# Nonperturbative Shell-Model Interactions from In-Medium SRG 

Jason D. Holt

## CTRIUMF

R. Stroberg


TECHNISCHE
UNIVERSITATT
DARMSTADT

S. Bogner H. Hergert MICHIGAN STATE





## Frontiers and Impact of Nuclear Science

Aim of modern nuclear theory:
Develop unified first-principles picture of structure and reactions

- Nuclear forces (QCD/strong interaction at low energies)
- Electroweak physics
- Nuclear many-body problem


## Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:
Worldwide joint experimental/theoretical effort
What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? How do magic numbers form and evolve?


## Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

## Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort
What are the properties of proton/neutron-rich matter?
What are the limits of nuclear existence?

How do magic numbers form and evolve?

82

Advances in many-body methods
Coupled Cluster
(Hagen, Jansen, Papenbrock, Signoracci)
In-Medium SRG
(Bogner, Hergert, JDH, Schwenk, Stroberg)
Many-Body Perturbation Theory
(JDH, Hjorth-Jensen, Schwenk)
Self-Consistent Green's Function
(Barbieri, Duguet, Somá)

## Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

## Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? How do magic numbers form and evolve?


## The Nuclear Many-Body Problem

Nucleus strongly interacting many-body system - how to solve $A$-body problem?

$$
H \psi_{n}=E_{n} \psi_{n}
$$

Valence space: diagonalize exactly with reduced number of degrees of freedom Large scale: controlled approximations to solving full Schrödinger Equation


Coupled Cluster In-Medium SRG
Perturbation Theory

Medium-mass
Large scale


Limited range:
Closed shell $\pm 1$
Even-even
Limited properties:
Ground states only
Some excited state

Coupled Cluster
In-Medium SRG
Green's Function

## Valence-Space Ideas

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate valence-space Hamiltonian inputs from nuclear forces Interaction matrix elements

Single-particle energies (SPEs)
$0 h, 1 f, 2 p \xlongequal{(112)}$
$0 g, 1 d, 2 s \xlongequal{\text { (70) }}$


Inert core: does not reproduce experiment

## Valence-Space Ideas

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate valence-space Hamiltonian inputs from nuclear forces Interaction matrix elements

Single-particle energies (SPEs)


## Perturbative Approach

1) Effective interaction: sum excitations outside valence space to $3^{\text {rd }}$ order
2) Single-particle energies calculated self consistently
3) Harmonic-oscillator basis of 13-15 major shells: converged
4) NN and 3 N forces from chiral EFT - to $3^{\text {rd }}$-order MBPT

cons

## Perturbative Approach

1) Effective interaction: sum excitations outside valence space to $3^{\text {rd }}$ order
2) Single-particle energies calculated self consistently
3) Harmonic-oscillator basis of 13-15 major shells: converged
4) NN and 3 N forces from chiral EFT - to $3^{\text {rd }}$ - order MBPT

## Limitations

- Uncertain perturbative convergence
- Core physics inconsistent or absent
- Degenerate valence space requires HO basis (HF requires nontrivial extension)
- Must treat additional orbitals nonperturbatively (extend valence space)



## Perturbative Approach

1) Effective interaction: sum excitations outside valence space to $3^{\text {rd }}$ order
2) Single-particle energies calculated self consistently
3) Harmonic-oscillator basis of 13-15 major shells: converged
4) NN and 3 N forces from chiral EFT - to $3^{\text {rd }}$-order MBPT
5) Need extended valence spaces

Philosophy: diagonalize in largest possible valence space (where orbits relevant)


## Impact on Spectra: ${ }^{23} 0$

Neutron-rich oxygen spectra with $\mathrm{NN}+3 \mathrm{~N}$
$5 / 2^{+}, 3 / 2^{+}$energies reflect ${ }^{22,24} \mathrm{O}$ shell closures


## $s d$-shell NN only

 Wrong ground state $5 / 2^{+}$too low$3 / 2^{+}$bound
$\mathrm{NN}+3 \mathrm{~N}$
Clear improvement in extended valence space

JDH, Menendez, Schwenk, EPJA (2013)

## Nonperturbative In-Medium SRG: Reminder

In-Medium SRG continuous unitary trans. drives off-diagonal physics to zero

$$
H(s)=U(s) H U^{\dagger}(s) \equiv H^{\mathrm{d}}(s)+H^{\mathrm{od}}(s) \rightarrow H^{\mathrm{d}}(\infty)
$$

Tsukiyama, Bogner, Schwenk, PRL (2011)

$$
H^{\mathrm{od}}=\langle p| H|h\rangle+\langle p p| H|h h\rangle+\cdots
$$




## Flow Equation Formulation

Flow equation: define $U(s)$ implicitly with particular choice of generator

$$
\eta(s) \equiv(\mathrm{d} U(s) / \mathrm{d} s) U^{\dagger}(s)
$$

chosen for desired decoupling behavior (Wegner, White, Im. Time, etc)
Solving flow equation (Hamiltonian and generator truncated at 2-body level)

$$
\frac{\mathrm{d} H(s)}{\mathrm{d} s}=[\eta(s), H(s)]
$$

Drives all n-particle n-hole couplings to 0 for closed-shell reference state

$$
\langle n p n h| H(\infty)\left|\Phi_{c}\right\rangle=0
$$

## IM-SRG: Valence-Space Formulation

Open shell systems Tsukiyama, Bogner, Schwenk, PRC (2012)
Split particle states into valence states, $v$, and those above valence space, $q$ Redefine "off-diagonal" to include excitations of valence particles outside v.s.



$$
H(s=0) \rightarrow H(\infty)
$$

$$
H^{\mathrm{od}}=\langle p| H|h\rangle+\langle p p| H|h h\rangle+\langle v| H|q\rangle+\langle p q| H|v v\rangle+\langle p p| H|h v\rangle
$$

## IM-SRG: Valence-Space Formulation

## Open shell systems Tsukiyama, Bogner, Schwenk, PRC (2012)

Split particle states into valence states, $v$, and those above valence space, $q$ Redefine "off-diagonal" to exclude valence particles



$$
H(s=0) \rightarrow H(\infty)
$$

Core physics included consistently (calculate absolute energies, radii...) Inherently nonperturbative - no need for extended valence space?

## Nonperturbative Valence-Space Strategy

1) NN and 3 N forces from Chiral EFT
2) Evolve with free-space $\operatorname{SRG} \lambda_{\text {SRG }}=1.88-2.24 \mathrm{fm}^{-1}$
3) Normal-order wrt HF reference state
4) Perform IM-SRG(2) calculation in flow-equation approach
5) Diagonalize with standard shell-model machinery

NN matrix elements

- $e_{\text {max }}=2 n+l=14$ converged
- Vary $\hbar \omega=20-24 \mathrm{MeV}$
- Consistently include 3N forces induced by SRG evolution (NN+3N-ind)

Initial 3N force contributions

- Chiral $\mathrm{N}^{2} \mathrm{LO}$ ( $\mathbf{N N}+3 \mathrm{~N}-\mathrm{full}$ )
- Included with cut: $e_{1}+e_{2}+e_{3} \leq E_{3 \text { max }}=14$


## Oxygen Anomaly



| ${ }^{24} \mathrm{~F}$ | ${ }^{25} \mathrm{~F}$ | ${ }^{26} \mathrm{~F}$ | ${ }^{27}$ |
| :--- | :--- | :--- | :--- |
| ${ }^{23} \mathrm{O}$ | ${ }^{24} \mathrm{O}$ |  |  |
| ${ }^{22} \mathrm{~N}$ | ${ }^{23} \mathrm{~N}$ |  |  |
|  | ${ }^{22} \mathrm{C}$ |  | $d$ |

3N repulsion amplified with N : crucial for neutron-rich nuclei $d_{3 / 2}$ unbound at ${ }^{24} \mathrm{O}$ with 3 N forces



Isotopes unbound
beyond ${ }^{24} \mathrm{O}$

First microscopic explanation of oxygen anomaly

Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

## IM-SRG Oxygen Ground-State Energies

Valence-space interaction and SPEs from IM-SRG in $s d$ shell

$\mathrm{NN}+3 \mathrm{~N}$-induced reproduce exp well, not dripline
$\mathrm{NN}+3 \mathrm{~N}$-full modestly overbound - good behavior past dripline
Good dripline properties
Very weak $\hbar \omega$ dependence

## Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N forces


Clear improvement with full $\mathrm{NN}+3 \mathrm{~N}$
Validates valence-space results
Remarkable agreement between all methods with same forces

## Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N forces


Clear improvement with full $\mathrm{NN}+3 \mathrm{~N}$
Validates valence-space results
Remarkable agreement between all methods with same forces

## Dripline Mechanism

Compare to large-space methods with same SRG-evolved NN +3 N forces



Mass Number A Bogner et al., PRL (2014)
Cipollone, Barbieri, Navrátil, PRL (2013)
Robust mechanism driving dripline behavior
3 N repulsion raises $d_{3 / 2}$, lessens decrease across shell
Similar to first MBPT NN +3 N calculations in oxygen

## IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG


Clear improvement with $\mathrm{NN}+3 \mathrm{~N}$-full
IM-SRG: comparable with phenomenology

## IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG


Clear improvement with $\mathrm{NN}+3 \mathrm{~N}$-full
Continuum neglected: expect to lower $d_{3 / 2}$

## IM-SRG Oxygen Spectra

Oxygen spectra: IM-SRG predictions beyond the dripline

${ }^{24} \mathrm{O}$ closed shell (too high $2^{+}$)
Continuum neglected: expect to lower spectrum
Only one excited state in ${ }^{26} \mathrm{O}$ below 6.5 MeV

## Experimental Connection: ${ }^{26} \mathrm{O}$ Spectrum

Oxygen spectra: IM-SRG predictions beyond the dripline


New measurement at RIKEN on excited states in ${ }^{26} \mathrm{O}$
Existence of excited state 1.3 MeV
IM-SRG prediction: one natural-parity state below 7 MeV at 1.22 MeV

## Comparison with MBPT/CCEI Oxygen Spectra

Oxygen spectra: Effective interactions from Coupled-Cluster theory
See talk of G. Hagen




Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015)
MBPT in extended valence space
IM-SRG/CCEI spectra agree within $\sim 300 \mathrm{keV}$

## Experimental Connection: ${ }^{24}$ F Spectrum

${ }^{24} \mathrm{~F}$ spectrum: extended-space MBPT and (sd-shell) IM-SRG, full CC


New measurements from GANIL
IM-SRG: comparable with phenomenology in good agreement with new data

## Fully Open Shell: Neutron-Rich Fluorine Spectra

Fluorine spectra: extended-space MBPT and IM-SRG (sd shell)


MBPT IM-SRG Expt. USDB



Bogner, Hergert, JDH, Schwenk, in prep.

MBPT: obvious deficiencies
IM-SRG: competitive with phenomenology in good agreement data

## Fully Open Shell: Neutron-Rich Neon Spectra

Neon spectra: extended-space MBPT and IM-SRG (sd shell)


MBPT IM-SRG Expt. USDB



Bogner, Hergert, JDH, Schwenk, in prep.

MBPT: obvious deficiencies
IM-SRG: competitive with phenomenology in good agreement data

## Alternative Approach: Magnus Expansion

Magnus expansion: explicitly construct unitary transformation $U(S)$

$$
U(s)=e^{\Omega(s)}
$$

With flow equation:

$$
\frac{\mathrm{d} \Omega(s)}{\mathrm{d} s}=\eta(s)+\frac{1}{2}[\Omega(s), \eta(s)]+\frac{1}{12}[\Omega(s),[\Omega(s), \eta(s)]]+\cdots
$$

Leads to commutator expression for evolved Hamiltonian

$$
H(s)=e^{\Omega(s)} H e^{-\Omega(s)}=H+\frac{1}{2}[\Omega(s), H]+\frac{1}{12}[\Omega(s),[\Omega(s), H]]+\cdots
$$

Morris, Parzuchowski, Bogner, in prep
Nested commutator series - in practice truncate numerically
Perform all calculations at two-body level

## Magnus vs Flow-Equation

Analogous to electron gas results varying step size


Evident error accumulation in flow-equation for small step sizes Magnus: rapid convergence, independent of step size

## p-Shell Benchmarks

## ${ }^{6}$ Li spectrum from $\mathrm{NN}+3 \mathrm{~N}$ forces



## p-Shell Benchmarks

## p-shell SPEs nearly converged



## sd-Shell Benchmarks

${ }^{20} \mathrm{Ne}$ shell energies nearly converged


As in oxygen, overbound but spectrum well reproduced

## Effective Operators

Keep unitary transformation from evolution of Hamiltonian
Can generalize to arbitrary operators

$$
\begin{aligned}
& H(s)=e^{\Omega(s)} H e^{-\Omega(s)}=H+\frac{1}{2}[\Omega(s), H]+\frac{1}{12}[\Omega(s),[\Omega(s), H]]+\cdots \\
& O^{\Lambda}(s)=e^{\Omega(s)} O^{\Lambda} e^{-\Omega(s)}=O^{\Lambda}+\frac{1}{2}\left[\Omega(s), O^{\Lambda}\right]+\frac{1}{12}\left[\Omega(s),\left[\Omega(s), O^{\Lambda}\right]\right]+\cdots
\end{aligned}
$$

Must work out normal ordered operators in J-coupled basis
First apply to scalar operators

## E0 Transitions

Seldom calculated in nuclear shell model
In single HO shell:

$$
\left.\left|\langle f| \rho_{E 0}\right| i\right\rangle\left.\right|^{2} \propto \delta_{f i} ; \quad \rho_{E 0}=\frac{1}{e^{2} R} \sum_{i} e_{i} r_{i}^{2}
$$

Must resort to phenomenological gymnastics

With Magnus IM-SRG, calculate effective valence-space operator:

$$
\rho_{E 0}(s)=e^{\Omega(s)} \rho_{E 0} e^{-\Omega(s)}=\rho_{E 0}+\frac{1}{2}\left[\Omega(s), \rho_{E 0}\right]+\cdots
$$

Commutators induce important two-body parts

## E0 Transitions in sd Shell Model

Very preliminary results in $s d$ shell (not converted in NN or 3 N ):


3N forces provide significant reduction
Need additional benchmarks

## RMS Charge Radii in sd Shell Model

Previous SM radii calculations rely on empirical input or as relative to core Radii for stable sd-shell nuclei calculated in shell model NN+3N


## New Directions and Outlook

Heavier semi-magic chains: MBPT as guide Fundamental symmetries

Ab initio valence-shell Hamiltonians
Towards full sd- and pf-shells Implement extended valence spaces Moving beyond stability Continuum effects near driplines

Non-empirical calculation of $0 v \beta \beta$ decay Effective electroweak operators

## New Directions and Outlook

Heavier semi-magic chains: MBPT as guide
Ab initio valence-shell Hamiltonians
Towards full sd- and pf-shells Implement extended valence spaces Moving beyond stability
Continuum effects near driplines

Fundamental symmetries
Non-empirical calculation of $0 v \beta \beta$ decay Effective electroweak operators

