Self-consistent Gorkov Green's function theory for nuclei

Ab initio nuclear structure

Long-term goal: predictive nuclear structure calculations
$" \rightarrow$ Half of bound nuclei never observed, many poorly known
$\xrightarrow{\prime \rightarrow}$ Thorough quantification of theoretical errors (Hamiltonian \& many-body)

Nuclear Hamiltonian not fixed
$\xrightarrow{\prime \rightarrow} \rightarrow$ Traditional models: strong repulsive core
\rightarrow Modern models: softer core, towards a systematic expansion, consistent 3NF
$\xrightarrow{\prime \rightarrow} \rightarrow$ Major breakthrough: $\mathbf{V}_{\text {low-k }}$ or SRG of $\mathrm{NN}+3 \mathrm{~N}$ interactions

$V_{\text {SRG }}$

Different nuclear ab initio strategies

Virtually exact
NCSM, GFMC,

Valence space Shell model

Based on expansion GF, CC, IM-SRG,

Different nuclear ab initio strategies

Virtually exact
NCSM, GFMC,

Valence space
Shell model

Based on expansion GF, CC, IM-SRG,

5-10 years ago

- Hard repulsive core requires large model spaces to converge
- Open-shell: degeneracy w.r.t. particle-hole excitation \rightarrow expansion breaks down

Different nuclear ab initio strategies

Virtually exact
NCSM, GFMC,

Valence space
Shell model

Based on expansion GF, CC, IM-SRG,

Today

- Soft interactions yield converged calculations in smaller model spaces
- Development of new methods allows to tackle open-shell nuclei

Different nuclear ab initio strategies

Light nuclei

Virtually exact
NCSM, GFMC,

Medium-mass nuclei

Valence space
Ab initio SM

Mid/heavy nuclei

Based on expansion GF, CC, IM-SRG,

Today

- Soft interactions yield converged calculations in smaller model spaces
- Development of new methods allows to tackle open-shell nuclei

Current limits / reach of nuclear ab initio calculations

$\xrightarrow{\prime} \rightarrow$ Heavier system computed in the different types of ab initio

\square "Exact"
\square Ab initio closed shell

- Ab initio open shell

Gorkov framework

Idea: expand around an auxiliary many-body state
Breaks particle-

$$
\left|\Psi_{0}\right\rangle \equiv \sum_{A}^{\text {even }} c_{A}\left|\psi_{0}^{A}\right\rangle
$$

" \quad Introduce a "grand-canonical" potential $\Omega=H-\mu A$
$\xrightarrow{\prime \prime} \rightarrow\left|\Psi_{0}\right\rangle$ minimizes $\Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle$ under the constraint $A=\left\langle\Psi_{0}\right| A\left|\Psi_{0}\right\rangle$
$\xrightarrow{\prime \prime} \rightarrow$ Observables of the A-body system $\Omega_{0}=\sum_{A^{\prime}}\left|c_{A^{\prime}}\right|^{2} \Omega_{0}^{A^{\prime}} \approx E_{0}^{A}-\mu A$
set of 4 propagators

$$
i G_{a b}^{11}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \overbrace{a b}^{a 1}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \overbrace{\bar{b}}^{\bar{a}} \|
$$

Gorkov equation \& self-energy expansion

Many-body Schrödinger equation

$$
H \Psi=E \Psi
$$

Dyson/Gorkov equation

$$
\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)
$$

Current self-energy truncation: first- and second-order diagrams [Somà, Duguet \& Barbieri 2011]

$$
\Sigma_{a b}^{11(2)}(\omega)=\uparrow \omega^{\prime}
$$

Gorkov equation \& self-energy expansion

Inclusion of $\mathbf{A D C}(3)$ in progress: $\quad \Sigma^{11[A D C(3)]}$

C_{31}

C_{33}

C_{23}

C_{13}

C_{32}
C_{22}
C_{12}

A_{33}

B_{33}

$A_{32}=A_{31}$

$B_{32}=B_{31}$

$A_{23}=A_{13}$

$B_{23}=B_{13}$

$A_{11}=A_{22}=A_{12}=A_{21}$

$B_{11}=B_{22}=B_{12}=B_{21}$

C_{21}

C_{11}

	n	1	2	3
ADC (n)	Dyson	1	1	2
diagrams	Gorkov	2	4	34

[Barbieri, Duguet \& Somà in prep.]

Gorkov equation \& self-energy expansion

Many-body Schrödinger equation

$$
H \Psi=E \Psi
$$

Dyson/Gorkov equation

$$
\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)
$$

$$
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k *}}{\omega-\omega_{k}+\mathrm{i} \eta}+\frac{\bar{D}_{a}^{k *} \overline{\mathcal{V}}_{b}^{k}}{\omega+\omega_{k}-\mathrm{i} \eta}\right\}
$$

where

$$
G_{a b}^{12}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{V}_{b}^{k^{*}}}{\omega-\omega_{k}+\mathrm{i} \eta}+\frac{\overline{\mathcal{V}}_{a}^{k *} \overline{\mathcal{U}}_{b}^{k}}{\omega+\omega_{k}-\mathrm{i} \eta}\right\}
$$

Energy dependent eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

[Schirmer \& Angonoa 1989]
Energy independent eigenvalue problem

$$
\left(\begin{array}{cccc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)
$$

Solution of Gorkov equation

Gorkov equation \longrightarrow energy dependent eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

energy independent eigenvalue problem

$\begin{gathered} \propto \mathrm{N}_{\mathrm{b}}{ }^{3} \\ \text { typically } \sim 10^{6}-10^{7} \end{gathered}$	$\left(\begin{array}{cclc}T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\ \tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\ \mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\ -\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E\end{array}\right)\left(\begin{array}{c}\mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k}\end{array}\right)=\omega_{k}\left(\begin{array}{c}\mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k}\end{array}\right)$

Krylov space eigenvalue problem

$$
\begin{gathered}
\quad \propto \mathrm{N}_{\text {Lanczos }} \\
\text { cally } \sim 10^{2}-10^{3} \\
\left.\left(\begin{array}{cccc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right) .\right] . ~
\end{gathered}
$$

Krylov projection

$\xrightarrow{\prime} \rightarrow$ Multi-pivot algorithm (\# states $\sim 10 \mathrm{~N}_{\ell}$)
$\xrightarrow{\prime} \rightarrow$ Well converged for $\mathrm{N}_{\ell} \sim 50$
$\rightarrow \rightarrow$ Independent of $\mathrm{N}_{\text {max }}$
$\rightarrow \rightarrow$ Spectral strength quickly converges around the Fermi surface

Three-body forces

One- and two-body forces derived from the 3N part of the Hamiltonian
$\xrightarrow{\prime \rightarrow}$ Contractions with fully correlated density matrix
$\rightarrow \rightarrow$ Generalization of normal ordering

Galitskii-Koltun sum rule modified to account for 3N piece

[Carbone, Cipollone et al. 2013]
$\xrightarrow{\prime \rightarrow}$ Use of dressed propagators provides extra correlations

Inside the Green's function

Separation energy spectrum

$$
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\overline{\mathcal{V}}_{a}^{k *} \overline{\mathcal{V}}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\}
$$

Lehmann representation

$$
\begin{array}{ll}
\text { where } & \left\{\begin{array}{l}
\mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\
\mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}\left|\Psi_{0}\right\rangle
\end{array}\right. \\
\text { and } & \left\{\begin{array}{l}
E_{k}^{+(A)} \equiv E_{k}^{A+1}-E_{0}^{A} \equiv \mu+\omega_{k} \\
E_{k}^{-(A)} \equiv E_{0}^{A}-E_{k}^{A-1} \equiv \mu-\omega_{k}
\end{array}\right.
\end{array}
$$

Spectroscopic factors

$$
\begin{aligned}
& \left.S F_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}^{\dagger}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{U}_{a}^{k}\right|^{2} \\
& \left.S F_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{V}_{a}^{k}\right|^{2}
\end{aligned}
$$

[figure from J. Sadoudi]

Spectral strength distribution

Dyson $1^{\text {st }}$ order (HF)

Dyson $2^{\text {nd }}$ order

Gorkov $1^{\text {st }}$ order (HFB)

Fragmentation

Static pairing

Gorkov 2 ${ }^{\text {nd }}$ order
Dynamical fluctuations

Benchmarks

(Benchmarks between Gorkov GF, Dyson GF \& IM-SRG

$\xrightarrow{\prime} \rightarrow$ Solidity of many-body machinery

[Cipollone, Barbieri, Navrátil 2014]

[Somà et al. 2014]

Binding energies around Ca

(4) Access to several neighbouring isotopic chains (here $Z=18 \rightarrow 22$)
[Somà et al. 2014]
© Can not go "too far" from singly-magic nuclei
\rightarrow Would require additional breaking of $\mathrm{SU}(2)$ rotational \rightarrow see BCC [Signoracci et al.]

Two-neutron separation energies around Ca

Two-neutron separation energies

$$
S_{2 n} \equiv E_{0}^{Z, N}-E_{0}^{Z, N-2}
$$

- A number of new experiments target neutron-rich isotopes in this mass region
- Calculations reveal deficiencies of employed chiral interactions
$\xrightarrow{\prime \prime} \rightarrow$ Systematic overbinding \& too small radii
$\xrightarrow{\prime \prime} \rightarrow$ Overestimation of $\mathrm{N}=20$ gap traced back to spectrum too spread out

Towards heavier systems

(Ab initio calculations being pushed towards $\mathrm{A}=100$ and above
$\xrightarrow{\prime \prime} \rightarrow$ Extended testing ground for nuclear Hamiltonians

$\xrightarrow{\prime \prime} \rightarrow$ Confirmed by different ab initio methods
[Binder et al. 2014, Hergert et al. 2014]
$\quad \rightarrow$ Saturation at too high density?
$\rightarrow \rightarrow$ Consistent NM calculations?

Potassium ground states (re)inversion

Ground-state spin inversion \& re-inversion recently established
" \rightarrow Laser spectroscopy @ ISOLDE

[Papuga et al. 2014]

$m \rightarrow$ GGF calculations of K spectra

Particle-number variance

© Gorkov GF calculations break particle number symmetry $\longrightarrow \sigma_{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}$ - Breaking has two sources:

1) Reference state mixes different A
2) Green's function formalism itself explores Fock space

Particle-number variance

Gorkov GF calculations break particle number symmetry $\longrightarrow \sigma_{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}$ - Breaking has two sources:

1) Reference state mixes different A
2) Green's function formalism itself explores Fock space

\rightarrow Need to go beyond approximation $\rho^{(2)} \sim \rho^{(1)} \rho^{(1)}$
$\xrightarrow{\prime \prime} \rightarrow$ To be further investigated at next order in GF expansion
\rightarrow Calls for restoration of symmetry

Conclusions

Considerable advances in ab initio nuclear structure

- SRG-ed Hamiltonian extend domain of applicability
o new approaches allow to go beyond closed-shell limitations
© Gorkov-Green's function theory
- combines richness of GF with symmetry breaking techniques
\circ reaching state-of-the-art of nuclear many-body \rightarrow ADC(3)

Breaking of symmetries viable way to tackle near-degenerate systems

- case of $\mathrm{U}(1)$ crucial to treat pairing correlations
- symmetry restoration must be addressed

