Self-consistent Gorkov Green's function theory for nuclei

CEA Saclay, 1 April 2015

Ab initio nuclear structure

Long-term goal: predictive nuclear structure calculations

- Half of bound nuclei never observed, many poorly known
- Thorough quantification of theoretical errors (**Hamiltonian** & **many-body**)

Nuclear Hamiltonian not fixed

- **Traditional models**: strong repulsive core
- **Modern models**: softer core, towards a systematic expansion, consistent 3NF
- ightarrow Major breakthrough: V_{low-k} or SRG of NN+3N interactions

Virtually exact NCSM, GFMC,

Valence space Shell model Based on expansion GF, CC, IM-SRG,

5-10 years ago

- Hard repulsive core requires **large model spaces** to converge
- Open-shell: degeneracy w.r.t. particle-hole excitation → expansion breaks down

Today

• Soft interactions yield converged calculations in smaller model spaces

• Development of **new methods** allows to tackle **open-shell nuclei**

• Soft interactions yield converged calculations in smaller model spaces

• Development of **new methods** allows to tackle **open-shell nuclei**

Current limits/reach of nuclear ab initio calculations

Heavier system computed in the different types of ab initio

Gorkov framework

Idea: expand around an auxiliary many-body state

$$|\Psi_0\rangle \equiv \sum_{A}^{\text{even}} c_A |\psi_0^A\rangle$$
 breaks particle-
number symmetry

Ducales mantials

→ Introduce a "grand-canonical" potential $\Omega = H - \mu A$

 $\Rightarrow |\Psi_0\rangle$ minimizes $\Omega_0 = \langle \Psi_0 | \Omega | \Psi_0 \rangle$ under the constraint $A = \langle \Psi_0 | A | \Psi_0 \rangle$

 \blacksquare Observables of the A-body system $\Omega_0 = \sum_{A'} |c_{A'}|^2 \Omega_0^{A'} \approx E_0^A - \mu A$

$$i G_{ab}^{11}(t,t') \equiv \langle \Psi_0 | T \left\{ a_a(t) a_b^{\dagger}(t') \right\} | \Psi_0 \rangle \equiv \int_{b}^{a} i G_{ab}^{21}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) a_b^{\dagger}(t') \right\} | \Psi_0 \rangle \equiv \int_{b}^{b} i G_{ab}^{12}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle \equiv \int_{b}^{a} i G_{ab}^{22}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle \equiv \int_{b}^{b} i G_{ab}^{22}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle \equiv \int_{b}^{b} i G_{ab}^{22}(t,t') \equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle$$

Gorkov equation & self-energy expansion

Current self-energy truncation: first- and second-order diagrams [Somà, Duguet & Barbieri 2011]

Gorkov equation & self-energy expansion

	n	1	2	3	
ADC(n)	Dyson	1	1	2	
# diagrams	Gorkov	2	4	34	

[Barbieri, Duguet & Somà in prep.]

Gorkov equation & self-energy expansion

Solution of Gorkov equation

 $\sum_{i} \begin{pmatrix} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{pmatrix} \Big|_{\omega_{k}} \begin{pmatrix} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{pmatrix}$ energy *independent* eigenvalue problem $\begin{array}{c} \propto \mathrm{N}_{\mathrm{b}}{}^{3} \\ \text{typically} \sim 10^{6}\text{-}10^{7} \end{array} \end{array} \left(\begin{array}{c} T - \mu + \Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\ \tilde{h}^{\dagger} & -T + \mu - \Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\ \mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\ -\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E \end{array} \right) \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k} \end{pmatrix}$ Krylov space eigenvalue problem $\begin{array}{c|c} \propto \mathbf{N}_{\text{Lanczos}} \\ \text{typically ~}10^2\text{-}10^3 \end{array} \left| \begin{array}{ccc} T - \mu + \Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\ \tilde{h}^{\dagger} & -T + \mu - \Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\ \mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\ -\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E \end{array} \right) \begin{pmatrix} \mathcal{U}^k \\ \mathcal{V}^k \\ \mathcal{W}_k \\ \mathcal{Z}_k \end{pmatrix} = \omega_k \begin{pmatrix} \mathcal{U}^k \\ \mathcal{V}^k \\ \mathcal{W}_k \\ \mathcal{Z}_k \end{pmatrix} \right|$

Krylov projection

- ightarrow Multi-pivot algorithm (# states ~ 10 N_{ℓ})
- → Well converged for $N_{\ell} \sim 50$
- → Independent of N_{max}
- Spectral strength quickly converges around the Fermi surface

Three-body forces

One- and two-hadry forces derived +

lements of Green Function theory

NF can enter the diagrams in three different ways Galitskii-Koltun sum rule modified to account for 3N piece

Defining 1- and 2-body effective interaction and use only *irreducible* diagrams

Beware that defining garbone, Cipollone et al. 2013]

Use of dressed propagators provides extra correlations would double-count the 1-body term

Inside the Green's function

Separation energy spectrum

$$G_{ab}^{11}(\omega) = \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \,\mathcal{U}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{V}}_{a}^{k*} \,\bar{\mathcal{V}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\}$$

Lehmann representation

 $\begin{cases} \mathcal{U}_a^{k*} \equiv \langle \Psi_k | a_a^{\dagger} | \Psi_0 \rangle \\ \mathcal{V}_a^{k*} \equiv \langle \Psi_k | \bar{a}_a | \Psi_0 \rangle \end{cases}$

where

and

$$\begin{cases} E_k^{+\,(A)} \equiv E_k^{A+1} - E_0^A \equiv \mu + \omega_k \\ E_k^{-\,(A)} \equiv E_0^A - E_k^{A-1} \equiv \mu - \omega_k \end{cases}$$

Spectroscopic factors

$$SF_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a}^{\dagger} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{U}_{a}^{k} \right|^{2}$$
$$SF_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{V}_{a}^{k} \right|^{2}$$

[figure from J. Sadoudi]

Spectral strength distribution

Benchmarks

Benchmarks between Gorkov GF, Dyson GF & IM-SRG

Solidity of many-body machinery

Binding energies around Ca

• Access to several neighbouring isotopic chains (here $Z = 18 \rightarrow 22$)

[Somà *et al.* 2014]

- Can not go "too far" from **singly-magic** nuclei
 - \rightarrow Would require additional breaking of SU(2) rotational \rightarrow see BCC [Signoracci *et al.*]

Two-neutron separation energies around Ca

Two-neutron separation energies

$$S_{2n} \equiv E_0^{Z,N} - E_0^{Z,N-2}$$

[Somà et al., update on PRC 89 061301]

A number of new experiments target neutron-rich isotopes in this mass region

- Calculations reveal deficiencies of employed chiral interactions
 - Systematic overbinding & too small radii
 - → Overestimation of N=20 gap traced back to spectrum too spread out

[Somà et al., in preparation]

Towards heavier systems

♦ Ab initio calculations being pushed towards A=100 and above

---- Extended **testing ground** for nuclear Hamiltonians

Potassium ground states (re)inversion

Ground-state spin inversion & re-inversion recently established

Herein → Laser spectroscopy @ ISOLDE

→ GGF calculations of K spectra

Particle-number variance

• Gorkov GF calculations break particle number symmetry $\longrightarrow \sigma_A = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2}$

Serving has two sources:

1) Reference state mixes different A

2) Green's function formalism itself explores Fock space

Particle-number variance

• Gorkov GF calculations break particle number symmetry $\longrightarrow \sigma_A = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2}$

Breaking has two sources:

1) Reference state mixes different A

2) Green's function formalism itself explores Fock space

- → Need to go beyond approximation $\rho^{(2)} \sim \rho^{(1)} \rho^{(1)}$
- To be further investigated at next order in GF expansion

Conclusions

Considerable advances in ab initio nuclear structure
 SRG-ed Hamiltonian extend domain of applicability
 new approaches allow to go beyond closed-shell limitations

♦ Gorkov-Green's function theory

○ combines richness of GF with symmetry breaking techniques
○ reaching state-of-the-art of nuclear many-body → ADC(3)

Breaking of symmetries viable way to tackle near-degenerate systems
 case of U(1) crucial to treat pairing correlations
 symmetry restoration must be addressed