Near-degenerate systems in nuclear structure and quantum ESNT, 30 March—2 April 2015

Three-Body Forces and CI Effective Operators in Green's Function Theory

Carlo Barbieri - University of Surrey
Formalism and 3NF:
Phys. Rev. C63, 034313 (2001), Phys. Rev. A76, 052503 (2007)
Phys. Rev. C84, 064317 (2011), Phys. Rev. C88, 054326 (2013)
ab-initio \& correlations: Phys. Rev. C89, 061301R (2014)
arXiv:1412.0491 [nucl-th] (2014)

CB, J. Phys.: Conf. Ser. 529, 012005 (2014)

24:

Collaborators

SUNRRSEY

\qquad

TRIUMF

(B) Universitat de Barcelona

Washington
University in St.Louis
AN Center for Malecular Modeling

UNIVEKSIIY UF
SURREY
A. Cipollone, A. Rios
V. Somà, T. Duguet
A. Carbone
P. Navratil
A. Polls
W.H. Dickhoff, S. Waldecker
D. Van Neck, M. Degroote
M. Hjorth-Jensen

Current Status of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena EOS of neutron star matter

I) Understanding the nuclear force QCD-derived; 3-nucleon forces (3NFs) First principle (ab-initio) predictions

III) Interdisciplinary character

Astrophysics
Tests of the standard model Other fermionic systems: ultracold gasses; molecules;

Concept of correlations

independent particle, picture

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

[CB and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]
SURREY

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and

Particle-vibration so far, fully characterised only isotopes... (!)
stable
[W. Dickhoff, CB, Prog. Part. Null. Phys. 52, 377 (2004)]
[CB and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Nuclear forces in exotic nuclei

Nucleon interactions are very complex and difficult to handle

Change of regime from stable to dripline isotopes !

Symmetric matter:
$\mathrm{N} \approx \mathrm{Z}$
Tensor force (p-n)

Neutron-rich matter ($\mathrm{N}>\mathrm{Z}$):

- Neutron star matter EoS
- Symmetry energy

Driplines of nitrogen and fluorine isotopes
Three-nucleon Force (3NF)
[A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)]

Example of spectral function ${ }^{56} \mathrm{Ni}$

One-body Green's function (or propagator) describes the motion of quasiparticles and holes:

$$
g_{\alpha \beta}(E)=\sum_{n} \frac{\left\langle\Psi_{0}^{A}\right| c_{\alpha}\left|\Psi_{n}^{A+1}\right\rangle\left\langle\Psi_{n}^{A+1}\right| c_{\beta}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{n}^{A+1}-E_{0}^{A}\right)+i \eta}+\sum_{k} \frac{\left\langle\Psi_{0}^{A}\right| c_{\beta}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle\left\langle\Psi_{k}^{A-1}\right| c_{\alpha}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{0}^{A}-E_{k}^{A-1}\right)-i \eta}
$$

..this contains all the structure information probed by nucleon transfer (spectral function):

Ab-Initio SCGF approaches

Coupling single particle to collective modes

- Non perturbative expansion of the self-energy:

- Explicit correlations enter the "three-particle irreducible" propagators:

$$
\begin{aligned}
\Longrightarrow & \equiv \text { particle } \\
& \equiv \text { hole }
\end{aligned}
$$

-Both pp/hh (ladder) and ph (ring) response included -Pauli exchange at 2p1h/2h1p level

Ionization spectrum of Ne atom

- Both pp and ph configurations are important
- In finite nuclei one need RPA to describe giant resonances
- CANNOT be simply added:

Phys. Rev. A76, 052503 (2007)

Faddeev RPA method

- Thus, to include both "ladder" and "ring" correlations one must calculate the full $2 \mathrm{p} 1 \mathrm{~h} / 2 \mathrm{~h} 1 \mathrm{p}$ propagator

- In general this is exact if one can calculate the full 6-points Green's function (see lecture of Apr. 13 ${ }^{\text {th }}$):

Faddeev RPA method

- The full $2 p 1 h / 2 h 1 p$ polarization propagator also satisfies a Bethe-Salpeter-like equation:

$$
\begin{aligned}
R_{\alpha \beta \gamma, \mu \nu \lambda}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)= & {\left[g_{\alpha \mu}\left(\omega_{1}\right) g_{\beta \nu}\left(\omega_{2}\right)-g_{\beta \mu}\left(\omega_{2}\right) g_{\alpha \nu}\left(\omega_{1}\right)\right] g_{\lambda \gamma}\left(-\omega_{3}\right) } \\
& +\left(g_{\beta \beta_{1}}\left(\omega_{2}\right) g_{\gamma_{1} \gamma}\left(-\omega_{3}\right) V_{\beta_{1} \sigma, \gamma_{1} \rho} \int \frac{d s}{2 \pi i} R_{\alpha \rho \sigma, \mu \nu \lambda}\left(\omega_{1}, s, \omega_{2}+\omega_{3}-s\right)\right. \\
& +g_{\alpha \alpha_{1}}\left(\omega_{1}\right) g_{\gamma_{1} \gamma}\left(-\omega_{3}\right) V_{\alpha_{1} \sigma, \gamma_{1} \rho} \int \frac{d s}{2 \pi i} R_{\rho \beta \sigma, \mu \nu \lambda}\left(s, \omega_{2}, \omega_{1}+\omega_{3}-s\right) \\
& \left.+\frac{1}{2} g_{\alpha \alpha_{1}}\left(\omega_{1}\right) g_{\beta \beta_{1}}\left(\omega_{2}\right) V_{\alpha_{1} \beta_{1}, \rho \sigma} \int \frac{d s}{-2 \pi i} R_{\rho \sigma \gamma, \mu \nu \lambda}\left(s, \omega_{1}+\omega_{2}-s, \omega_{3}\right)\right)
\end{aligned}
$$

- However, this depends on 4-tmes (3 frequancies) and it is much more complicatde than the p-h Bethe-Salpeter.

Faddeev RPA method

The full $2 \mathrm{p} 1 \mathrm{~h} / 2 \mathrm{~h} 1 \mathrm{p}$ polarization propagator also satisfies a Bethe-Salpeter-like equation:

Strategy: solve each "pp" and "ph" channel separately, by solving the (simpler) DRPA equations. Then couple to a third line and mix the corresponding amplitudes \rightarrow Faddeev eqs.!!

Faddeev equations for the $2 h 1 p$ motion
Strategy: solve each "pp" and "ph" channel separately, by solving the (simpler) DRPA equations. Then couple to a third line and mix the corresponding amplitudes \rightarrow Faddeev eqs.!!

$$
R^{\text {hap }}(\omega)=\Downarrow \downarrow-\mathbb{A}+R^{1}(\omega)+R^{2}(\omega)+R^{3}(\omega) \quad \begin{aligned}
& \text { Foddeev } \\
& \text { components }
\end{aligned}
$$

Fodder eqns.

FRPA: Faddeev summation of RPA propagators

-Both pp/hh (ladder) and ph (ring) response included -Pauli exchange at 2p1h/2h1p level

- All order summation through a set of Faddeev equations

where:

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength-on both sides of the Fermi surface...

```
CB et al.,
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313 (2009)
```

- A complete expansion requires all types of particle-vibration coupling ...these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Accuracy of FRPA - simple atoms/molecules

NB: energies in Hartree errors in mHartree

Three-nucleon interactions

\rightarrow application to nuclei
\rightarrow need new formalism?
A. Carbone, A. Cipollone, CB, A. Rios, A. PollsPhys. Rev. C88, 054326 (2013).
A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013).

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

pure 3-Body contribution

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

粦 NNN forces can enter diagrams in three different ways:
\rightarrow Define new 1- and 2-body interactions and use only interaction-irreducible diagrams

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs: effectively:

FIG. 4. The one interaction irreducible diagrams (a) and the three interaction reducible ones (b, c and d) that are contained in Fig. 3a.

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

mons

(a)

(b)

- Third anderPT diagrams with 3BFs:
(a)

(e)

(f)

(g)

(n)

ADC(n) schemes with 3-body interactions

\rightarrow Adding many-body forces complicates the intermediate states at $3^{\text {rd }}$ order! However, not all terms are equally relevant...
[F. Raimondi, CB, in prep.]

(Galitskii-Migalal-Boffi-) Koltun sumrule

粦 Koltun sum rule (with NNN interactions):

$$
\sum_{\alpha} \frac{1}{\pi} \int_{-\infty}^{\epsilon_{F}^{-}} d \omega \omega \operatorname{Im} G_{\alpha \alpha}(\omega)=\left\langle\Psi_{0}^{N}\right| \hat{T}\left|\Psi_{0}^{N}\right\rangle+2\left\langle\Psi_{0}^{N}\right| \hat{V}\left|\Psi_{0}^{N}\right\rangle+3\left\langle\Psi_{0}^{N}\right| \hat{W}\left|\Psi_{0}^{N}\right\rangle
$$

粦 Thus, need an extra correction:

$$
E_{0}^{N}=\frac{1}{3 \pi} \int_{-\infty}^{\epsilon_{F}^{-}} \mathrm{d} \omega \sum_{\alpha \beta}\left(2 T_{\alpha \beta}+\omega \delta_{\alpha \beta}\right) \operatorname{Im} G_{\beta \alpha}(\omega)+\frac{1}{3}\left\langle\Psi_{0}^{N}\right| \widehat{V}\left|\Psi_{0}^{N}\right\rangle
$$

or

$$
E_{0}^{N}=\frac{1}{2 \pi} \int_{-\infty}^{\epsilon_{F}^{-}} \mathrm{d} \omega \sum_{\alpha \beta}\left(T_{\alpha \beta}+\omega \delta_{\alpha \beta}\right) \operatorname{Im} G_{\beta \alpha}(\omega)-\frac{1}{2}\left\langle\Psi_{0}^{N}\right| \widehat{W}\left|\Psi_{0}^{N}\right\rangle
$$

$$
\left\langle\Psi_{0}^{N}\right| \widehat{W}\left|\Psi_{0}^{N}\right\rangle \approx \frac{1}{6} \bigcirc
$$

3N forces in FRPA/FTDA formalism

\rightarrow Ladder contributions to static self-energy are negligible (in oxygen)

Equations of Motions with 3NF

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- EOM for 1-body propagator:

irred. self-energy:
\rightarrow

- EOM for 2-body propagator:

Equations of Motions with 3NF

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- SC equations for the 4-point GF:

ladders

Gorkov and symmetry breaking approaches

V. Somà, CB, T. Duguet, , Phys. Rev. C 89, 024323 (2014)
V. Somà, CB, T. Duguet, Phys. Rev. C 87, 011303R (2013)
V. Somà, T. Duguet, CB, Phys. Rev. C 84, 064317 (2011)
> Ansatz

$$
\ldots \approx E_{0}^{N+2}-E_{0}^{N} \approx E_{0}^{N}-E_{0}^{N-2} \approx \ldots \approx 2 \mu
$$

>Auxiliary many-body state $\left|\Psi_{0}\right\rangle \equiv \sum_{N}^{\text {even }} c_{N}\left|\psi_{0}^{N}\right\rangle$
\longrightarrow Mixes various particle numbers
\longrightarrow Introduce a "grand-canonical" potential $\Omega=H-\mu N$
$\Longrightarrow\left|\Psi_{0}\right\rangle$ minimizes $\Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle$ under the constraint $N=\left\langle\Psi_{0}\right| N\left|\Psi_{0}\right\rangle$
$>$ This approach leads to the following Feynman diagrams:

Truncation scheme:	Dyson formulation (closed shells)	Gorkov formulation (semi-magic)
$1^{\text {st }}$ order:	Hartree-Fock	HF-Bogolioubov
$2^{\text {nd }}$ order:	$2^{\text {nd }}$ order	$2^{\text {nd }}$ order (w/ pairing)
\ldots	\ldots	
$3^{\text {rd }}$ and all-orders sums, P-V coupling:	ADC(3) FRPA	G-ADC(3)

Approaches in GF theory

Ab-initio Nuclear Computation \& BcDor code

BoccaDorata code:
(C. Barbieri 2006-14
V. Somà 2011-14
A. Cipollone 2012-13)

- Provides a C++ class library for handling many-body propagators ($\approx 40,000$ lines, OpenMPI based).
- Allows to solve for nuclear spectral functions, many-body propagators, RPA responses, coupled cluster equations and effective interaction/charges for the shell model.

Code history:

ज	2006
	2010
	2012
	2013
	2014

core functions and FRPA shell model charges-interactions (lowest order) new Gorkov formalism for open-shell nuclei (at $2^{\text {nd }}$ order)

Coupled clusters equations
Three-nucleon forces (≈ 50 cores, 35 Gb but on the rise...)

Gorkov at $3^{\text {rd }}$ order (will become massively parallel...)
2015

Results

Chiral Hamiltonians for the Oxygen chain

Benchmark with the same initial Hamiltonian

Oxygen dripline including chiral NN +3 N forces correctly reproduced
confirmed in ab-initio calculations by different approaches,
treating explicitly all nucleons as degrees of freedom

Pic. Credit:s
J.Menendez, J.Holt, et al, in prep.

Results from:
Hergert et al. PRL110 242501 (2013),
Cipollone et al. PRL111 062501 (2013), Jansen et al. PRL113 142502 (2014)

Neutron spectral function of Oxygens

Suncrive

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and arXiv:1412.0491 [nucl-th] (2014)

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and arXiv:1412.0491 [nucl-th] (2014)

\rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

Results for the oxygen chain

A. Cipollone, CB, P. Navrátil, arXiv:1412.0491 [nucl-th] (2014)

\rightarrow Single particle spectra slightly diluted and
\rightarrow systematic underestimation of radii

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]
\rightarrow Analysis of ${ }^{14} \mathrm{O}(d, t)^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

- Overlap functions and strengths from GF
- Rs independent of asymmetry

Ca and Ni isotopic chains

\rightarrow Large J in free space SRG matter (must pay attention to its convergence)
\rightarrow Overall conclusions regarding over binding and $\mathrm{S}_{2 n}$ remain but details change

Two-neutron separation energies for meutron rich K isotopes

\rightarrow Error bar in predictions are from extrapolating the many-body expansion to convergence of the model space.

ISOLTRAP
M. Rosenbusch, et al., PRL (submitted).

Mapping Ab-Initio calculation into the shell model approach

Recent works through CCM and IMRSG:

Bogner et al Phys. Rev. Lett. 113, 142501 (2014) Jansen et al Phys. Rev. Lett. 113, 142502 (2014)
\checkmark works well for spectra

Calculation of observables: need many-body corrections, to evolve operators, add electroweak currents, ect...

To have a look at the many-body and effects:
Extract vibration coupling form microscopic calculations...
$C B, T$. Otsuka, in preparation

"traditional" MBPT approach

PT expansion of effective interactions:

Effective charges (estimate form many-body effects):

SURREY

${ }^{56} \mathrm{Ni}$ neutron spectral function

W. Dickhoff, CB, Prog. Part. Nucl. Phys. 53, 377 (2004) CB, M.Hjorth-Jensen, Pys. Rev. C79, 064313 (2009)

Some results - ANi chain in pfgor/2 shell

Interaction: NNLO-opt, AV18 (+Gmatrix)
Single particle basis: HF
Preliminar

$B E(2)$ charges

Some results - ANi chain in pfgg/2 shell

Interaction: NNLO-opt, AV18 (+Gmatrix)
Single particle basis: HF

Averaged charges

\rightarrow "predicted" charges are smaller than usual phenomenological ones
\rightarrow NO higher
order currents here -- just the many-body correction...

BE(2) charges

Some results - O and C chains

Interaction: N3LO(500) (+Gmatrix)

Single particle basis: HF or HFB
$B E(2)$ charges

	C10	C 22	O 14	O 16	O 20
$\nu_{s 1 / 2}-\nu_{d 3 / 2}:$	0.142	0.094	-0.751	0.160	0.128
$\nu_{s 1 / 2}-\nu_{d 5 / 2}:$	0.226	0.125	0.261	0.214	0.181
$\nu_{d 3 / 2}-\nu_{d 3 / 2}:$	0.278	0.121	0.198	0.082	0.155
$\nu_{d 3 / 2}-\nu_{d 5 / 2}:$	0.320	0.137	0.249	0.274	0.214
$\nu_{d 5 / 2}-\nu_{d 5 / 2}:$	0.278	0.151	0.294	0.250	0.232
$\pi_{s 1 / 2}-\pi_{d 3 / 2}:$	1.131	1.051	0.594	1.105	1.078
$\pi_{s 1 / 2}-\pi_{d 5 / 2}:$	1.155	1.094	1.161	1.142	1.134
$\pi_{d 3 / 2}-\pi_{d 3 / 2}:$	1.061	1.054	1.441	0.976	1.070
$\pi_{d 3 / 2}-\pi_{d 5 / 2}:$	1.141	1.107	1.042	1.091	1.170
$\pi_{d 5 / 2}-\pi_{d 5 / 2}:$	1.161	1.077	1.139	1.107	1.099
$\nu_{p 1 / 2}-\nu_{p 3 / 2}:$	0.359	0.319	0.344	0.401	0.404
$\nu_{p 3 / 2}-\nu_{p 3 / 2}:$	0.315	0.247	0.367	0.316	0.307
$\pi_{p 1 / 2}-\pi_{p 3 / 2}:$	1.102	1.134	1.183	1.179	1.198
$\pi_{p 3 / 2}-\pi_{p 3 / 2}:$	1.128	1.103	1.075	1.056	1.082

\rightarrow "predicted" charges are smaller than usual phenomenological ones
\rightarrow NO higher order currents here -- just the many-body correction...

Conclusions

-What to did we learn about realistic chiral forces from ab-initio calculations?
\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow Experimental binding is predicted accurately up to the lower sd shell (A~30) but deteriorates for medium mass isotopes (Ca and above) with roughly $1 \mathrm{MeV} / \mathrm{A}$ over binding.
\rightarrow more short-range repulsion or fitting to mid masses will help [see NNLOsat, Evgeny talk, and new developments...].
\rightarrow Ab-initio optical potentials are a natutal 'by-product' of the SCGF method.
\rightarrow Earlier investigations of SCGF based optical potentials were very promising; it will now be crucial to apply it in modern ab-initio codes.

Thank you for
your attention!!!

