝑅𝐴+1 = 𝑅𝑝 + 𝑅ℎ
2𝑝
+ 𝑅2ℎ
3𝑝
+ 𝑅3ℎ
4𝑝
+⋯

1p 2p1h 3p2h 4p3h

1p
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4p3h

1h 1p2h 2p3h 3p4h

1h

1p2h
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3p4h

𝑅𝐴−1 = 𝑅ℎ + 𝑅2ℎ
𝑝
+ 𝑅3ℎ
2𝑝
+ 𝑅4ℎ
3𝑝
+⋯
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Excited states in 
𝟐𝟓𝐅

Zs. Vajta et al.
Phys. Rev. C 89, 054323 (2014)

• Assumed 𝟐𝟒𝐎 with a proton 
attached.

• Ground state and first excited 
states have significant 2p1h 
component.

• Collection of states with 
significant 3p2h components.

• 4p3h amplitudes are 
necessary.

• Already at computational limit 
with 3p2h amplitudes.
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NUCCOR coverage (2PA/2PR)
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Two particles attached or removed

𝐻 = 𝑒−𝑇𝐻𝑒𝑇

𝑅𝐴+2 = 𝑅2𝑝 + 𝑅ℎ
3𝑝
+ 𝑅2ℎ
4𝑝
+ 𝑅3ℎ
5𝑝
+⋯
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3𝑝
+⋯
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Strategy (j-scheme)

1. Define transformations between m-scheme and j-
scheme elements/amplitudes.

2. Take the original equations and replace m-
scheme elements/amplitudes with the 
transformations from 1.

3. Eliminate projections (m’s) by finding the correct 
Wigner coefficients
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3p1h (𝑅3) transformations

J𝑎𝑏
J𝑎𝑏𝑐

J
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Example diagram (2PA-EOMCCSD)

a b ci

em

GRJ Phys. Rev. C 88, 024305 (2013
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2PA EOM-CCSD amplitudes
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Active space (preliminary)
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Computing nuclei with A+2: Example Fluorine-26 
GRJ et al. PRC 2011, GRJ PRC 2013, J. Shen and P. Piecuch J. Chem. Phys (2013)

Experimental spectra in 26F compared with phenomenological 

USD shell-model calculations and coupled-cluster calculations.

A. Lepailleur et al (2012)
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Benchmark in 
𝟔𝐇𝐞

• Uncoupled scheme
• Tiny modelspace
• Good agreement between FCI 

and 2PA-EOMCCSD with 3p1h 
amplitudes.

GRJ, M. Hjorth-Jensen, G. Hagen, T. Papenbrock Phys. Rev. C 83, 054306, 2011 
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Challenges

• Three-nucleon forces in HF, CC and EOM-CC.

– Residual three-nucleon forces contribute > 1%

– Needs to be included in CC.

• Additional correlations in EOM-CC.

– Not possible to include the full set of amplitudes.

– Active spaces?

• Larger modelspaces (three-nucleon force).

– Nmax=14, E3max=18 not enough

– Quickly saturates the available computational resources.
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Questions?

This work was partly supported by the Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National

Laboratory), under Contracts No. DE-FG02-96ER40963 (University of Tennessee) and No.DE-SC0008499

(NUCLEI SciDAC-3 Collaboration), and the Field Work Proposal ERKBP57 at Oak Ridge National Laboratory.

An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and

Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility

located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of

Energy under Contract DE-AC05-00OR22725 and used computational resources of the National Center for

Computational Sciences, the National Institute for Computational Sciences, and the Notur project in Norway.

Gustav R. Jansen
Gustav.Jansen@utk.edu


