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To communicate successfully and facilitate 

cross-fertilization of our respective disciplines, 

we need to address the following: 

• Hamiltonian 

• Basis set 

• Mean-field   

• Symmetry 

SOME PRELIMINARIES 

 



• Hamiltonian 

 

 

The normal ordered H relative to the mean-field soln, Φ0, is 

 

H = 〈0|H|0〉+∑p,qfpq{p
⍏q} + ∑pqrs〈pq||rs〉{p⍏q⍏sr} 

 

f = h + J – K, is the usual Fock Operator,  

 

with  J the Coulomb and K the exchange Operator. 

 

〈pq||rs〉=∫dx1∫dx2φp (x1) φq (x2)(1-P12)(r1 –r2)
-1 φr(x1) φs(x2). 

 

So (J-K)pq=∑j 〈pj||qj〉, hpq=〈p|h|q〉 
 



• Basis Set 

Sets of gaussian ‘atomic’ orbitals, |χ〉 located on all atoms 

in the molecule, square integrable, finite. # is m>>>n,  

# of electrons.  Gaussians make it easy to evaluate  

the four-center integrals that occur for molecules.  

 

‘Molecular’ orbitals |φ〉=|χ〉C, where the C might be  taken from 

HF, or Brueckner, or Natural Orbitals, or Kohn-Sham 

or any other choice of ‘Mean-Field’, meaning any single  

Determinan composed of n occupied MO’s. 

 
Best possible answer in |χ〉 is the Full CI where all possible 

excitations (replacements of occupied orbitals by virtual ones) 

are taken. This is the n-particle basis. Calculation scales as ~nm..  

FCI is impossible except for very small molecules and basis  

sets, so practical methods will be limited to CCSD, CCSDT,  

CCSD(T), etc. 



CID, CISD, CISDT, CISDTQ, …. Full CI 

MBPT2,MBPT3, MBPT4, MBPT5,..Full CI 

CCD, CCSD, CCSDT, CCSDTQ…Full CI 

 



• Symmetry 

Most relevant for atoms and molecules is spin-symmetry,  

S2ψ = S(S+1)ψ  and SZψ=MZψ. For closed shells with doubly 

occupied orbitals the ψ’s will always be spin-eigenfunctions. 

For open-shells, as long as all orbitals are pure spin orbitals,  

meaning they correspond to α or β spin, then the  

determinants are eigenfxns of SZ. However, if  

broken symmetry solns are used, like in Unrestricted 

Hartree-Fock (UHF) mean fields, S2ΦUHF ≠ S(S+1) ΦUHF . 

If we  use ROHF mean fields for open shells, S2ΦROHF = S(S+1)ΦROHF  

SR-CC starting from ΦROHF,,  will not guarantee ψ is an eigenfxn  

of S2.The determinants can be combined together into specific  

combinations, ie configurations which are eigenfxns of spin  

in CI, and this can be used in EOM-CC for target states, but not  

generally In CC theory because prdts of T introduce reducible 

spin rrepresentations. 

 



Now that we have the basis sets, what is 

the best way to introduce electron correlation into the 

wavefunction? 

Answer: Coupled-Cluster Theory 



                                OUTLINE 

 

• Some Essential Preliminaries 

• Single reference CC theory for energies, properties 

• EOM-CC for excited/ionized/attached states. 

• Greens’ Fucntions from CC 

• Origin of problems with SR-CC 

• Some results for near degeneracies 

• Addition by subtraction in SR-CC 

• EOM-DIP/DEA as an easy MR-CC 

 

 

 

 

 

 

 



 THE NECESSITY OF SIZE-

EXTENSIVITY* IN QUANTUM 

CHEMISTRY 

Chemistry depends on energy differences. 

We have to know that E(AB)=E(A)+E(B), RAB→∞ 

This can be accomplished provided that  

 

H(AB)Ψ(AB)=[H(A)+H(B)] Ψ(A)Ψ(B)=[E(A)+E(B)] Ψ(A)Ψ(B) 

With a separable (mean-field) reference function, |A›|B› 

 

Ψ(AB)=exp[T(AB)]|AB›=exp[T(A)]|A›exp[T(B)]|B›, 

where the operator, T, is connected. 

Guaranteed by evaluating only linked diagrams. 

*RJB, G. Purvis, IJQC (1978) 



CORRECT WAVEFUNCTION HAS 

TO BE AN EXPONENTIAL OF 

CONNECTED OPERATORS! 

Ψ=exp(T)|0› 
Hence, coupled-cluster theory!!! 

•SIZE-EXTENSIVE (No unlinked diagrams). 

•RAPID SATURATION OF DYNAMIC CORRELATION 

•CONNECTED EXPRESSIONS FOR AMPLITUDES (No CI evaluation.) 

•INFINITE SUMMATION OF MBPT DIAGRAMS 

•ITERATIONS GIVE MBPT(2), (3), (4), … 

 

T=T1+T2+T3+… 

Ψ(1)
 =[T1

(1) + T2 
(1) ]|0〉 

Ψ(2)
 =[T1

(2) + T2 
(2) +T3

(2)+  (T2
(1) )2/2 +…   ]|0〉 

 



The CC  energy is  

 

EP = PĦP, 

 

The similarity transformed Hamiltonian is 

 

Ħ = exp(-T)Hexp(T) 

 

and the wavefunction equations are 

 

QĦP = 0. 

EXAMPLE I: Correlated Energies 

= I + II + III + IV +…  





Example II. Properties in CC Theory 

Take derivative(s) of  the CC energy to get ∂E/∂Xα= Eα, 

 

EP = PĦP,  
 

EαP = P(Ħα)P + P(ĦTα)P 
 

And the wavefunction,  

 

QTαP=(E- Ħ)-1Q ĦαP 

 
 

EαP= P[( Ħα) + ĦQ(E- Ħ)-1Q Ħα]P 

 

Then, Define Λ =  PĦQ(E- Ħ)-1Q  
.  

EαP = P(1+Λ) ĦαP. And  

E = P(1+Λ)ĦP,  is the CC functional 
 

 



That derivation, which makes it possible to do analytical 

gradients in non-variational CC theory depends only upon  

the interchange theorem, long used in double perturbation theory. 

 

And we don’t need a time-dependent theory 

to treat properties of time-independent states, or those 

from periodic, time-dependent perturbations, like the 

dynamic polarizability.  



This provides an expectation value for an untruncated exponential  

wavefunction, and a generalization of density matrices to CC theory,  

and for methods that do not have a wavefunction like CCSD(T). 

γ pq    = ‹0|(1+Λ)e-T{p†q}eT|0› 

 Γ pqrs = ‹0|(1+Λ)e-T{p†q†sr}eT|0› 

These density matrices enable CC theory to handle all first-order  

properties, including analytical gradients. 



 Example III: Non-iterative Triple Excitation Corrections 

 

ΛCCSD(T) Derivation (1998) Kucharski, RJB 

 

 E = 〈0|(1+Λ)Ħ|0〉 
 

Triples excitation contributions on top of CCSD are 

 

ET = 〈0|Λ3H0T3 | 0〉 + 〈0|Λ3(W + fov )(T2 +T1)|0〉 
 + 〈0|(Λ1 + Λ2)(W+ fov )T3 |0〉 
 

Since, Q3H0T3|0〉 + Q3[(W + fov )(T2 +T1)] C|0〉=0,  

defines T3
[2] 

 

ET
[4]  = 〈0|(Λ1 + Λ2)(W+ fov )T3

[2] |0〉 
 

These are all possible fourth-order triples terms. 

 

 
 
 
 
 



+ 

+ 

ET
[4] = 

- based fourth-order triples approximation, from 

CC functional, 0|(1+ )e-THeT|0, defines CCSD(T) 

When Λ is replaced by T†  get ordinary (T). 
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Example IV: Excited states and any 

sector of Fock Space: EOM-CC 

(E0 - H)Ψ0 = 0               GROUND STATE 

(E0- H)ΨK = ωK ΨK      EXCITED STATE 

 

ΨK =Rkexp(T)|0› Rk is an operator that can create excited, 

ionized, or electron attached states, doubly ionized, etc. 

(these offer many attractive routes to open-shell states)- 

 [T, Rk] = 0 

 

Subtract the ground state equation from the excited state, 

to give 

 

[(e-THeT-E)Rk]C|0〉 = (Ħ, Rk)C |0〉 = ωKRk|0〉 
〈0|(Lk Ħ) = 〈0|Lk ωK 

 

ωK= 〈0|Lk(Ħ Rk)C |0〉 
 

This is the analogous functional  

for excited states that can be  

differentiated to get properties. 



Following exactly the same strategy, triples 

effect in  EOM-CC can be readily derived…. 

  

ωk = 〈0|LK Ħ RK|0〉, 〈LK|RL〉 = δKL 

ωT = 〈0|(L1 + L2)(Ħ R3)C|0〉 
Q3Ħ0R3|0〉=Q 3[Ħ(R2 + R1)]C |0〉⋍ 

Q3H0R3|0〉=Q3WR2|0〉 

Replacing  Λ by LK and T3  by R3 gives EOM-CCSD(T). 



ROLE OF TRIPLE EXCITATIONS IN EOM-CC (ev) 

 Cystosine (aug-pVDZ basis), P. Szalay, et al JPC (2012) 

(Tom Watson’s ACES III implementation) 

STATE CCSD CCSDT-3 # CC3 & CCSD(T) # 

π→π* 4.94 4.79 4.71 4.73 

ΠN  →π* 5.86 5.65 5.55 

 

5.62 

π→2π* 

 

nO+N→R 

 

πN→2π* 

6.50 

 

6.70 

 

6.88 

6.38 

 

6.57 

 

6.72 

6.30 

 

6.43 

 

6.62 

6.35 

 

6.57 

 

6.69 

# J. Watts, RJB Chem. Phys. Lett. (1994) 
&O. Christiansen, et al J. Chem. Phys. (1997) 



EOM-CCSD vs. EOM-CCSDT-3 



Comparative computational dependence 

CC3  and EOM-CCSDT-3 scale  as ~n3N4,  plus require  

Iterative diagonalization of a matrix that has rank ~n3N3 
 

EOM-CCSD scales as ~n2N4  with matrices of rank ~n2N2. 
 

EOM-CCSD(T) scales as ~n2N4 + one n3N4 step, but matrices  

are only ~n2N2. It is tremendously faster than CC3/CCSDT-3. 

 

 



EOM-CCSD(T) vs. EOM-

CCSDT-3 



 EOM-CCSD gradients for 

geometry optimization in 

excited states 

So we put together those four simple examples and  

add a little parallelization (ACES III) and … 



EOM-CCSD gradient on Cytosine – 

Guanine stack 
577 basis functions 

29 atoms 

108 electrons 

 

Orbitals involved in 

vertical excitation are 

shown 

 

Cytosine is pushed 

closer to the guanine 

molecule, possibly 

facilitating some 

relaxation mechanism 

from the excited state  

 



 

Cytosine-Guanine Watson-Crick stacked dimer 

1154 basis functions 

58 atoms 

216 electrons 
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The oldest realization of such a correlation 

potential is the self-energy of the Dyson Eqn. 

[h+J-K+Σ(1,ω)] ϕp =[f + Σ(1,ω)] ϕp = ωp ϕp 

(1)The problem with solving this eqn. for our purposes is the frequency dependence, 

      ω, as the solutions, ϕp, are only obtained when ω = ωp. 

(2) This also causes the self-energy, correlation potential, Σ(1,ωp) to differ 

     for every orbital as in Hartree-theory, making the (Dyson) orbitals obtained  

     non-orthogonal and over determined.  

(3) When used to evaluate the Greens’ Fxn the Ip and Ea parts are coupled. 

  
The good thing is that some of the ωp’s have to be exactly the 

 ionization potentials and electron affinities for the 1h and 1p states, 
 

The bad thing is those Ip’s and Ea’s also include 2h1p, 2p1h, etc  

resonances, too. This is great for interpretation of PES, but bad 

for generating n-orbitals to define a correlated orbital single 

determinant approximation. 



The CC and EOM-CC method provides a better route 

toward a correlation potential. 

 

Then the electron-propagator can be built  

by solving the EOM-CC equations 

separately for the I and A parts, which 

provide the frequencies as eigenvalues. 

 

ĦRk
I Φ0 = ωk

I Rk
I Φ0         Ħ = exp(-T)Hexp(T) 

 

ĦRk
A Φ0 = ωk

A Rk
A Φ0 

 

The CC ground state wavefxn, ΨCC =exp(T)Φ0, causes 

the Ip and Ea parts of the electron-propagator to decouple, 

so they can be treated independently. (ADC does same.) 

 

L. Meissner, RJB (1993) 

M. Nooijen J. Snidjers  (1993) 
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Why? 

Single-reference CC theory (and its EOM-CC 

extensions) give the best answers for the largest 

number of CC accessible problems encountered in 

molecular-quantum mechanics…and with no decisions 

for the user except basis set and level of CC 

When SR-CC fails the reason is most likely due to the  

limitations of the single determinant reference 

 (RHF, UHF, ROHF, KS, B, N, QRHF….) 

 

 



Mean-Field for Bond Breaking 



Mean-Field for Bond Breaking 



  

 

 

 

 

 

SRCC has to give exact answer in the limit (Full CI), so the 

real issue is whether SRCC has enough in it at a reasonable 

level or needs a MR boost. This also strongly recommends 

that MR-CC have SR-CC as a special case.  

SRCC has to give exact answer in the limit (Full 

CI), so the real issue is whether SRCC has enough 

in it at a reasonable level or needs a MR boost. 

This also strongly recommends that MR-CC have 

SR-CC as a special case.  
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Lithium fluoride 

EOM-CCSD method, WMR basis 
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Other types of quasi-degeneracy. 

 

Low-spin states. 

 

Multiplet spittings in transition metals. 

 

Degenracies among excited states, like 

in very high Rydberg series. 



T (Sz = 1) 

T (Sz = 0) 

S (1,1) 

S (2,1) 

S (2,2) 

Four lowest lying states of the two-electron methylene 

E 

(a.u

.) 

-38.92

-38.9

-38.88

-38.86

-38.84

-38.82

-38.8

-38.78

-38.76



  Excitation    SCF CCSD CCSD(T) ΛCCSD(T) CCSDT-3 Exp (eV)      

  

Fe  

  
5F(d6s2) - 5D (d7s1) 

2.106 1.103 0.993 0.975 0.954 0.87 

Co 4F(d7s2 )- 4F( d8s1) 1.864 0.680 0.532 

  

0.505 0.479 0.42 

  

  

Ni 

  
3F(d8s2 )- 3D (d9s1) 

1. 
201 

 
-0.044 

  

-0.168 

  

-0.210 

  

-0.135 

  

- 0.03 

3F(d8s2 )- 1S  (d10) 5.694 2.180 1.658 

  

1.487 

  

1.299 

  

1.71 

Cu 2D(d9s2 ) -2S(d10s1) 0.153 -1.208 -1.383 

  

-1.434 

  

-1.459 -1.49 

Table 2a: Relativistic ROHF-CC (DKH5) calculations on 

multiplet states of Fe, Co, Ni and Cu in cc-pwCVQZ-DK basis 

set 

Near Degeneracy in  Transition Metal Multiplets  



 FON 
 

CCSD CCSD(T) ΛCCSD(T) CCSDT-3 EXP 

 
Fe 

5D( d6s2) 0.00 0.00 0.00 0.00 0.00 

5F( d7s1) 0.972 
(0.131) 

1.068 
(-0.075) 

1.019 
(-0.044) 

0.949 
(0.005) 

0.87 

 
Fe+ 

6D( d6s1) 7.673 
(0.018) 

7.846 
(-0.006) 

7.841 
(-0.013) 

7.839 
(-0.001) 

7.90 

4F( d7) 8.103 
(0.071) 

8.365 
(-0.156) 

8.336 
(-0.144) 

8.194  
(-0.001) 
 

8.15 

       

 
Co 

4F( d7s2) 0.00 0.00 0.00 0.00 0.00 

4F( d8s1) 0.480 
(0.201) 

0.688 
(-0.154) 

0.616 
(-0.111) 

0.493 
(-0.014) 

0.42 

 
 
Co+ 

5F( d7s1) 8.066 
(0.01) 

8.316 
(-0.087) 

8.325 
(-0.107) 

8.230 
(-0.002) 

8.28 

3F( d8) 8.055 
(-0.158) 

8.210 
(-0.305) 

8.167 
(-0.283) 

8.023 
(-0.138) 

7.85 

 
 
Ni 

3D (d9s1) -0.319 
(0.2751) 

0.110 
(-0.278) 

0.001 
(-0.211) 

-0.076 
(-0.059) 

-0.03 

3F (d8s2) 0.00 0.00 0.00 0.00 0.00 
 
Ni+ 

4F (sd8) 8.143 
(-0.006) 

8.349 
(0.001) 

8.346 
(-0.009) 

8.460 
(-0.009) 

8.67 

2D(d9) 7.149 
(0.162) 

7.504 
(-0.151) 

7.437 
(-0.115) 

7.455 
(-0.028) 

7.59 

       

 
Cu 

2S (d10s1) -1.554 
(0.346) 

-0.966 
(-0.417) 

-1.112 
(-0.322) 

-1.355 
(-0.104) 

-1.49 

2D(d9s2) 0.000 0.000 0.000 0.000 0.000 

 
2P(d10p1) 

2.277 
(0.261) 

2.711 
(-0.274) 

2.625 
(-0.227) 

2.315 
(0.00) 

2.295 
 

 
 
Cu + 
 

3D ( d9s1) 8.828 
(-0.013) 

8.963 
(0.011) 

8.967 
(0.00) 

8.975 
(0.001) 

9.04 

1S (d10) 6.036 
(0.213) 

6.476 
(-0.239) 

6.392 
(-0.19) 

6.255 
(-0.049) 

6.23 

 

 

Table 3c: QRHF-CC 

calculations based on 

reference wave functions 

composed of orbitals 

obtained from ‘fractional 

occupation’ HF calculations 

(FON). Neutral and cationic 

states of Fe, Co, Ni, Zn and 

Cu in the cc-pwCVQZ-DK 

basis set are studied. 

Relative energies (in eV) 

are calculated w.r.t neutral 

states (dns2) of Fe, Co, Ni, 

Cu and Zn atom. The 

numerical difference of 

these results with the 

variationally optimal ROHF 

reference CC results are 

indicated in ‘( ) ‘. 

 

Near Degeneracy in  Transition Metal Multiplets  



                                OUTLINE 

 

• Some Essential Preliminaries 

• Single reference CC theory for energies, properties 

• EOM-CC for excited/ionized/attached states. 

• Greens’ Functions from CC 

• Origin of problems with SR-CC 

• Some results for near degeneracies 

• Addition by subtraction in SR-CC 

• EOM-DIP/DEA as an easy MR-CC 

 

 

 

 

 

 

 



Quadratic terms in CCD 

amplitude equation 

For a two electron system, 

𝐴

2
+ 𝐵 = 0, 𝐶 + 𝐷 = 0 



2-CC (N-CC Family) 

Quadratic terms in 2-CC : 

𝐴 + 𝐵 =
𝐴

2
+ 

𝐴

2
+ 𝐵  

 

 

 

 

 

2-CC = p-CCSD (1,0) 

R. J. Bartlett and M. Musiał, JCP, 125, 204105 

(2006) 

M. Musiał and R. J. Bartlett, JCP, 127, 024106 

(2007) 



Parameterized-CCSD 

L. Huntington and M. Nooijen, JCP, 133, 

184109 (2010) 

Quadratic terms in T2 amplitude equation in P-CCSD(α, β) 

 

 

 

 

 

 

 

𝐴

2
+ 𝛼 

𝐴

2
+ 𝐵 + 𝛽(𝐶 + 𝐷) 

𝑝 − 𝐶𝐶𝑆𝐷 1,1 =
𝐴

2
+  

𝐴

2
+ 𝐵 + 𝐶 + 𝐷 = 𝐴 + 𝐵 + 𝐶 + 𝐷 = 𝐶𝐶𝑆𝐷 

                         𝑝 − 𝐶𝐶𝑆𝐷 −1,1 =
𝐴

2
−  

𝐴

2
+ 𝐵 + 𝐶 + 𝐷 = −𝐵 + 𝐶 + 𝐷 

    



Distinguished cluster 

approximation 

D. Kats and F. R. Manby, JCP, 139, 021102 (2013) 

Quadratic terms in CCD 
𝐷 + 𝐷′ + 𝐵 + 𝐶 + 𝐴 

Quadratic terms in DCD 

𝐷 +
1

2
𝐶 + 𝐴  

                                = 𝐷 + 𝐷′ + 𝐵 + 𝐶 + 𝐴 + 𝛼 2𝐷′ + 𝐶 + 𝛽 2𝐵 + 𝐴  [𝑃𝑢𝑡 𝛼 = −
1

2
, 𝛽 = −

1

2
 ]   

 

 

Nonantisymmetri

zed Goldstone 

diagrams (with 

Coulomb 

integrals) 
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                                OUTLINE 

 

• Some Essential Preliminaries 

• Single reference CC theory for energies, properties 

• EOM-CC for excited/ionized/attached states. 

• Greens’ Functions from CC 

• Origin of problems with SR-CC 

• Some results for near degeneracies 

• Addition by subtraction in SR-CC 

• EOM-DIP/DEA as an easy MR-CC 

 

 

 

 

 

 

 



CURRENT MR-CC METHODS 

•Valence Universal, Fock-Space 

Lindgren, Mukherjee, Pal, RJB, Kaldor, Meissner, Musial 

  

•State Universal, Hilbert-Space 

Kucharski, RJB, Meissner, Balkova, Paldus, Piecuch, Li 

 

•State-Specific Hilbert Space 

• TD-CC. Open-shell Singlets. A Balkova, P. Szalay, RJB  

 

•  BW-CC. I. Hubač, J. Pittner, and P. Čársky,  

    

• Mk-CC. Mukherjee, Evangelista, Allen, Schaefer, Gauss 

 

• Internally contracted. Köhn, Hanrath 

D. Lyakh, M. Musial, V. Lotrich, RJB, Chem. Rev. 2012. 

 




