Near closed-shell nuclei from equation-of-motion coupled-cluster theory

Gustav R. Jansen

University of Tennessee, Knoxville

ORNL

Outline

- Hamiltonian
- Three-nucleon forces
- Coupled-cluster summary
- Examples from spherically coupled EOM-CCSD

The nuclear Schrödinger equation

$H \Psi=E \Psi$

The basis

Single particle picture

Fermions

$\binom{N}{A}$

National Laboratory

Basis size

-He4 -C12 -O16 -Ca40
—Titan 1s —Titan 1h—Titan 1y —Titan U

Hamiltonian

National Laboratory

The interaction

Interactions between point particles

Complicated many-body forces

Three-nucleon forces are crucial!

Chiral effective field theory

3N Force

Computing the interaction

- Not possible to do "on the fly".
- Three-nucleon forces takes weeks to transform to single particle coordinates.

The interaction elements have to be stored in memory!

Memory usage

National Laboratory

Memory usage

Spherically coupled scheme

Expose invariant subspaces labelled by the total angular momentum

National Laboratory

Transformation of a twobody scalar operator

$$
\begin{gathered}
\left\langle a b ; j_{a} m_{a} j_{b} m_{b}\right| X\left|c d ; j_{c} m_{c} j_{d} m_{d}\right\rangle= \\
\sum_{J M} C_{m_{a} m_{b} M}^{j_{a} j_{j} J} C_{m_{c} m_{d} M}^{j_{c} j_{d} J}\left\langle a b ; j_{a} j_{b} J\right||X|\left|c d ; j_{c} j_{d} J\right\rangle \\
\left\langle a b ; j_{a} j_{b} J\right||X|\left|c d ; j_{c} j_{d} J\right\rangle= \\
\frac{1}{2 J+1} \sum_{m_{a} m_{b} m_{c} m_{d} M} C_{m_{a} m_{b} M}^{j_{a} j_{b} J} C_{m_{c} m_{d} M}^{j_{c} j_{d} J}\left\langle a b ; j_{a} m_{a} j_{b} m_{b}\right| X\left|c d ; j_{c} m_{c} j_{d} m_{d}\right\rangle
\end{gathered}
$$

1. Different single particle spaces.
2. Matrix elements are independent of projections.

Single particle states

OAK RIDGE
National Laboratory

Memory usage

National Laboratory

Memory usage

Three nucleons forces

- Hartree-Fock with full three-nucleon force
- Current limit: Nmax=14, E3max=18
- ~10 TB total memory
- Titan : 10-20\% for 1 hour
- Need larger modelspaces beyond ${ }^{52} \mathrm{Ca}$
- Normal-ordered twobody approximation (NO2B)
- Keep only contributions to:
- Vacuum energy
- Onebody operator
- Twobody operator
- Residual three-nucleon force with $T_{3}^{(1)}$ (MBPT2).
- 1% effect (0.1 MeV per Nucleon)

Pros and cons

Pros

- Preserve symmetries.
- Dramatic reduction in memory usage.
- Dramatic reduction in computational cost.

Cons

- Complicated algebra.
- Every diagram is coupled differently.
- Antisymmetry is non-trivial.
- Lots of opportunities for bugs.
- Limited set of nuclei are accessible.

NUCCOR coverage

N OAK RIDGE

Closed (sub-)shell nuclei

Coupledd-cluster sumnnary

$$
\begin{gathered}
|\Psi\rangle=e^{T}\left|\Phi_{0}\right\rangle \\
T=1+T_{h}^{p}+T_{2 h}^{2 p}+T_{3 h}^{3 p}+\cdots
\end{gathered}
$$

$$
\bar{H}=e^{-T} H e^{T}
$$

NUCCOR coverage (PA/PR)

N OAK RIDGE

One particle attached or removed

PAPRR-EOM Operators

$$
\begin{gathered}
\bar{H}=e^{-T} H e^{T} \\
R^{A+1}=R^{p}+R_{h}^{2 p}+R_{2 h}^{3 p}+R_{3 h}^{4 p}+\cdots \\
R^{A-1}=R_{h}+R_{2 h}^{p}+R_{3 h}^{2 p}+R_{4 h}^{3 p}+\cdots
\end{gathered}
$$

* OAK RIDGE

Excited states in ${ }^{25}$ F

Zs. Vajta et al.

Phys. Rev. C 89, 054323 (2014)

- Assumed ${ }^{24} \mathbf{O}$ with a proton attached.
- Ground state and first excited states have significant 2p1h component.
- Collection of states with significant 3p2h components.

	1 p	2 p 1 h	3 p 2 h
$5 / 2_{1}^{+}$	0.63	0.30	0.07
$1 / 2_{1}^{+}$	0.56	0.36	0.08
$9 / 2_{1}^{+}$	0.00	0.74	0.26
$3 / 2_{1}^{+}$	0.47	0.42	0.11
$3 / 2_{2}^{+}$	0.01	0.72	0.27
$5 / 2_{2}^{+}$	0.01	0.73	0.26
$1 / 2_{2}^{+}$	0.03	0.72	0.25
$7 / 2_{1}^{+}$	0.00	0.73	0.27

- 4p3h amplitudes are necessary.
- Already at computational limit with 3p2h amplitudes.

NUCCOR coverage (2PA/2PR)

* OAK RIDGE

Two particles attached or removed

2PAN2PR-EOM Operators

* OAK RIDGE

Strategy (j-scheme)

1. Define transformations between m-scheme and j scheme elements/amplitudes.
2. Take the original equations and replace mscheme elements/amplitudes with the transformations from 1.
3. Eliminate projections (m's) by finding the correct Wigner coefficients

3p1h $\left(R_{3}\right)$ transformations

$$
\begin{aligned}
r_{i}^{a b c}= & \sum_{\substack{J_{a b c} M_{a b c} \\
J_{a b} M_{a b}}} r_{i}^{a b c}\left(J, J_{a b c}, J_{a b}\right) \\
& \times C_{m_{a} m_{b} M_{a b}}^{j_{a} j_{b} M_{a b}} C_{M_{a b} m_{c} M_{a b c}}^{J_{a b} j_{c} J_{a b c}} C_{M_{i} M_{i} M_{a b c}}^{J j_{i} J_{a b c}} .
\end{aligned}
$$

$$
\begin{aligned}
r_{i}^{a b c}\left(J, J_{a b c}, J_{a b}\right)= & \frac{1}{\hat{J}_{a b c}^{2}} \sum_{\substack{M M_{a b c} M_{a b} \\
m_{a} m_{b} m_{c} m_{i}}} r_{i}^{a b c} C_{m_{a} m_{b} M_{a b}}^{j_{a} j_{b} J_{a b}} \\
& \times C_{M_{a b} m_{c} M_{a b c}}^{J_{a b} j_{c} J_{a b c}} C_{M m_{i} M_{a b c}}^{J j_{i} J_{a b c}}
\end{aligned}
$$

Example diagram (2PA-EOMCCSD)

GRJ Phys. Rev. C 88, 024305 (2013

$\hat{\mathrm{P}}(a b, c) \overline{\mathrm{H}}_{e i}^{m c} r_{m}^{a b e}$

$$
\begin{aligned}
& \hat{\mathrm{P}}(a b, c) \sum_{J_{a b e}, J_{m c}}(-1)^{1+j_{e}+j_{m}+J_{a b e}+J_{a b c}+J_{m c}} \hat{J}_{a b e}^{2} \hat{J}_{m c}^{2}\left\{\begin{array}{ccc}
J_{a b} & j_{e} & J_{a b e} \\
j_{c} & J_{m c} & j_{m} \\
J_{a b c} & j_{i} & J
\end{array}\right\} \\
& \times \overline{\mathrm{H}}_{e i}^{m c}\left(J_{m c}\right) r_{m}^{a b e}\left(J_{a b}, J_{a b e}, J\right) \\
& \hat{\mathrm{P}}(a b, c)=\hat{1}+\sum_{J_{c b}} \hat{J}_{c b} \hat{J}_{a b}\left\{\begin{array}{lll}
j_{c} & j_{b} & J_{c b} \\
j_{a} & J_{a b c} & J_{a b}
\end{array}\right\} \hat{\mathrm{P}}_{a, c}- \\
& \quad \sum_{J_{a c}}(-1)^{j_{b}+j_{c}-J_{a b}+J_{a c} \hat{J}_{a b} \hat{J}_{a c} \times\left\{\begin{array}{lll}
j_{c} & j_{a} & J_{a c} \\
j_{b} & J_{a b c} & J_{a b}
\end{array}\right\} \hat{\mathrm{P}}_{b, c}}
\end{aligned}
$$

2PA EOM-CCSD amplitudes

National Laboratory

Active space (preliminary)

National Laboratory

Computing nuclei with A+2: Example Fluorine-26 GRJ et al. PRC 2011, GRJ PRC 2013, J. Shen and P. Piecuch J. Chem. Phys (2013)

Experimental spectra in ${ }^{26} \mathrm{~F}$ compared with phenomenological USD shell-model calculations and coupled-cluster calculations.
A. Lepailleur et al (2012)

Benchmark in ${ }^{6} \mathrm{He}$

GRJ, M. Hjorth-Jensen, G. Hagen, T. Papenbrock Phys. Rev. C 83, 054306, 2011

- Uncoupled scheme
- Tiny modelspace
- Good agreement between FCI and 2PA-EOMCCSD with 3p1h amplitudes.

Challenges

- Three-nucleon forces in HF, CC and EOM-CC.
- Residual three-nucleon forces contribute $>1 \%$
- Needs to be included in CC.
- Additional correlations in EOM-CC.
- Not possible to include the full set of amplitudes.
- Active spaces?
- Larger modelspaces (three-nucleon force).
- Nmax=14, E3max=18 not enough
- Quickly saturates the available computational resources.

Questions?

Gustav R. Jansen Gustav.Jansen@utk.edu

theUNIVERSITYof
 $\frac{\text { TENNESSEE }}{\text { KNOXVILLE }}$

This work was partly supported by the Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory), under Contracts No. DE-FG02-96ER40963 (University of Tennessee) and No.DE-SC0008499 (NUCLEI SciDAC-3 Collaboration), and the Field Work Proposal ERKBP57 at Oak Ridge National Laboratory.

An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725 and used computational resources of the National Center for Computational Sciences, the National Institute for Computational Sciences, and the Notur project in Norway.

