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Ab initio nuclear structure

Long-term goal: predictive nuclear structure calculations

➟ Half of bound nuclei never observed, many poorly known

Nuclear Hamiltonian not fixed

➟ Traditional models: strong repulsive core
➟ Modern models: softer core, towards a systematic expansion, consistent 3NF

➟ Thorough quantification of theoretical errors (Hamiltonian & many-body)

➟ Major breakthrough: Vlow-k or SRG of NN+3N interactions
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Figure 9: Schematic illustration of two types of RG evolution for NN potentials in momentum space:
(a) Vlow k running in Λ, and (b) SRG running in λ. At each Λi or λi, the matrix elements outside of the
corresponding lines are zero, so that high- and low-momentum states are decoupled.

60, 61], as shown, for example, in Fig. 8. For variable-cutoff potentials, three-body (and higher-body)
interactions evolve naturally with the resolution scale.

1.3 Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for
calculating low-energy observables can be captured in the scale-dependent coefficients of operators
in a low-energy Hamiltonian [29]. This principle does not mean that high-energy and low-energy
physics is automatically decoupled in every effective theory. In fact, it implies that we can include as
much irrelevant coupling to incorrect high-energy physics as we want by using a large cutoff, with no
consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting
the necessary degrees of freedom. This decoupling can be efficiently achieved by evolving nuclear
interactions using RG transformations designed to handle similar problems in relativistic field theories
and critical phenomena in condensed matter systems.6

The general purpose of the RG when dealing with the large range of scales in physical systems was
eloquently explained by David Gross [63]:

“At each scale, we have different degrees of freedom and different dynamics. Physics at a
larger scale (largely) decouples from the physics at a smaller scale. . . . Thus, a theory at a
larger scale remembers only finitely many parameters from the theories at smaller scales,
and throws the rest of the details away. More precisely, when we pass from a smaller scale
to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the
RG method is to explain how this decoupling takes place and why exactly information is
transmitted from scale to scale through finitely many parameters.”

The common features of RG for critical phenomena and high-energy scattering are discussed by Steven
Weinberg in an essay in Ref. [64]. He summarizes:

“The method in its most general form can I think be understood as a way to arrange in
various theories that the degrees of freedom that you’re talking about are the relevant degrees
of freedom for the problem at hand.”

6For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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Different nuclear ab initio strategies

NCSM, GFMC, .... Shell model GF, CC, IM-SRG, ....

Advances in ab initio techniques Advances in ab initio techniquesAdvances in ab initio techniques

Valence space Based on expansionVirtually exact
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5-10 years ago

○ Hard repulsive core requires large model spaces to converge

○ Open-shell: degeneracy w.r.t. particle-hole excitation  ➝  expansion breaks down
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Different nuclear ab initio strategies

Light nuclei Medium-mass nuclei Mid/heavy nuclei

NCSM, GFMC, .... Ab initio SM GF, CC, IM-SRG, ....

Advances in ab initio techniques Advances in ab initio techniquesAdvances in ab initio techniques

Valence space Based on expansionVirtually exact

A<16 A~20-50 A<150

Today

○ Development of new methods allows to tackle open-shell nuclei

○ Soft interactions yield converged calculations in smaller model spaces



Current limits/reach of nuclear ab initio calculations

2010 2011 2012 2013

“Exact” Ab initio closed shell Ab initio open shell
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16O12C
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2013
1st half 2nd half

Gorkov GF
Coupled cluster

IT-No Core SM
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88Ni
132Sn

24O

MR-IM-SRG

➟ Heavier system computed in the different types of ab initio



Gorkov framework

Idea: expand around an auxiliary many-body state

➟ Introduce a “grand-canonical” potential

Breaks particle- !
number symmetry

➟ Observables of the A-body system

5

FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-

dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.
Let us make the hypothesis that ideal one-nucleon pick-

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.
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⌦ = H � µA (19)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (20)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (21)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (20) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (22)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (23a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (23b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the

kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].

Equation (21) demonstrates that the centroid matrix
is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (21); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.

On the practical side, Eq. (21) underlines that the av-
eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (25) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (25) with a density matrix
reflecting the presence of correlations in the system.

Using that the even-even ground state the one-nucleon
transfer is performed on is a J⇧ = 0+ state, Wigner-
Eckart’s theorem allows one to obtain the explicit de-
pendence of spectroscopic amplitudes on mp and Mµ,

6
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Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
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M(n)
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denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (24) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (24); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (24) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (28) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ ⟨1:a; 2:b|V NN |1:c; 2:d⟩

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
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as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as
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(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (21)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (26a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (26b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (26c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (26a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (26b)
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†
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′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (21)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.
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fashion for the appearance and destruction of condensed
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ical potential µ.
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mates the initial one. The validity of such an approxi-
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(ideally) implies that pairs of nucleons can be added or
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same energy cost, independently of N . Such an hypoth-
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where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)
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Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (16)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (19)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (20)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (21a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (21b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (21c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.

minimizes under the constraint➟

6

⌦ = H � µA (19)

A = h 0|A| 0i (20)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (21)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (22)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (21) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (23)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (24a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (24b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (22) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (22); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (22) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (26) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (26) with a density matrix
reflecting the presence of correlations in the system.
Using that the even-even ground state the one-nucleon
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tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
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when summing up certain classes of diagrams and point
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fashion for the appearance and destruction of condensed
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particle number is said to respect the (even) number-
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(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
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particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (21a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (21b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (21c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σ̃ab(ω) ≡

⎛

⎝

Σ̃11
ab(ω) Σ̃12

ab(ω)

Σ̃21
ab(ω) Σ̃22

ab(ω)

⎞

⎠ , (33)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ̃ab(ω) ≡ Σab(ω)−Uab . (34)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

⋆
cd(ω)Gdb(ω) . (35)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (36)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN ⟨ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

= −i
∑

N

c∗NcN⟨ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

= −iθ(t− t′)
∑

N

|cN |2⟨ψN
0 |aa(t)a†b(t

′)|ψN
0 ⟩+ iθ(t′ − t)

∑

N

|cN |2⟨ψN
0 |a†b(t

′)aa(t)|ψN
0 ⟩

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ ⟨ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 ⟩

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t ⟨ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 ⟩ . (37)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k ⟩ = [H − µN ]|ψN±1

k ⟩
= [EN±1

k − µ(N ± 1)]|ψN±1
k ⟩ (38)

HѰ = EѰ
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pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C9c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)

34

pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā
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term, with +iη in the denominator, contains no pole in
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V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k
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The anomalous contributions to the self-energy at first
order are
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b̄
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a
c d̄
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where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been introduced. Summing the two terms one has

Σ11 (2′+2′′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + 2Pk1k2k3
b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b + 2Qk1k2k3
b )

ω + Ek1k2k3 − iη

}

, (94)

which can be written, using properties (90) and (91), as

Σ11 (2)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

=
1

6

∑

k1k2k3

{

(Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a ) (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη

}

+
1

6

∑

k1k2k3

{

(N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a )† (N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

Σ11
ab(ω) =

∑

k1k2k3

{

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

†Dk1k2k3
b

ω + Ek1k2k3 + iη

}

, (95)

with the definitions

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a

]

, (96a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a

]

. (96b)

One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

=

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

≡ Ξ

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

(100)
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k1k2k3
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†Dk1k2k3
b
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−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

≡ Ξ

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

(100)

36

convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i
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C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k
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Ūk
c V̄k∗

d
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2
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C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2
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dω′
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cd

V̄c̄dāb G
21
cd(ω
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= − i

2
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dω′
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V̄k
c Ūk∗

d
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2
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C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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where the same integration technique as in (C18) has
been used.
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second-order self-energy
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d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
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which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)
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Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′ + ω′′ − ω) . (C13)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C14)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C13) we obtain

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f Ūk2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d Ūk2

f Ūk2∗
g Vk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Vk2

g Ūk3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

. (C15)

With the same technique we can evaluate all other terms contributing to the second order self-energy. We have

Σ11 (2′′)
ab (ω) = ↑ ω′

d ḡ

c f

↑ ω′′′↑ ω′′

b

a

h̄

e

(C16)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dḡbh̄ G11
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C17)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d Ūk2

f V̄k2∗
h Uk3∗

g Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Uk2

h V̄k3
g Ūk3∗

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C18)
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for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄hb̄gd̄ G12
cd(ω′)G11

eg(ω′′)G11
hf (ω′ + ω′′ − ω) (C23)

=

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2
e Ūk2∗

g

ω′′ − ωk2
+ iη

+
Vk2∗

e Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
f

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3

f

ω′ + ω′′ − ω + ωk3
− iη

}

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d Ūk2
e Ūk2∗

g Vk3∗
h Vk3

f

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
e Vk2

g Ūk3

h Ūk3∗
f

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

and

Σ12 (2′′)
ab (ω) =

c f

← ω′

↓ ω′′′

h̄ b̄

↖ ω′′

e
a

d̄ḡ

, (C24)

yielding

Σ12 (2′′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd(ω′)G12

fg(ω
′′)G21

he(ω
′ + ω′′ − ω) (C25)

=
1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2
g

ω′′ + ωk2
− iη

} {

V̄k3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2

f V̄k2∗
g Uk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
f Vk2

g V̄k3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

Finally

Σ21 (2′)
ab (ω) =

g d

↑ ω′′ ↓ ω′′′

ā e

c̄

b

↑ ω′′′

h

f

, (C26)
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including quasiparticle-phonon couplings in the self-energy,
either phenomenologically [15] or in the framework of nuclear
field theory [16]. Recently, we have introduced a fully ab initio
approach based on the Gorkov ansatz that extends the SCGF
formalism to open-shell nuclei [17,18]. Together with the
latest advances on elementary internucleon interactions, such
a development paves the way for an ab initio description of
complete isotopic and isotonic chains in the mid-/heavy-mass
region of the nuclear chart.

A crucial issue for ab initio approaches concerns the ability
to perform numerical calculations in increasingly large model
spaces, with the aims of thoroughly checking the convergence
and of constantly extending the reach to heavier systems.
More generally, ab initio methods must eventually assess all
sources of theoretical uncertainties and attribute theoretical
error bands to their predictions. This is a necessary condition to
be in the position of exploiting the remaining discrepancy with
experiment as a measure of the quality of the input many-body
Hamiltonian. The intent of the present work is to discuss
the numerical implementation of Gorkov-Green’s function
techniques for finite systems and evaluate uncertainties as-
sociated with model-space truncations and the algorithm used
to solve Gorkov’s equation. Other sources of error, including
uncertainties related to renormalization group transformations
of the Hamiltonian and to many-body truncations have already
been discussed in the literature [6,8] and will be addressed
thoroughly for Gorkov theory in future works.

A long-standing problem with self-consistent calculations
of one-body propagators in finite systems concerns the rapid
increase of the number of poles generated at each iterative step.
The fast growth is expected as the Lehmann representation
of one-body Green’s functions [see Eqs. (3) and (13) below]
develops a continuous cut along the real energy axis in
connection with unbound states. This cut is discretized by a
growing number of discrete energy states as the the size of the
model space is increased. In practical calculations, one needs
to limit the number of discretized poles in a way that self-bound
systems can still be accurately calculated. Traditionally, this
has been achieved by either binning the self-energy poles along
the energy axis or by employing Lanczos algorithms to project
the energy denominators onto smaller Krylov spaces [19–24].
The latter approach is preferable since the original self-energy
is retrieved in the limit of increasing Krylov basis size.
However, corresponding calculations relied on the further
approximation that the self-energy is diagonal in the one-body
Hilbert space. This approximation can result in significant
inaccuracies and should be avoided. Moreover, several pivots
are necessary to correctly reproduce the off-diagonal features
of the self-energy, leading to a block Lanczos algorithm [25].
Other works have avoided Krylov projection techniques and
performed self-consistent calculations by manually selecting
the set of poles carrying the largest strength while collecting
the others into few effective poles. These ad hoc procedures
have led to successful investigations [26,27] but do not offer
the possibility to systematically assess errors.

Our recent SCGF calculations [6,18,28,29] have relied on
modified Lanczos and Arnoldi algorithms to perform reduction
to Krylov spaces defined by multiple pivots, as originally
suggested in Ref. [25]. This approach guarantees convergence

to the full original self-energy in the limit of increasing
Krylov space dimension and, hence, is suitable for ab initio
calculations. However, no account has been given so far of the
performance and accuracy of this method in nuclear structure
applications. One aim of the present work is to fill this gap.

The paper is organized as follows. In Sec. II Gorkov-
Green’s function theory is briefly reviewed, with a focus on
the aspects inherent to the solution of Gorkov’s equation. In
Sec. III the numerical implementation of Gorkov’s equation is
discussed, with particular emphasis on the modified Lanczos
algorithm employed in the diagonalization. A remainder of the
relevant Lanczos formulas as well as details on the treatment
of chemical potentials can be found in the Appendixes. The
performance of the Krylov projection is analyzed in Sec. IV A.
In Sec. IV B different degrees of self-consistency in the
iterative solution of Gorkov’s equations are compared. The
dependence of the results on the size of the single-particle
model space, i.e., on the basis used to represent the matrix
elements of one and two-body operators at play, is investigated
in Sec. IV C, followed by final remarks in Sec. V.

II. GORKOV-GREEN’S FUNCTION THEORY

A. Gorkov’s equation

Given the intrinsic Hamiltonian

Hint ≡ T + V − TCM, (1)

Gorkov-SCGF theory targets the ground state |!0⟩ of the
grand-canonical-like potential " ≡ Hint − µp Ẑ − µn N̂ , hav-
ing the targeted proton Z = ⟨!0|Ẑ|!0⟩ and neutron N =
⟨!0|N̂ |!0⟩ numbers on average. Here, µp (µn) denotes the
proton (neutron) chemical potential and Ẑ (N̂ ) the proton-
(neutron-)number operator.

The complete dynamics is embodied in a set of four Green’s
functions known as Gorkov’s propagators [30],2

G(ω) =
(

G11(ω) G12(ω)
G21(ω) G22(ω)

)
, (2)

whose matrix elements read in the Lehmann representation

G11
ab(ω) =

∑

k

{
U k

a U k∗
b

ω − ωk + iη
+ V̄k∗

a V̄k
b

ω + ωk − iη

}
, (3a)

G12
ab(ω) =

∑

k

{
U k

a Vk∗
b

ω − ωk + iη
+ V̄k∗

a Ū k
b

ω + ωk − iη

}
, (3b)

G21
ab(ω) =

∑

k

{
Vk

a U k∗
b

ω − ωk + iη
+ Ū k∗

a V̄k
b

ω + ωk − iη

}
, (3c)

G22
ab(ω) =

∑

k

{
Vk

a Vk∗
b

ω − ωk + iη
+ Ū k∗

a Ū k
b

ω + ωk − iη

}
. (3d)

2Two-dimensional matrices in Gorkov space are denoted in boldface
throughout the paper. Nonboldface quantities are used for vectors and
matrices defined on the one-body Hilbert space H1. Their specific
matrix elements are denoted by latin letter subscripts {a,b, . . .}, which
label single-particle basis states of H1.

024323-2
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We extend Gorkov-Green’s function formalism to the algebraic diagrammatic construction scheme
at third order [ADC(3)].

I. INTRODUCTION

There are 17 topologically distinct diagrams contribut-
ing to Gorkov ADC(3), all containing three interaction
lines. One interaction line is always connected to the in-
coming propagator, another one to the outgoing propaga-
tor. The diagrams can be then divided into three classes
depending on the nature of the intermediate interaction
line (not connected to any external line):

• Class A (intermediate “particle-particle1”)

• Class B (intermediate “hole-hole”)

• Class C (intermediate “particle-hole”)

We can further label a diagram according to the posi-
tion of the “hole” line (first from the left, second or third)
in the top and bottom interaction respectively, i.e. each
diagram will be denoted with Xij , where X ∈ {A,B,C}
and {i, j} ∈ {1, 2, 3}. In Figs. 1, 2 and 3 diagrams of
class A, B and C respectively are displayed.

1
4

A33

1
2

A32 = A31

1
2

A23 = A13 A11 = A22 = A12 = A21

FIG. 1. Gorkov ADC(3) diagrams of class A
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† thomas.duguet@cea.fr
‡ vittorio.soma@cea.fr

1 In Dyson language.
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1
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1
2
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2

B23 = B13 B11 = B22 = B12 = B21

FIG. 2. Gorkov ADC(3) diagrams of class B
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FIG. 3. Gorkov ADC(3) diagrams of class C
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FIG. 3. Gorkov ADC(3) diagrams of class C

4

S+ab
µ ⌘ h A

0

|aa| A+1

µ ih A+1

µ |a†b| A

0

i (45a)

S�ab
⌫ ⌘ h A

0

|a†a| A-1

⌫ ih A-1

⌫ |ab| A

0

i (45b)

Tracing the latter matrices over the one-body Hilbert space H
1

provides spectroscopic factors

SF+

µ ⌘ TrH1

⇥
S+

µ

⇤
=

X

a2H1

��Ua
µ

��2 (46a)

SF�
⌫ ⌘ TrH1

⇥
S�
⌫

⇤
=

X

a2H1

|V a
⌫ |

2 (46b)

which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H

1

through

S(z) ⌘
X

µ2HA+1

S+

µ �(z � E+

µ ) +
X

⌫2HA�1

S�
⌫ �(z � E�

⌫ )

where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)

S(z) ⌘ TrH1 [S(z)] (47)

=
X

µ2HA+1

SF+

µ �(z � E+

µ ) +
X

⌫2HA�1

SF�
⌫ �(z � E�

⌫ )

which is a basis-independent function of the energy.

⌧ ⇠ ��1

k

�k = 0 �! ⌧ = 1

zk = "k + i�k

G(k, z)⇤ = G(k, z⇤)

⇧(0)(q,!)

W = v + v⇧W

⌃GW (k,!) = i

Z
d!0

2⇡

Z
dk0

(2⇡)3
G(k� k0,! � !0)W (k0,!0)

⌃11 [ADC(3)] �!

Dyson

Gorkov

1

2

1

4

2

34
ADC(n)

n 1 2 3

# diagrams

[Barbieri, Duguet & Somà in prep.]
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normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σ̃ab(ω) ≡

⎛

⎝

Σ̃11
ab(ω) Σ̃12

ab(ω)

Σ̃21
ab(ω) Σ̃22

ab(ω)

⎞

⎠ , (33)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ̃ab(ω) ≡ Σab(ω)−Uab . (34)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

⋆
cd(ω)Gdb(ω) . (35)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (36)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN ⟨ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

= −i
∑

N

c∗NcN⟨ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

= −iθ(t− t′)
∑

N

|cN |2⟨ψN
0 |aa(t)a†b(t

′)|ψN
0 ⟩+ iθ(t′ − t)

∑

N

|cN |2⟨ψN
0 |a†b(t

′)aa(t)|ψN
0 ⟩

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ ⟨ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 ⟩

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t ⟨ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 ⟩ . (37)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k ⟩ = [H − µN ]|ψN±1

k ⟩
= [EN±1

k − µ(N ± 1)]|ψN±1
k ⟩ (38)

HѰ = EѰ

Energy dependent eigenvalue problem
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ ⟨Ψ0|a†baa|Ψ0⟩ =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

Gorkov equation & self-energy expansion
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

= ωk

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3

⎧

⎨

⎩

(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2

⎫

⎬

⎭

= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)
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including quasiparticle-phonon couplings in the self-energy,
either phenomenologically [15] or in the framework of nuclear
field theory [16]. Recently, we have introduced a fully ab initio
approach based on the Gorkov ansatz that extends the SCGF
formalism to open-shell nuclei [17,18]. Together with the
latest advances on elementary internucleon interactions, such
a development paves the way for an ab initio description of
complete isotopic and isotonic chains in the mid-/heavy-mass
region of the nuclear chart.

A crucial issue for ab initio approaches concerns the ability
to perform numerical calculations in increasingly large model
spaces, with the aims of thoroughly checking the convergence
and of constantly extending the reach to heavier systems.
More generally, ab initio methods must eventually assess all
sources of theoretical uncertainties and attribute theoretical
error bands to their predictions. This is a necessary condition to
be in the position of exploiting the remaining discrepancy with
experiment as a measure of the quality of the input many-body
Hamiltonian. The intent of the present work is to discuss
the numerical implementation of Gorkov-Green’s function
techniques for finite systems and evaluate uncertainties as-
sociated with model-space truncations and the algorithm used
to solve Gorkov’s equation. Other sources of error, including
uncertainties related to renormalization group transformations
of the Hamiltonian and to many-body truncations have already
been discussed in the literature [6,8] and will be addressed
thoroughly for Gorkov theory in future works.

A long-standing problem with self-consistent calculations
of one-body propagators in finite systems concerns the rapid
increase of the number of poles generated at each iterative step.
The fast growth is expected as the Lehmann representation
of one-body Green’s functions [see Eqs. (3) and (13) below]
develops a continuous cut along the real energy axis in
connection with unbound states. This cut is discretized by a
growing number of discrete energy states as the the size of the
model space is increased. In practical calculations, one needs
to limit the number of discretized poles in a way that self-bound
systems can still be accurately calculated. Traditionally, this
has been achieved by either binning the self-energy poles along
the energy axis or by employing Lanczos algorithms to project
the energy denominators onto smaller Krylov spaces [19–24].
The latter approach is preferable since the original self-energy
is retrieved in the limit of increasing Krylov basis size.
However, corresponding calculations relied on the further
approximation that the self-energy is diagonal in the one-body
Hilbert space. This approximation can result in significant
inaccuracies and should be avoided. Moreover, several pivots
are necessary to correctly reproduce the off-diagonal features
of the self-energy, leading to a block Lanczos algorithm [25].
Other works have avoided Krylov projection techniques and
performed self-consistent calculations by manually selecting
the set of poles carrying the largest strength while collecting
the others into few effective poles. These ad hoc procedures
have led to successful investigations [26,27] but do not offer
the possibility to systematically assess errors.

Our recent SCGF calculations [6,18,28,29] have relied on
modified Lanczos and Arnoldi algorithms to perform reduction
to Krylov spaces defined by multiple pivots, as originally
suggested in Ref. [25]. This approach guarantees convergence

to the full original self-energy in the limit of increasing
Krylov space dimension and, hence, is suitable for ab initio
calculations. However, no account has been given so far of the
performance and accuracy of this method in nuclear structure
applications. One aim of the present work is to fill this gap.

The paper is organized as follows. In Sec. II Gorkov-
Green’s function theory is briefly reviewed, with a focus on
the aspects inherent to the solution of Gorkov’s equation. In
Sec. III the numerical implementation of Gorkov’s equation is
discussed, with particular emphasis on the modified Lanczos
algorithm employed in the diagonalization. A remainder of the
relevant Lanczos formulas as well as details on the treatment
of chemical potentials can be found in the Appendixes. The
performance of the Krylov projection is analyzed in Sec. IV A.
In Sec. IV B different degrees of self-consistency in the
iterative solution of Gorkov’s equations are compared. The
dependence of the results on the size of the single-particle
model space, i.e., on the basis used to represent the matrix
elements of one and two-body operators at play, is investigated
in Sec. IV C, followed by final remarks in Sec. V.

II. GORKOV-GREEN’S FUNCTION THEORY

A. Gorkov’s equation

Given the intrinsic Hamiltonian

Hint ≡ T + V − TCM, (1)

Gorkov-SCGF theory targets the ground state |!0⟩ of the
grand-canonical-like potential " ≡ Hint − µp Ẑ − µn N̂ , hav-
ing the targeted proton Z = ⟨!0|Ẑ|!0⟩ and neutron N =
⟨!0|N̂ |!0⟩ numbers on average. Here, µp (µn) denotes the
proton (neutron) chemical potential and Ẑ (N̂ ) the proton-
(neutron-)number operator.

The complete dynamics is embodied in a set of four Green’s
functions known as Gorkov’s propagators [30],2

G(ω) =
(

G11(ω) G12(ω)
G21(ω) G22(ω)

)
, (2)

whose matrix elements read in the Lehmann representation

G11
ab(ω) =

∑

k

{
U k

a U k∗
b

ω − ωk + iη
+ V̄k∗

a V̄k
b

ω + ωk − iη

}
, (3a)

G12
ab(ω) =

∑

k

{
U k

a Vk∗
b

ω − ωk + iη
+ V̄k∗

a Ū k
b

ω + ωk − iη

}
, (3b)

G21
ab(ω) =

∑

k

{
Vk

a U k∗
b

ω − ωk + iη
+ Ū k∗

a V̄k
b

ω + ωk − iη

}
, (3c)

G22
ab(ω) =

∑

k

{
Vk

a Vk∗
b

ω − ωk + iη
+ Ū k∗

a Ū k
b

ω + ωk − iη

}
. (3d)

2Two-dimensional matrices in Gorkov space are denoted in boldface
throughout the paper. Nonboldface quantities are used for vectors and
matrices defined on the one-body Hilbert space H1. Their specific
matrix elements are denoted by latin letter subscripts {a,b, . . .}, which
label single-particle basis states of H1.

024323-2
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ ⟨Ψ0|a†baa|Ψ0⟩ =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

= ωk

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3

⎧

⎨

⎩

(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2

⎫

⎬

⎭

= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

∝ NLanczos

Krylov space eigenvalue problem
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k ≡
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[
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Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

= ωk

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

(100)
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contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3

⎧

⎨

⎩

(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2

⎫

⎬

⎭

= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

typically ~102-103

Gorkov equation energy dependent eigenvalue problem

energy independent eigenvalue problem

∝ Nb3

typically ~106-107

Solution of Gorkov equation
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TABLE III. Values obtained from Eq. (29) for various model
spaces. The sum over α is limited to neutrons only (including protons
would require a factor 2 in columns 2, 3, and 4 that would cancel out
in K ′). As an example, K ′ values for Nℓ = 100 are displayed in the
last column.

Nmax αtot
∑

α dim(Eα)
∑

α 2Nα
b K ′(Nℓ = 100)[%]

3 7 12 226 20 16.358
4 9 57 029 30 5.260
5 11 411 968 42 1.019
7 15 3 265 512 72 0.220
9 19 16 808 456 110 0.065

11 23 65 305 228 156 0.023
13 27 208 096 960 210 0.010

where α runs over all partial waves. Values obtained from
Eq. (29) are displayed in Table III for different Nmax. For a
fixed Nℓ, the fraction K ′ becomes progressively small when
increasing the size of the model space. However, the total
number of configurations still grows rapidly with Nmax.

Figure 5 demonstrates the accuracy obtained on the total
binding energy as a function of K ′, when all partial waves are
accounted for in the calculation of 44Ca. Relative errors are
given with respect to the result of one exact diagonalization in
the original 3QP space. Errors for both Nmax = 3 and Nmax = 4
models spaces are comparable for K ′ > 1% and eventually
decrease in a similar fashion as in Fig. 4. On the other hand,
convergence to few keV is reached for smaller values of K ′ in
the larger model space.

Realistic calculations will differ from the above cases
because diagonalizations have to be repeated iteratively to
reach the self-consistent solution and because large model
spaces must be employed. In Fig. 6, converged sc0 energies are
displayed as a function of Nℓ for different model-space sizes.
One notices that all cases show a similar dependence on Nℓ:
a dip, a steep rise after Nℓ = 2 and a smooth decay towards
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-3

-2
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K' [%]

lo
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 (
∆E

/E
)
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FIG. 5. (Color online) Relative error in the total binding energy
of 44Ca after one second-order iteration as a function of K ′ (see text)
for two different model-space sizes. The Coulomb interaction has
been neglected in this figure.
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FIG. 6. (Color online) Convergence of the (sc0) binding energy
of 44Ca as a function of Nℓ, for different model spaces. The Coulomb
interaction has been neglected in this figure.

an asymptotic value. This behavior is rather independent of
Nmax and indicates that Nℓ is in fact a more appropriate
parameter than K ′ to gauge the convergence of the Krylov
projection. Small fluctuations may still occur for Nℓ > 10,
especially for the larger models spaces, which suggests that
somewhat larger values of Nℓ might be needed to reach the
desired accuracy as Nmax increases. In general, this behavior
seen in Fig. 6 is in accordance with the above observation
that, when increasing Nmax, a smaller value of K ′ is needed
to reach a few keV accuracy. Arguably, binding energies are
well reproduced once one includes the number of degrees
of freedom sufficient to resolve the system’s wave function
(or propagator). The Krylov projection characterized by Nℓ

is a very efficient way to select those degrees of freedom as
it preserves the corresponding moments of the 3QP matrix
E. The trend observed in Figs. 4 and 5 suggest that K ′

might instead control the exponential convergence to the exact
diagonalization. From Fig. 6 one sees that the energy reaches a
plateau for Nℓ > 30, rather independently of the model-space
size. Eventually, we estimate that the Lanczos procedure per-
formed with Nℓ ≈ 50 induces inaccuracies of about 100 keV
for the largest model space considered (Nmax = 13).

It is also instructive to look at the convergence of spec-
troscopic quantities. For this purpose, the doubly open-shell
nucleus 40Ti is considered in a model space of 14 major shells.
Figure 7 displays the density of J# = 1/2+ states5 in 41Ti as
a function of their energy relative to the Fermi surface of 40Ti,
for increasing Nℓ. The exact density of states would display a
bell shape due to the rise of the number of (physical) degrees
of freedom which is eventually stopped by the truncation of
the model space. As seen from Table III, only a very small
fraction of those configurations is effectively retained here. As
the dimension of Gorkov-Krylov’s matrix increases, only the
density of states at the edges of the eigenvalue spectrum start
to converge, which is a typical feature of Krylov methods.

5The density of states (DOS) in question is obtained from the SSD
[Eq. (8)] by setting SF +

k = 1 and SF −
k = 0 for all k.
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Eventually, standard Dyson’s equation is generalized as
set of coupled equations involving the two types of prop-
agators and self-energies. These are known as Gorkov’s
equations [45] and read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G(0)
ac (ω) Σ̃cd(ω)Gdb(ω) . (34)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
one-body normal and anomalous Green’s functions in
terms of unperturbed ones. If the method is self-
consistent, the final result does not depend on the choice
of the auxiliary potential, which disappears from the
equations once the propagators are dressed with the cor-
responding self-energies. From a practical point of view
it is useful to track where the auxiliary potential enters
and how its cancelation is eventually worked out. This
point is addressed in Section IVA, where the solution of
Gorkov’s equations is discussed. In particular, and since
such a solution is to be found through an iterative pro-
cedure, one is eventually interested in choosing a good
auxiliary potential as a starting point.

Let us further remark that, as the auxiliary potential
(29) has a one-body character, i.e. it acts as a mean field,
the search for the ground state of ΩU corresponds to solv-

ing a Bogoliubov-like problem, as becomes evident when
writing the unperturbed grand potential in its Nambu’s
form

[ΩU ]ab =

(

Tab + Uab − µ δab Ũ †
ab

Ũab −Tab − Uab + µ δab

)

.

(35)
In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
(HFB) problem and then uses the resulting propagators
GHFB

ab as the unperturbed ones. Notice that the self-
energy corresponding to this solution, ΣHFB , eventually
differs from the first-order self-energy Σ(1) as soon as
higher orders are included in the calculation because of
the associated self-consistent dressing of the one-body
propagators.

G. Lehmann representation

Let us consider a complete set of normalized eigen-
states of Ω with no definite particle number

Ω|Ψk⟩ = Ωk|Ψk⟩ , (36)

and which span the Fock space F . Inserting the corre-
sponding completeness relation, G11(t, t′) becomes

G11
ab(t, t

′) = −iθ(t− t′)
∑

k

⟨Ψ0|aa|Ψk⟩⟨Ψk|a†b|Ψ0⟩ ei[Ω0−Ωk](t−t′) + iθ(t′ − t)
∑

k

⟨Ψ0|a†b|Ψk⟩⟨Ψk|aa|Ψ0⟩ e−i[Ω0−Ωk](t−t′) .

Using the integral representation of the theta function
and reading out the Fourier transform, one obtains the
propagator in energy representation under the form

G11
ab(ω) =

∑

k

⟨Ψ0|aa|Ψk⟩⟨Ψk|a†b|Ψ0⟩
ω − [Ωk − Ω0] + iη

+
∑

k

⟨Ψ0|a†b|Ψk⟩⟨Ψk|aa|Ψ0⟩
ω + [Ωk − Ω0]− iη

. (37)

One can proceed similarly for the other three Gorkov-
Green’s functions and obtain the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Uk
a Uk∗

b

ω − ωk + iη
+

V̄k∗
a V̄k

b

ω + ωk − iη

}

, (38a)

G12
ab(ω) =

∑

k

{
Uk
a Vk∗

b

ω − ωk + iη
+

V̄k∗
a Ūk

b

ω + ωk − iη

}

, (38b)

G21
ab(ω) =

∑

k

{
Vk
a Uk∗

b

ω − ωk + iη
+

Ūk∗
a V̄k

b

ω + ωk − iη

}

, (38c)

G22
ab(ω) =

∑

k

{
Vk
a Vk∗

b

ω − ωk + iη
+

Ūk∗
a Ūk

b

ω + ωk − iη

}

. (38d)

with Gorkov’s spectroscopic amplitudes defined as

Uk∗
a ≡ ⟨Ψk|a†a|Ψ0⟩ , (39a)

Vk∗
a ≡ ⟨Ψk|āa|Ψ0⟩ , (39b)

and

Ūk∗
a ≡ ⟨Ψk|ā†a|Ψ0⟩ , (40a)

V̄k∗
a ≡ ⟨Ψk|aa|Ψ0⟩ , (40b)

from which follows that2

Ūk
a = +ηa Uk

ã , (41a)

V̄k
a = −ηa Vk

ã . (41b)

The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
The relation of such poles to separation energies between

2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
a =

+Uk
ā and V̄k

a = −Vk
ā .

3 As discussed later on, eigensolutions of Gorkov’s equations come
in pairs (ωk ,−ωk) such that one should only sum on positive
solutions in Eq. 39.
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ā .

3 As discussed later on, eigensolutions of Gorkov’s equations come
in pairs (ωk ,−ωk) such that one should only sum on positive
solutions in Eq. 39.

[figure from J. Sadoudi]

3

where the symmetry quantum number denoting the par-
ticle number has been singled out. The label µ collects
a principal quantum number nµ, total angular momen-
tum Jµ, the projection of the latter along the z axis Mµ,
parity ⇧µ and isospin projection along the z axis Tµ of
the many-body state of interest. Use of the Greek label
µ will be made to denote the subset of quantum num-
bers µ ⌘ (⇧µ, Jµ, Tµ). Due to rotational invariance of
the nuclear Hamiltonian, eigenenergies EA

µ ⌘ EA
nµµ

are
independent of Mµ.

In the following, we consider a spherical single-
particle basis {a†p} appropriate to discussing the spher-

ical shell structure. Basis states are labelled by p ⌘
{np,⇡p, jp,mp, ⌧p} ⌘ {np,mp,↵p}, where np represents
the principal quantum number, ⇡p the parity, jp the total
angular momentum, mp its projection along the z-axis,
and ⌧p the isospin projection along the same axis.

We also consider the direct-product basis {b†~r�⌧},
where ~r is the position vector, � the projection of the
nucleon spin along the z axis, and ⌧ its isospin projec-
tion.

A. Spectroscopic amplitudes

The physical processes providing information on the
single-particle shell structure are one-nucleon transfer re-
actions. Although the discussion can be carried out for
the transfer on any initial [13]. many-body state, we
restrict ourselves in the following to the transfer on the
ground state | A

0 i of an even-even system, i.e. a J⇡ = 0+

state. Furthermore, we consider this nucleus to be of dou-
bly closed-shell character2.

In this context, let us introduce Uµ (V⌫) as the ampli-
tude to reach a specific eigenstate | A+1

µ i (| A-1
⌫ i) of the

A+1 (A-1) system by adding (removing) a nucleon in a
specific single-particle state to (from) the ground state of
the A-body system | A

0 i. Such spectroscopic amplitudes
can be defined through their representation in any given
single-particle basis. In basis {a†p}, they read

Up
µ ⌘ h A+1

µ |a†p| A
0 i⇤ , (2a)

V p
⌫ ⌘ h A-1

⌫ |ap| A
0 i⇤, (2b)

whereas their representation in basis {b†~r�q} provides the
associated wave functions or overlap functions

Uµ(~r�⌧) ⌘ h A+1
µ |b†~r�⌧ | A

0 i⇤ , (3a)

V⌫(~r�⌧) ⌘ h A-1
⌫ |b~r�⌧ | A

0 i⇤. (3b)

An important property regarding the asymptotic be-
haviour of overlap functions derives from their equation

2 Such a notion relates to the filling of shells in the uncorrelated,
e.g. Hartree-Fock, picture.

of motion given by [18]

[h1 + ⌃(!)]!=E+
µ
Uµ = E+

µ Uµ , (4)

and similarly for (V⌫ , E�
⌫ ), where (observable) one-

nucleon separation energies are defined through

E+
µ ⌘ EA+1

µ � EA
0 , (5a)

E�
⌫ ⌘ EA

0 � EA-1
⌫ . (5b)

The energy-dependent potential ⌃(!) denotes the dynam-

ical part of the irreducible self-energy [18] that naturally
arises in self-consistent Green’s-function theory and that
is to be evaluated at the eigensolution E+

µ in Eq. (4).
The static field h1 is defined in Eq. (18) and contains
both the kinetic energy and the energy-independent part
of the one nucleon self-energy. One can show from Eq. (4)
that the long-distance behaviour of the radial part of the
overlap function is governed by the corresponding one-
nucleon separation energy, e.g. for E+

µ < 0

Uµ(r�⌧) �!
r!+1 A+

µ
e�&+µ r

&+µ r
, (6)

where A+
µ denotes the so-called asymptotic normalization

coe�cient (ANC) while the decay constant is given by
&+µ ⌘ (�2mE+

µ /~2)1/2, where m is the nucleon mass3.
A similar result can, of course, be obtained for V⌫(r�⌧)
whose decay constant &�⌫ relates to E�

⌫ .
From spectroscopic amplitudes one defines addition S+

µ

and removal S�
⌫ spectroscopic probability matrices asso-

ciated with states | A+1
µ i and | A-1

⌫ i, respectively. Their
matrix elements read in basis {a†p}

S+pq
µ ⌘ h A

0 |ap| A+1
µ ih A+1

µ |a†q| A
0 i (7a)

= Up
µ Uq ⇤

µ ,

S�pq
⌫ ⌘ h A

0 |a†q| A-1
⌫ ih A-1

⌫ |ap| A
0 i (7b)

= V p ⇤
⌫ V q

⌫ ,

such that their diagonal parts, when expressed in the co-
ordinate space basis, are nothing but transition densities

for the one-nucleon transfer from | A
0 i to | A+1

µ i and
| A-1

⌫ i, respectively.
Tracing the two spectroscopic probability matrices

over the one-body Hilbert space H1 gives access to spec-
troscopic factors

SF+
k ⌘

X

a2H1

��h k|a†a| 0i
��2 =

X

a2H1

��Uk
a

��2 , (8a)

SF�
k ⌘

X

a2H1

|h k|aa| 0i|2 =
X

a2H1

��Vk
a

��2 , (8b)

3 Subtracting the center-of-mass motion would lead to using the
reduced mass of the added/removed nucleon.
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FIG. 2: (Color online) Same as Fig. ?? for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure ??, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (??)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (??), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful def-
inition of ESPEs does exist and goes back to French [?
] and Baranger [? ]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. ??). E↵ective single-particle
energies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

E+(A)
k ⌘ EA+1

k � EA
0 ⌘ µ+ !k (16)

Equation (??) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (??) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion ?? might not be exhausted.
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.
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the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (15) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion 10 might not be exhausted.
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and full lines join the results from Dyson-ADC(3) cal-
culations with the induced (squares) and full (circles) Hamil-
tonians. The shaded area highlights the changes due to the
original 3NF at NNLO. The open diamonds, joined by dot-
dashed lines, are from Gorkov calculations at second order and
include open shell isotopes. Odd-even isotopes are obtained
by summing total binging energies of the even-even systems,
Eq. (7), and the energies for addition or removal of a neutron,
Eq. (9). Experiment are from Refs. [47, 48, 51, 53, 61].

C. Results for open shells

The present implementation of the Gorkov-GF ap-
proach allows calculations up to the second order in the
self-energy [i.e. at the ADC(2) level]. This yields proper
predictions of the trend of binding energies [22] but it
does not guarantee highly accurate one-nucleon separa-
tion energies [40].

We plot the Gorkov predicted binding energies for
all even-even isotopes in Fig. 6 and compare them to
the Dyson-ADC(3) results where available. For the
Dyson case, the induced Hamiltonian systematically un-
der binds the full isotopic chain and predicts 28O to
be bound with respect to 24O. This is fully corrected
by including the original 3NF at leading order, which
brings all results to about 3% form the experiment or
closer. This is well within the estimated theoretical er-
rors discussed above [19]. The dot-dashed line shows the
trend of ground state energies for the full Hamiltonian
obtained form Gorkov, which include the 18,20,26O iso-
topes. This demonstrates that the fraction of binding
missed by the second order truncation is rather constant
across the whole isotopic chain and, in the present case,
of about 2-4 MeV. The result is a constant shift with re-
spect to the complete ADC(3) prediction and the overall
trend of binding energy is reproduced very close to the
experiment. Note that binding energies for odd-even oxy-
gens can be calculated either as neutron addition or neu-
tron removal from two di↵erent nearby isotopes. Fig. 6
shows that this procedure can lead to somewhat di↵er-
ent results, which should be taken as an indication of
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FIG. 7. (Color online) Same as Fig. 6 but for the binding ener-
gies of nitrogen and fluorine isotopes. These are calculated as
addition or removal of a proton to and from even-even oxygen
isotopes. Experiment are from Refs. [47–49, 53, 61].

the errors due to the second order many-bod truncation.
For the more complete Dyson-ADC(3) method and the
full Hamiltonian, this di↵erences are never larger than
200 keV and are not visible in the plot.
Figure 7 shows the analogous information for the bind-

ing energies of the nitrogen and fluorine isotopic chains,
obtained through removal and addition of one proton.
This confirms that all considerations made regarding the
e↵ects of leading order 3NFs on the oxygens also apply
to their neighbouring chains. In particular, the repulsive
e↵ect on the d3/2 neutron orbit is key in determining the
neutron driplines at 23N and 24O. Fluorine isotopes have
been observed experimentally up to 31F but with a 29F
that is very weakly bound. Fig. 7 clearly demonstrates
that this is due to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by
one extra proton [19]. Our calculations with the more
accurate Dyson-ADC(3) scheme predict 28O to be un-
bound with respect to 24O by 5.2 MeV. However, this
value should be slightly a↵ected by the vicinity to the
continuum [17], which was neglected in the present work.
The general qualitative features of the spectral func-

tions discussed in the previous sections are also found
in our Gorkov propagators but with an even more di-
luted single particle spectra. For example, the separa-
tion among the 1/2� and 3/2� quasihole states of 15N is
found to be 10.2 MeV, compared to the 8.2 MeV calcu-
lated in the Dyson-ADC(3) scheme [cfr. Tab. II]. This
larger value is a consequence of neglecting the interac-
tions between 2p1h and 2h1p configurations by the sec-
ond order truncation. Interestingly, this splitting is sensi-
bly reduced in the neighbouring semi-magic isotopes and
it is calculated to be 4.9 MeV for 17N and 5.6 MeV for
19N. These smaller values are in parts due to the fact the
the p3/2 hole orbit is fragmented for these nuclei. And
we report here only the values for the first 3/2� state
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FIG. 1. (Color online) Convergence of the binging energy of 51K with
respect to the basis size and HO frequency, for the full Hamiltonian.

model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

RAPID COMMUNICATIONS

Ab INITIO MULTIREFERENCE IN-MEDIUM . . . PHYSICAL REVIEW C 90, 041302(R) (2014)

For the NN + 3N -induced Hamiltonian shown in Fig. 1(a),
we overbind the Ca isotopes for the considered values of λSRG.
However, the ground-state energies vary significantly with the
resolution scale λSRG due to the omitted induced beyond-3N
forces. Other sources, such as the E3max truncation and
NO2B approximation, can be ruled out because they are only
weakly sensitive to λSRG variations [2,10–12]. Furthermore,
the λSRG dependence of MR-IM-SRG(2) and CR-CC(2,3) is
comparable despite their different many-body content, which
implies that missing many-body effects cannot be its primary
source, either.

In Fig. 1(b), we show that the inclusion of an initial 3N
force reduces the λSRG dependence drastically. As discussed
in Ref. [2], this is a result of cancellations between induced
forces from the initial NN and 3N interactions. With this
reduced dependence on λSRG we find an overbinding that is
robust under variations of λSRG and slowly increasing from
8% for 36Ca to 12% for 54Ca.

We now consider the two-neutron separation energies S2n

shown in Fig. 2. Such differential quantities filter out global
energy shifts due to missing induced many-body forces, as well
as many-body and basis truncations. For instance, the absolute
variation of the S2n with λSRG in the NN + 3N -induced case
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FIG. 2. (Color online) Two-neutron separation energies of the
Ca isotopes for the (a) NN + 3N -induced and (b) NN + 3N -full
Hamiltonian with "3N = 350 and 400 MeV/c, for a range λSRG =
1.88 fm−1 (open symbols) to 2.24 fm−1 (solid symbols). Panel (c)
compares MR-IM-SRG(2) and second-order GGF [6–8] results with
the same input Hamiltonian, but slightly different SRG evolution [54].
Experimental values (black bars) are taken from [26,50].

is much weaker than the variation of the ground-state energies
in Fig. 1(a).

The S2n for the NN + 3N -induced Hamiltonian in Fig. 2(a)
show a pronounced shell closure at 40Ca, with S2n dropping
by more than 20 MeV. The 48Ca shell closure is weak
in comparison, albeit close to experimental data, and there
are even weaker hints of shell closures in 52,54Ca (the
reference states exhibit pairing in both cases). The S2n

increase notably from 42Ca to 48Ca, and weakly from 50Ca
to 52Ca. This is an indication that interaction components
which are being accessed as neutrons are added to the pf
shell are too attractive, which is consistent with the observed
overbinding. However, shell structure effects clearly also play
a role, because the overbinding becomes less severe around
48Ca before increasing again with the neutron number N ,
while the S2n are always decreasing between shell closures
beyond 52Ca.

The NN + 3N -induced Hamiltonian produces a distinct
drip-line signal in Figs. 1(a) and 2(a): 62Ca is consistently
unbound by 5–6 MeV with respect to 60Ca for our range of
λSRG. The change in S2n is much larger than the uncertainties
due to many-body and basis truncations, or missing induced
forces (see below). The inclusion of continuum effects in
Ref. [19] reduced the energy of low-lying unbound states only
by about 2 MeV, which is insufficient to bind isotopes with
N > 40 with respect to 60Ca. Without the inclusion of initial
3N forces, the drip line is therefore expected at N = 40.

In Fig. 2(b), we show S2n for NN + 3N -full Hamiltonians
with "3N = 350 and 400 MeV/c. The N = 20 shell closure
is weakened by the 3N forces, although the calculated S2n are
still larger than experimental data. As before, we observe an
increase of the separation energies for 42−48Ca and 50−52Ca,
but we note that the overbinding consistently increases with
N in this case [Fig. 1(b)]. Interestingly, the S2n trends in these
nuclei are flatter for "3N = 350 MeV/c than for 400 MeV/c,
which suggests a change in the shell structure of these nuclei.
Overall, the S2n are consistent under this variation of the 3N
cutoff. In contrast to the NN + 3N -induced case, both 52Ca
and 54Ca exhibit magicity, in agreement with experimental and
shell model results [24–26,55,56].

For large neutron numbers, the trends shown in Figs. 1(b)
and 2(b) are different from the NN + 3N -induced case.
56−60Ca are unbound with respect to 54Ca by a mere 1–2 MeV
(also see [19]). Consequently, these isotopes are sensitive to
continuum effects and details of the interaction, which could
lead to phenomena like neutron halos as proposed in [57].
Figure 2(b) also shows that the flat plateau of the S2n for
56−60Ca in the vicinity of zero is remarkably robust under the
variation of the cutoff of the initial 3N interaction from 400 to
350 MeV/c.

The Ca isotopes were also studied recently with the second-
order Gor’kov Green’s function (GGF) method. The S2n

published in Ref. [8] were obtained with the same NN + 3N -
full Hamiltonian with "3N = 400 MeV/c, but a smaller 3N
Jacobi HO model space was used for the SRG evolution than in
our calculations. While the S2n systematics remain the same,
we show updated GGF results [54] in Fig. 2(c) to allow a more
quantitative comparison with our MR-IM-SRG(2) separation
energies. The two methods agree well for mid-shell Ca
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FIG. 1. (Color online) Convergence of the binging energy of 51K with
respect to the basis size and HO frequency, for the full Hamiltonian.

model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

Binding energies around Ca

[Somà et al. 2014]✪ Access to several neighbouring isotopic chains (here Z = 18 ➝ 22)
✪ Can not go “too far” from singly-magic nuclei

➟ Would require additional breaking of SU(2) rotational   ➝   see BCC [Signoracci et al. ]



Two-neutron separation energies around Ca

✪ Calculations reveal deficiencies of employed chiral interactions

✪ A number of new experiments target neutron-rich isotopes in this mass region
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Other isotopes have similar speeds of convergence, e.g., the
same variation of the model space induces a change of 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ≡ EZ,N

0 − EZ,N−2
0 . To test this we performed exponential

extrapolations of the calculated binding energies of a few
nuclei, using the last few odd values of Nmax. We found
variations of at most ≈500 keV with respect to the value
calculated at Nmax = 13. Hence, we take this as an estimate
of the convergence error on computed S2n. In the following
we present our results calculated for Nmax = 13 and !! =
28 MeV, which corresponds to the minimum of the curve
in Fig. 1. For isotopes beyond N = 32, appropriate extrap-
olations and larger model spaces are required and will be
considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. To this extent,
we consider the standard (Dyson) formulation of SCGF
implemented within the third-order algebraic diagrammatic
construction [ADC(3)], which goes beyond the full third
order [26,27]. The comparison in closed-shell isotopes 40Ca,
48Ca, and 52Ca (top panel of Fig. 2) shows that the correction
from third- and higher-order diagrams is rather constant along
the chain. Respectively, in Nmax = 9 we obtain E

ADC(3)−Dys
0 −
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FIG. 2. (Color online) Experimental (solid squares) [28–30] and
calculated ground-state energies of Ca isotopes. Top panel: Second-
order Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with
a Nmax = 9 model space and the full Hamiltonian. Bottom panel:
Second-order Gorkov results with NN plus induced (crosses) and
NN plus full (open squares) 3NFs and Nmax = 13. Full 3NF Gorkov
results corrected for the ADC(3) correlation energy extracted from
the top panel (dotted line with solid triangles). IM-SRG results [12]
are for the same 3NF and are extrapolated to infinite model space
(diamonds with error bars).

E2nd−Gkv
0 = −10.6, −12.1, and −12.6 MeV, which correspond

to ≈2.7% of the total binding energy. Assuming that these
differences are converged with respect to the model space, we
add them to our second-order Gorkov results with Nmax=13
and display the results in the bottom panel of Fig. 2. Resulting
values agree well with IM-SRG calculations of 40Ca and
48Ca based on the same Hamiltonian [12]. This confirms the
robustness of the present results across different many-body
methods. The error due to missing induced 4NFs was also
estimated in Ref. [12] by varying the SRG cutoff over a
(limited) range. Up to ≈1% variations were found for masses
A ! 56 (e.g., less than 0.5% for 40Ca and 48Ca) when changing
λ between 1.88 and 2.24 fm−1. We take this estimate to be
generally valid for all the present calculations.

A first important result of this work appears in the bottom
panel of Fig. 2, which compares the results obtained with
NN plus induced 3NFs and NN plus full 3NFs. The trend
of the binding energy of Ca isotopes is predicted incorrectly
by the induced 3NFs alone. This is fully amended by the
inclusion of leading chiral 3NFs. However, the latter introduce
additional attraction that results in a systematic overbinding of
ground-state energies throughout the whole chain. Analogous
results are obtained for Ar, K, Sc, and Ti isotopic chains (not
shown here), leading to the same conclusion regarding the role
of the initial chiral 3NF in providing the correct trend and in
generating overbinding at the same time.

The NN plus induced 3N interaction, which originates
from the NN -only N3LO potential, generates a wrong slope
in Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and
are significantly too large (small) for N ! 20 (N > 20).
Including chiral 3NFs corrects this behavior to a large extent
and predicts S2n close to the experiment for isotopes above
42Ca. Figure 3 also shows results for microscopic shell
model [19,30] and coupled-cluster [9] calculations above
41Ca and 49Ca, respectively, which are based on similar chiral
forces. Our calculations confirm and extend these results
within a full-fledged ab initio approach for the first time.
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of
Ca isotopes. Gorkov calculations are shown for the induced (crosses)
and full (open squares) Hamiltonians and are compared to the exper-
iment (solid squares) [28–30]. Results from shell-model calculations
with chiral 3NFs (solid line) [19,30] and coupled cluster (dashed
line) [9] are also shown.
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Towards heavier systems

➟ Extended testing ground for nuclear Hamiltonians

[Som
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✪ Ab initio calculations being pushed towards A=100 and above
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➟ Saturation at too high density?
➟ Consistent NM calculations?
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Potassium ground states (re)inversion

✪ Ground-state spin inversion & re-inversion recently established  

➟ Laser spectroscopy @ ISOLDE

[Papuga et al. 2014]

➟ GGF calculations of K spectra

J. PAPUGA et al. PHYSICAL REVIEW C 90, 034321 (2014)

FIG. 1. (Color online) Experimental energies for 1/2+ and 3/2+

states in odd-A K isotopes. Inversion of the nuclear spin is obtained in
47,49K and reinversion back in 51K. Results are taken from [16,23–25].
Ground-state spin for 49K and 51K were established [22].

of the orbitals is driven by the monopole part of the proton-
neutron interaction, which can be decomposed into three com-
ponents: the central, vector, and tensor. Initially Otsuka et al.
[12] suggested that the evolution of the ESPEs is mainly due to
the tensor component. However, in more recent publications
[11,13,14] several authors have shown that both the tensor
term as well as the central term have to be considered.

Regarding the shell model, potassium isotopes are excellent
probes for this study, with only one proton less than the magic
number Z = 20. Nevertheless, little and especially conflicting
information is available so far for the neutron-rich potassium
isotopes. Level schemes based on the tentatively assigned spins
of the ground state were provided for 48K [15] and 49K [16]. In
addition, an extensive discussion was presented by Gaudefroy
[17] on the energy levels and configurations of N = 27,28,
and 29 isotones in the shell-model framework and compared
to the experimental observation, where available. However, the
predicted spin of 2− for 48K, is in contradiction with Iπ = (1−)
proposed by Królas et al. [15]. In addition, the nuclear spin of
the ground state of 50K was proposed to be 0− [18] in contrast
to the recent β-decay studies where it was suggested to be
1− [19]. The ground state spin-parity of 49K was tentatively
assigned to be (1/2+) by Broda et al. [16], contrary to the
earlier tentative (3/2+) assignment from β-decay spectroscopy
[20]. For 51K, the nuclear spin was tentatively assigned to be
(3/2+) by Perrot et al. [21].

Our recent hyperfine structure measurements of potassium
isotopes using the collinear laser spectroscopy technique
provided unambiguous spin values for 48–51K and gave the
answer to the question as to what happens with the proton sd
orbitals for isotopes beyond N = 28. By measuring the nuclear
spins of 49K and 51K to be 1/2 and 3/2 [22], respectively,
the evolution of these two states in the potassium isotopes
is firmly established. This is presented in Fig. 1 for isotopes
from N = 18 up to N = 32 where the inversion of the states
is observed at N = 28 followed by the reinversion back at
N = 32. In addition, we have confirmed a spin-parity 1− for
48K and 0− for 50K [26]. The measured magnetic moments
of 48–51K were not discussed in detail so far and will be
presented in this article. Additionally, based on the comparison
between experimental data and shell-model calculations, the
configuration of the ground-state wave functions will be

FIG. 2. (Color online) Schematic representation of the setup for
collinear laser spectroscopy at ISOLDE.

addressed as well. Finally, ab initio Gorkov-Green’s function
calculations of the odd-A isotopes will be discussed.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear laser
spectroscopy beam line COLLAPS [27] at ISOLDE/CERN.
The radioactive ion beam was produced by 1.4-GeV protons
(beam current about 1.7 µA) impinging on a thick UCx target
(45 g/cm2). Ionization of the resulting fragments was achieved
by the surface ion source. The target and the ionizing tube
were heated to around 2000 ◦C. The accelerated ions (up to
40 kV) were mass separated by the high resolution separator
(HRS). The gas-filled Paul trap (ISCOOL) [28,29] was used
for cooling and bunching of the ions. Multiple bunches spaced
by 90 ms were generated after each proton pulse. The bunched
ions were guided to the setup for collinear laser spectroscopy
where they were superimposed with the laser. A schematic
representation of the beam line for collinear laser spectroscopy
is shown in Fig. 2.

A cw titanium:sapphire (Ti:Sa) laser was operated close
to the Doppler-shifted 4s 2S1/2 → 4p 2P1/2 transition at
769.9 nm, providing around 1 mW power into the beam
line. Stabilization of the laser system during the experiment
was ensured by locking the laser to a reference Fabry-Perot
interferometer maintained under vacuum, which in turn was
locked to a frequency stabilized helium-neon (HeNe) laser.
An applied voltage of ±10 kV on the charge exchange cell
(CEC) provided the Doppler tuning for the ions, which
were neutralized through the collisions with potassium vapor.
Scanning of the hyperfine structure (hfs) was performed by
applying an additional voltage in a range of ±500 V. The
resonance photons were recorded by four photomultiplier
tubes (PMT) placed immediately after the CEC. By gating
the signal on the PMTs to the fluorescence photons from the
bunches, the signal was only recorded for about 6 µs when
the bunches were in front of the PMTs. Consequently, the
background related to the scattered laser light was suppressed
by a factor ∼104 (6 µs/90 ms). More details about the setup
can be found in Ref. [26].

III. RESULTS

In Fig. 3 typical hyperfine spectra for 48–51K are shown.
The raw data are saved as counts versus scanning voltage. The
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FIG. 6. (Color online) (a) Energy difference between the lowest
1/2+ and 3/2+ states obtained in 37–53K from ab initio Gorkov-
Green‘s function calculations and experiment. Ab initio results have
been shifted by 2.58 MeV to match the experimental (1/2+–3/2+)
splitting in 47K. (b) πd3/2 and πs1/2 effective single-particle energies
(ESPE) in 37−53K calculated in Gorkov-Green’s functions theory.

good test case to validate/invalidate specific features of basic
internucleon interactions and innovative many-body theories.

To complement the above analysis, the lower panel of
Fig. 6 provides the evolution of proton 1d3/2 and 2s1/2 shells.
These two effective single-particle energies (ESPEs) recollect
[51] the fragmented 3/2+ and 1/2+ strengths obtained from
one-proton addition and removal processes on neighboring Ca
isotones. Within the present theoretical description, the evo-
lution of the observable (i.e., theoretical-scheme independent)
lowest-lying 1/2+ and 3/2+ states does qualitatively reflect the
evolution of the underlying nonobservable (i.e., theoretical-
scheme dependent) single-particle shells. As such, the energy
gap between the two shells decreases from 5.76 MeV in 39K to
1.81 MeV in 47K which is a reduction of about 70%. Adding
four neutrons in the ν2p3/2 shell causes the energy difference
to increase again to 4.03 MeV.

B. Even-A

The configuration of the even-A potassium isotopes arises
from the coupling between an unpaired proton in the sd
shell with an unpaired neutron. Different neutron orbitals
are involved, starting from 38K where a hole in the ν1d3/2

is expected, then gradually filling the ν1f7/2 and finally, the
ν2p3/2 for 48,50K.

In order to investigate the composition of the ground-state
wave functions of the even-A K isotopes, we first compare the
experimental magnetic moments to the semi-empirical values.
Based on the additivity rule for the magnetic moments (g
factors) and assuming a weak coupling between the odd proton
and the odd neutron, the semi-empirical magnetic moments
can be calculated using the following formula [55]: µse =
gse · I , with

gse = g(jπ ) + g(jν)
2

+ g(jπ ) − g(jν)
2

jπ (jπ + 1) − jν(jν + 1)
I (I + 1)

, (6)

where g(jπ ) and g(jν) are the experimental g factors of
nuclei with an odd proton or neutron in the corresponding
orbital. The calculations were performed using the measured
g factors of the neighboring isotopes with the odd-even and
even-odd number of particles in jπ and jν , respectively. For
the empirical values of unpaired protons, results from Table III
were used. The g factors for the odd neutrons were taken from
the corresponding Ca isotones [56–59]. The obtained results
with the list of isotopes used for different configurations are
presented in Table VI.

A comparison between the experimental and semi-
empirical g factors is shown in Fig. 7. For 38K, the semi-
empirical value calculated from 39K and 39Ca provides
excellent agreement with the experimental result. This con-
firms that the dominant component in the wave function for
the ground state originates from the coupling between a hole
in the π1d3/2 and the ν1d3/2. By adding more neutrons, the
ν1f7/2 orbital is filled for 40K up to 46K. In order to calculate the
semi-empirical g factors for these isotopes, g(jπ ) is provided
from neighboring odd-A K isotopes (Table III) combined
with g(jν) of the subsequent odd-A Ca isotones starting from
N = 21 up to N = 27. The trend of the experimental g factors
is very well reproduced by the semi-empirical calculations
suggesting that the dominant component in the wave function
of these isotopes is π1d−1

3/2 ⊗ ν1f n
7/2 where n = 1,3,5,7. For

48K, two semi-empirical values are calculated by considering a
coupling between a proton hole in the π2s1/2 or the π1d3/2 with

TABLE VI. Semi-empirical g factors obtained for certain con-
figurations using the additivity rule in Eq. (6) (see text for more
details). In the calculations, results from Table III were used for
g(jπ ), while for g(jν) Ca data were taken from [56–59]. For 48K,
different configurations are considered for I = 1.

Isotope Iπ Configuration gse (g(jπ );g(jν))

38K 3+ π1d−1
3/2 ⊗ ν1d−1

3/2 +0.47 (39K; 39Ca)
40K 4− π1d−1

3/2 ⊗ ν1f7/2 −0.31 (39K; 41Ca)
42K 2− π1d−1

3/2 ⊗ ν1f 3
7/2 −0.64 (41K; 43Ca)

44K 2− π1d−1
3/2 ⊗ ν1f 5

7/2 −0.62 (43K; 45Ca)
46K 2− π1d−1

3/2 ⊗ ν1f −1
7/2 −0.65 (45K; 47Ca)

48K 1− π1d−1
3/2 ⊗ ν2p3/2 −0.40 (45K; 49Ca)

48K 1− π2s−1
1/2 ⊗ ν2p3/2 −2.11 (47K; 49Ca)
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Particle-number variance

✪ Gorkov GF calculations break particle number symmetry

✪ Breaking has two sources: 

1) Reference state mixes different A

2) Green’s function formalism itself explores Fock space

GF breaking evident in protons

After subtracting GF part

Variance in particle number

We compute
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In general (Eq. C25 of paper I)
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and
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h ˆSi+ h ˆAi � h ˆAi2 . (9)
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Particle-number variance

✪ Gorkov GF calculations break particle number symmetry

✪ Breaking has two sources: 

1) Reference state mixes different A

➟ To be further investigated at next order in GF expansion

➟ Calls for restoration of symmetry

➟ Need to go beyond approximation   𝜌(2) ~ 𝜌(1)𝜌(1)
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2) Green’s function formalism itself explores Fock space



Conclusions

✪ Considerable advances in ab initio nuclear structure

✪ Gorkov-Green’s function theory

○ SRG-ed Hamiltonian extend domain of applicability
○ new approaches allow to go beyond closed-shell limitations

○ combines richness of GF with symmetry breaking techniques

✪ Breaking of symmetries viable way to tackle near-degenerate systems

○ case of U(1) crucial to treat pairing correlations
○ symmetry restoration must be addressed

○ reaching state-of-the-art of nuclear many-body  ➝  ADC(3)


