Nonperturbative Shell-Model Interactions from In-Medium SRG

Jason D. Holt

S. Bogner H. Hergert

A. Schwenk

TECHNISCHE UNIVERSITÄT DARMSTADT

Bundesministerium für Bildung und Forschung

Frontiers and Impact of Nuclear Science

82

Aim of modern nuclear theory:

Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (QCD/strong interaction at low energies)
- Electroweak physics
- Nuclear many-body problem

Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:

Worldwide joint experimental/**theoretical** effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods Coupled Cluster (Hagen, Jansen, Papenbrock, Signoracci) In-Medium SRG (Bogner, Hergert, JDH, Schwenk, Stroberg) Many-Body Perturbation Theory (JDH, Hjorth-Jensen, Schwenk) Self-Consistent Green's Function (Barbieri, Duguet, Somá)

Advances in ab initio Nuclear Structure for Medium-Mass Exotic Nuclei

Exploring the frontiers of nuclear science:

Worldwide joint experimental/**theoretical** effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods Coupled Cluster (Hagen, Jansen, Papenbrock, Signoracci) In-Medium SRG (Bogner, Hergert, JDH, Schwenk, Stroberg) Many-Body Perturbation Theory (JDH, Hjorth-Jensen, Schwenk) Self-Consistent Green's Function (Barbieri, Duguet, Somá)

3N forces essential for exotic nuclei

The Nuclear Many-Body Problem

Nucleus strongly interacting many-body system – how to solve A-body problem? $H\psi_n=E_n\psi_n$

Valence space: diagonalize exactly with reduced number of degrees of freedom **Large scale**: controlled approximations to solving full Schrödinger Equation

Valence space

Medium-mass

Any nuclei near closed shell cores

All properties: Ground states Excited states EW transitions

Coupled Cluster In-Medium SRG Perturbation Theory

Medium-mass

Large scale

Limited range: Closed shell ±1 Even-even

Limited properties: Ground states only Some excited state

Coupled Cluster In-Medium SRG Green's Function

Valence-Space Ideas

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate **valence-space** Hamiltonian inputs from nuclear forces **Interaction matrix elements Single-particle energies (SPEs)**

Valence-Space Ideas

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate **valence-space** Hamiltonian inputs from nuclear forces **Interaction matrix elements Single-particle energies (SPEs)**

Perturbative Approach

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13-15 major shells: converged
- 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT

Perturbative Approach

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13-15 major shells: converged
- 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT

Limitations

- Uncertain perturbative convergence
- Core physics inconsistent or absent
- Degenerate valence space requires HO basis (HF requires nontrivial extension)
- Must treat additional orbitals nonperturbatively (extend valence space)

Perturbative Approach

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13-15 major shells: converged
- 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT
- 5) Need extended valence spaces

Philosophy: diagonalize in largest possible valence space (where orbits relevant)

Treats higher orbits nonperturbatively

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N

 $5/2^+$, $3/2^+$ energies reflect ^{22,24}O shell closures

Nonperturbative In-Medium SRG: Reminder

In-Medium SRG continuous unitary trans. drives off-diagonal physics to zero

$$H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \rightarrow H^{d}(\infty)$$

Tsukiyama, Bogner, Schwenk, PRL (2011)

$$H^{\rm od} = \langle p | H | h \rangle + \langle pp | H | hh \rangle + \cdots$$

Flow Equation Formulation

Flow equation: define U(s) implicitly with particular choice of generator $\eta(s) = (dU(s)/ds)U^{\dagger}(s)$

chosen for desired decoupling behavior (Wegner, White, Im. Time, etc)

Solving flow equation (Hamiltonian and generator truncated at 2-body level)

$$\frac{\mathrm{d}H(s)}{\mathrm{d}s} = \left[\eta(s), H(s)\right]$$

Drives all n-particle n-hole couplings to 0 for **closed-shell reference state** $\langle npnh | H(\infty) | \Phi_c \rangle = 0$

IM-SRG: Valence-Space Formulation

Open shell systems Tsukiyama, Bogner, Schwenk, PRC (2012)

Split particle states into valence states, v, and those above valence space, q

Redefine "off-diagonal" to include excitations of valence particles outside v.s.

 $H^{\text{od}} = \langle p | H | h \rangle + \langle pp | H | hh \rangle + \langle v | H | q \rangle + \langle pq | H | vv \rangle + \langle pp | H | hv \rangle$

IM-SRG: Valence-Space Formulation

Open shell systems Tsukiyama, Bogner, Schwenk, PRC (2012)

Split particle states into valence states, v, and those above valence space, qRedefine "off-diagonal" to exclude valence particles

Core physics included consistently (calculate **absolute energies, radii...**) Inherently nonperturbative – no need for extended valence space?

Nonperturbative Valence-Space Strategy

- 1) NN and 3N forces from Chiral EFT
- 2) Evolve with free-space SRG $\lambda_{SRG} = 1.88 2.24 \text{ fm}^{-1}$
- 3) Normal-order wrt HF reference state
- 4) Perform IM-SRG(2) calculation in flow-equation approach
- 5) Diagonalize with standard shell-model machinery

NN matrix elements

- $e_{\text{max}} = 2n + l = 14$ converged
- Vary $\hbar \omega = 20 24 \text{MeV}$
- Consistently include 3N forces **induced** by SRG evolution (**NN+3N-ind**)

Initial 3N force contributions

- Chiral N²LO (NN+3N-full)
- Included with cut: $e_1 + e_2 + e_3 \le E_{3 \max} = 14$

Oxygen Anomaly

Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

IM-SRG Oxygen Ground-State Energies

Valence-space interaction and SPEs from IM-SRG in *sd* shell

NN+3N-induced reproduce exp well, not dripline NN+3N-full modestly overbound – good behavior past dripline Good dripline properties Very weak $\hbar\omega$ dependence

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N forces

Clear improvement with full NN+3N

- Validates valence-space results
- Remarkable agreement between all methods with same forces

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N forces

Schwenk, ARNPS (2015)

Clear improvement with full NN+3N

Validates valence-space results

Remarkable agreement between all methods with same forces

Dripline Mechanism

Compare to large-space methods with same SRG-evolved NN+3N forces

Robust mechanism driving dripline behavior

3N repulsion raises $d_{3/2}$, lessens decrease across shell Similar to first MBPT NN+3N calculations in oxygen

IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG

Clear improvement with NN+3N-full IM-SRG: comparable with phenomenology

IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG

Clear improvement with NN+3N-full Continuum neglected: expect to lower $d_{3/2}$

IM-SRG Oxygen Spectra

Oxygen spectra: IM-SRG predictions beyond the dripline

²⁴O closed shell (too high 2^+)

Continuum neglected: expect to lower spectrum Only one excited state in ²⁶O below 6.5MeV

Experimental Connection: ²⁶O Spectrum

Oxygen spectra: IM-SRG predictions beyond the dripline

New measurement at RIKEN on excited states in ²⁶O

Existence of excited state 1.3MeV

IM-SRG prediction: one natural-parity state below 7MeV at 1.22MeV

Comparison with MBPT/CCEI Oxygen Spectra

Oxygen spectra: Effective interactions from **Coupled-Cluster theory**

See talk of G. Hagen

Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015)

MBPT in extended valence space

IM-SRG/CCEI spectra agree within \sim 300 keV

Experimental Connection: ²⁴F Spectrum

²⁴F spectrum: extended-space MBPT and (sd-shell) IM-SRG, full CC

New measurements from GANIL

IM-SRG: comparable with phenomenology in good agreement with new data

Fully Open Shell: Neutron-Rich Fluorine Spectra

Fluorine spectra: extended-space MBPT and IM-SRG (sd shell)

MBPT: obvious deficiencies

IM-SRG: competitive with phenomenology in good agreement data

Fully Open Shell: Neutron-Rich Neon Spectra

Neon spectra: extended-space MBPT and IM-SRG (sd shell)

MBPT: obvious deficiencies

IM-SRG: competitive with phenomenology in good agreement data

Alternative Approach: Magnus Expansion

Magnus expansion: explicitly construct unitary transformation *U(s)*

 $U(s) = e^{\Omega(s)}$

With flow equation:

$$\frac{\mathrm{d}\Omega(s)}{\mathrm{d}s} = \eta(s) + \frac{1}{2} \big[\Omega(s), \eta(s) \big] + \frac{1}{12} \big[\Omega(s), \big[\Omega(s), \eta(s) \big] \big] + \cdots$$

Leads to commutator expression for evolved Hamiltonian

$$H(s) = e^{\Omega(s)}He^{-\Omega(s)} = H + \frac{1}{2} [\Omega(s), H] + \frac{1}{12} [\Omega(s), [\Omega(s), H]] + \cdots$$

Morris, Parzuchowski, Bogner, in prep

Nested commutator series – in practice truncate numerically

Perform all calculations at two-body level

Magnus vs Flow-Equation

Analogous to electron gas results varying step size

Evident error accumulation in flow-equation for small step sizes Magnus: rapid convergence, independent of step size

p-Shell Benchmarks

⁶Li spectrum from NN+3N forces

p-Shell Benchmarks

p-shell SPEs nearly converged

sd-Shell Benchmarks

²⁰Ne shell energies nearly converged

As in oxygen, overbound but spectrum well reproduced

Effective Operators

Keep unitary transformation from evolution of Hamiltonian

Can generalize to arbitrary operators

$$H(s) = e^{\Omega(s)} H e^{-\Omega(s)} = H + \frac{1}{2} [\Omega(s), H] + \frac{1}{12} [\Omega(s), [\Omega(s), H]] + \cdots$$
$$O^{\Lambda}(s) = e^{\Omega(s)} O^{\Lambda} e^{-\Omega(s)} = O^{\Lambda} + \frac{1}{2} [\Omega(s), O^{\Lambda}] + \frac{1}{12} [\Omega(s), [\Omega(s), O^{\Lambda}]] + \cdots$$

Must work out normal ordered operators in J-coupled basis First apply to scalar operators

E0 Transitions

Seldom calculated in nuclear shell model **In single HO shell:**

$$\left|\left\langle f \left| \rho_{E0} \right| i \right\rangle\right|^2 \propto \delta_{fi}; \quad \rho_{E0} = \frac{1}{e^2 R} \sum_i e_i r_i^2$$

Must resort to phenomenological gymnastics

With Magnus IM-SRG, calculate effective valence-space operator:

$$\rho_{E0}(s) = e^{\Omega(s)} \rho_{E0} e^{-\Omega(s)} = \rho_{E0} + \frac{1}{2} [\Omega(s), \rho_{E0}] + \cdots$$

Commutators induce important two-body parts

$$\left(\frac{\partial}{\partial \rho} + \frac{\partial}{\partial \rho} + \frac{\partial}{\partial \rho} + \frac{\partial}{\partial \rho} + \dots \right)$$

EO Transitions in sd Shell Model

Very preliminary results in *sd* shell (not converted in NN or 3N):

3N forces provide significant reduction Need additional benchmarks

RMS Charge Radii in sd Shell Model

Previous SM radii calculations rely on empirical input or as relative to core **Radii for stable sd-shell nuclei calculated in shell model NN+3N**

New Directions and Outlook

Heavier semi-magic chains: MBPT as guide

Ab initio valence-shell Hamiltonians

Towards full sd- and pf-shells Implement extended valence spaces

Moving beyond stability

Fundamental symmetries

Non-empirical calculation of $0\nu\beta\beta$ decay **Effective electroweak operators**

New Directions and Outlook

Heavier semi-magic chains: MBPT as guide

Ab initio valence-shell Hamiltonians

Towards full sd- and pf-shells Implement extended valence spaces

Moving beyond stability

Fundamental symmetries

Non-empirical calculation of $0\nu\beta\beta$ decay **Effective electroweak operators**

