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Semantics & history

Many-body Green’s function theory: set of techniques that originated in quantum field
theory and have then been imported to the many-body problem.

Green’s function: mathematical object (see next slide).

Many-body Green’s functions are applicable to all sorts of complex/many-body
systems: crystals, molecules, atoms, atomic nuclej, ...

Self-consistent Green’s functions: many-body Green’s functions with dressed
propagators (see later).

Many-body Green’s functions are not Green’s function Monte Carlo.

Late 1950s, 1960s: import of ideas from QFT and development of formalism.

1970s — today: applications and technical developments.



Green’s function in maths

In mathematics: solution of a inhomogeneous differential equation
(r,r;2) =08(r —7")

complex variable / \

hermitian operator

L(’l“)qbn (r) = An®n (’P)

Green’s function

¥

Contains information about eigenstates & eigenvalues of L

G(r,r’iz) = <r|z_1L [ZI%H%] )= (rl Won |7y = <r|<i“z<fz"°'>
more generally L, [G(r,r’;z) ’¢n / cbc }

discrete spectrum continuous spectrum



One-body system

Substituting L(r) — H(r), A = E with H(r) a one-particle Hamiltonian

[E — H(r)|G(r,v"; E) =3(r — ')
which corresponds to the one-particle Schrodinger equation

[E —H(r)]y(r) =0

The Green’s function in the case reads

G(T, fr/; Z) — Z ¢nirz¢éir/)



Many-body system

By introducing second-quantised annihilation & creation operators we can express

G, s2) = - 19kl 7) _ g Ol ) 0)  one-body

z— B,
\ 4

N . YN+ (\pN+1 T NI\l Ny T N-1 N-—1 N
G(r,r’;z):z< 0 lar | T, ) (T, Iaf,(\;>+z<qfO al, | N1 (@D \a@ many-body

z—E,}L z—F,

with

(ol > (Exact) ground state of N-body system

(g VEL > k-excited state of (N+1)-body system

Ef = EN*! — g/ —— one-particle (addition) separation energy

E, = E) — E))”" —— one-particle (removal) separation energy



Definition

General case

Gan(t, ) = =W [T [aa(t) o] (#)] 95)

single-particle labels " / \

time-ordering operator
(Exact) ground state of N-body system

= [t describes the process of adding a particle at time " and removing it at time ¢
(or viceversa if t'>t)

~ Hence the equivalent name of single-particle propagator

For time-independent Hamiltonians

Gap(t, ) = Gap(t — 1) > Gap(2)

Fourier transform

Lehmann representation [Lehmann 1954]

(o) = 3 (o WD o 9) | g (]| 9 (02 a8
ab\%z) =
’ z— B +in

p z—FE, —n

v



Many-particle Green’s functions

One can define up to N-body Green’s functions (GFs).
The two-body GF reads

GQ abcd(tav tb7 tca td) = _Z<\Ijév|7. [a’b (tb) Qq (ta) CLZ(tC) aji(td)] ‘\IJ(J)V>

More precisely, this is called the 4-point GF. Depending on the ordering of the 4 times
one can then define the two-particle (or two-hole) GF

C

ol (tt) = =W IT |an(t) aa(t) al(#) al(#)] [03))

or the particle-hole (~polarisation) propagator

Grpeatst') = =i |T [af(®) aa(t) al(t) aa(t)] 195)

Similarly, one can introduce up to 2N-point GFs.



Observables

For one-body operators

(U5 O] ¥y') = Z/— Gpa(2) Oab with oqp = (a | Ob)

271

The only two-body expectation value that can be computed exactly solely from the one-
particle GF is the total ground-state energy

1 dz
Bo = (W I 05) = 33 [ 32 Goa(2) [tan + 260

Galitskii-Migdal-Koltun sum rule [Galitskii & Migdal 1958; Koltun 1972]

where f, are matrix elements of the kinetic energy operator.

All other two-body observables necessitate the two-body GF.



Single-particle Green’s function «+ Schrédinger equation

Single-particle GF: matches (psychological & practical) needs of handling one-body objects.

For certain (typically one-body) properties, the exact single-particle GF contains the
same information as the exact many-body wave function, e.g. expectation values of a
one-body operator in the ground state.

For others it does not, and one need to resort to higher-body GFs.

The knowledge of the (N-body) ground state gives us information about (N+1-body)
excited states in a single calculation (the magic of Green’s functions!).



Spectral representation: finite systems

Lehmann or spectral representation

Gunl) = S o laa [V )T afl¥d) g (o | ) (0 )
¢ - z—EQf—l—in y z—FE, —in
$Imz

= Set of poles along the real energy axis

XX XXX

XXXXXXXX

Re z

Poles represent one-particle excitation energies,
i.e. energies of the N+1-body system w.r.t. the ground state of the N-body system

Ef =Et - E

E, =Ey - EN !



Spectral representation: finite systems

Lehmann or spectral representation

(T |ag | NN+ | of | i)

Ganl2) = 2 2 — B +in

7
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Spectral representation: finite systems

Lehmann or spectral representation
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[figure from J. Sadoudi]



Connection with experiments

Basic idea: spectroscopy via knock-out reactions

Use a probe to eject a particle we are interested into

Target (N-body) 0

l

By measuring ein, €out and pout
get information on pin
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[Mougey et al. 1980]

Results from (e,e’p) on 1O
(here in Saclay)

= Spectral function S(w)




Connection with experiments

Application to one-neutron removal /addition spectrum of >°Ni.

Self-energy truncation: Faddeev RPA (see later).
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Spectral representation: infinite systems

For extended systems (large N) excited states become highly degenerate.
Description in terms of isolated exact excitations no longer meaningtul.

Smearing of poles into branch cuts:

AImZ AIITlZ

XXX XX
>
XXX XIX X X
Re z

Re z

From finite to infinite systems, i.e. taking the thermodynamic limit (N,V — «; N/V constant)

Gonl(2) — Gk, 2) = / dw Atk w) —

2Tz —w spectral function



Spectral representation and quasiparticles

The spectral function describes the dispersion in energy of modes with a given momentum.

Excitation of the system would then show up as peaks in A.

t A(ko,w)

Vi

Idea: associate a well-defined peak with a quasiparticle.

Quasiparticles will have, in general,

~ Modified or renormalised “single-particle” properties (e.g. an effective mass)

= A finite lifetime, physically associated with the damping of the excitation
The lifetime is given by the width of the quasiparticle peak

~1
T ~ Y



Spectral representation and quasiparticles

Example: Lorentzian spectral function

Ek w

In this case the Fourier transform can be computed analytically

A(k,t) = /OO d—we_iwt 2k Tk = %e_i“ 28K
’ oo 2m (w—ek)? +7; o 2w (2 — 2z1) (2 — 2%)

= Damped quasiparticles with a characteristic time 7~ ;"
 Damping arises from interactions with other quasiparticles

= Energy & width of the peak correspond to Re and Im of a pole of G

Zlk = €k —|—’i’)/k



Ab initio quasiparticles

General case: look for a pole of G in the complex energy plane.
However, causality imposes analyticity of G in the upper half plane Im z > 0.

Because of the reflection property G(k,z)* = G(k, z*), i.e. there is no pole!

Solution: the pole appears in an unphysical Riemann sheet of G.

I N D T A
Z®-14 | 7%= ¢™"

[Eiguren, Ambrosch-Draxl & Echenique 2008]

 Analytical continuation is performed from the physical Riemann sheet
across the branch cut on the real axis

 Good control over the energy dependence of the propagator is needed

= Achieved only recently for electronic and nucleonic systems



Ab initio quasiparticles

Electron-phonon Einstein model

E o]

[Eiguren, Ambrosch-Draxl] & Echenique 2008]



Ab initio quasiparticles

Infinite nuclear matter

Propagator - Imaginary part at k=2kf Analytical continuation
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Ab initio quasiparticles

Infinite nuclear matter
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Recap

The exact one-body G contains some of the information contained in the exact N-body w.f.

= Specifically, all one-body properties + ground state energy
= Finite systems: spectroscopy of N+1-body neighbours
= [nfinite systems: elementary collective or coherent excitations

= If we need more, compute G, Gs3, ...

In the following, let us look at how G is typically computed.



Calculation methods for G

I) Equation of motion method

The Green’s functions for an interacting many-body system obey a hierarchy of equations
(which can be derived starting from the eq. of motion of annihilation/creation operators).

The first one reads [ 1 = (r1,t1) ]

v2
(ii + ) G(1,2) = 6(1,2) — /d3v(1+,3) Go(1,3;2,3T)
(%1 2m

The second one connects G»> and Gs, and so on...

Simple example: Hartree approximation

Ga(1,2:1,2)) = G(1,1) G(2,2')

\ 4

0 V,,%l Ve G(1,2) = 6(1,2) with V(1) = /d2v(1,2) G(2,27)

Z(‘?tl * 2m

i.e. a particle that moves independently in the potential V.



Calculation methods for G

In general, one needs to decouple the system of N integro-differential equations.
Introduce an external fictitious time-dependent potential ¢. Then

6G (3,2 [¢])

G2(3,4:2,4% [9) =G(3,2; [9) G4, 47; [p]) — 0@

\ 4

6G(3,2; [¢])

G(1,2; [e]) = Go(1,2) +/d3 Go(1,3)Vu@B; [¢DGG, 2; [¢]) +/d3 Go(1,3)9(3)G(3, 2; [¢]) +i/d4d3 Go(1,3)v(3",4)

\ 4

Dyson equation

6p(4)

G(1,2):G0(1,2)+/d3 G0(1,3)VH(3)G(3,2)+/d4d3 Go(1,3)X(3,4)G4,2)

where one has introduced the self-energy

§G(1,2; [¢])
dp(4)

G 12,3)

=0

»(1,3) = i/d4d2 v(17, 4)

 All many-body effects are transferred from N-body GFs to the self-energy

= In practise, approximations are performed at the self-energy level



Calculation methods for G

IT) Diagrammatic method

Basic idea:
1) Separate full Hamiltonian into unperturbed part + perturbation
H =Ho+ Hi
2) Compute unperturbed propagator
Go(z) = (z—Ho) "

3) Express full propagator in terms of Go and H

Simple in the case of one-particle system:

1

G(z) = (= ~Ho M)~ = {( —Ho) [L— (= = Ho) " Ha| |-

— {1 — (Z — Ho)_l Hl} o (Z — Ho)_l
= [1— Gol(2)H1] " Go(2) .
* expand (1 — GoHM1) ™ 'in power series

G =Gy + GoHy (GO + GoH1Go —I—) = Go + GoH1G



Calculation methods for G

Many-body case more complicated:

= Separation H = H, + H1 exploited by working in interaction representation

~ One-body Green’s function is expanded as (now #; = v)

4An+2 \ﬁrlables n terms

Z...//...Gg?+1(r1,1/;272/;3’3/;,,T) vVeeev-s

Z-~-//---Gg??(Z,Q’;S,S’;---)v---v---
- N Y N —

n terms

G(1,1') =

4n variables

= Unperturbed many-body GFs can be written just as products of one-body GFs

Gg(r?(171/5272/;373/;”') — Z (_1)PG(O)(1?T)"'G(O)(Qn? 2~TL/)

7

(Wick theorem)

~"

tati
permutations 2n one-body GF's

4n variables

= Several terms cancel out (all disconnected combinations of variables), at the end:

¢="S GO..¢O... y.. .y

-~

n  connected 2n-41 propagators n interactions

Better to introduce Feynman diagrams and work out the expansion diagrammatically



Diagrammatic expansion

Introduce exact / unperturbed propagators and interaction lines

-----------------------------------

G = A GO} V= or in =3 GO..gO... 4.y

\ . J

~"

, \ . n  connected 2p41 propagators n interactions
X4

-----------------------------------

and write down the expansion for G VY Alltopologically different diagrams contribute at a given order

v Physical processes can be associated to Feynman diagrams

Oth order

1st order

-
=
e



Diagrammatic expansion

Introduce unperturbed / exact propagators and interaction lines

-----------------------------------

\ . J

~~

G = A GO} V= or in =3 GO..gO... 4.y

n connected 2n41propagators n interactions

-----------------------------------

and write down the expansion for G VY Alltopologically different diagrams contribute at a given order

v Physical processes can be associated to Feynman diagrams

Oth order * -

------

“““ /\ Define reducible self-energy

1t order @+ @ L ..:"' (all diagrams without external legs)
2nd order | O - | O + @ . s ~N
: @
. 7( _J




Diagrammatic expansion

Introduce unperturbed / exact propagators and interaction lines

-----------------------------------

Nl e lC I S in 6= % GO..GO... 4.y

\ . J

~~

1 1 . .
' ' ‘ . \ ' n  connected 2p41 propagators n interactions
X4

-----------------------------------

and write down the expansion for G VY Alltopologically different diagrams contribute at a given order

v Physical processes can be associated to Feynman diagrams

N /\A
0% order * ' Define irreducible self-energy

1St Order @ + @ e ::.

Lo :
do D @ z Lo f#f -




Dyson equation

One finds again the Dyson equation  G(1,2) = G9(1,2) + d3 d4 G0 (1,3)2*(3,4) G(4,2)

//ﬁ/:ﬁ,*?

Partial sums or skeleton vs. composed diagrams

= Self-energy can be built with dressed propagation lines;
one then keeps only skeleton diagrams = self-consistency

E.g. MO'VO will be generated by the self-energy term e
| \

dressed propagator




Dyson equation

Dyson equation 1s exact

G(1,2) = GO(1,2) + /dS d4 G (1,3)2%(3,4) G(4,2)
...the game is now to choose a suitable approximation for the self-energy.

Having in mind the (composed irreducible) self-energy expansion,
one can choose to select only certain general classes of diagrams:

1) With polarisation parts inserted in interaction lines

= dressed or effective or renormalised interactions

2) With self-energy parts inserted in propagator lines

= dressed or renormalised propagators

3) With (irreducible) vertex parts inserted in place of a vertex

= dressed vertices



d-functional

There exists a class of self-energy approximations that automatically fulfil
basic conservation laws (number of particles, momentum, energy...).

The condition is the existence of a functional @ of G and v, such that

0 PG, v
Y(1.2) =
(1,2) 5G(1.2) [Baym & Kadanoff 1961, 1962]

Common approximations like Hartree, Fock, 2nd order, T-matrix are d-derivable
WP O e e
O

(a) (b)

/"XQ O Vh x 4;%
O Lo | Ll

(d)

d-functional
self-energy



Approximations to the exact self-energy

Hartree - Fock SCGF calculations in nuclei

[Soma et al. unpublished]
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Approximations to the exact self-energy

pp/hh T-matrix or ladder

|' |
- ] o ]

+ exchanges [Galitskii 1958; ...]

= Contains an infinite number of diagrams
= Resums contributions relevant at low-density and in strongly-interacting systems

~ Quality decreases at high density as screening becomes important

Electronic systems
= Works well at low densities, i.e. close to completely filled or empty bands

= Extensively used in Hubbard models

Nuclear systems

 Treats the repulsive short-range part of nuclear interactions
~ Method of choice for nuclear matter (self-consistency obligatory for high densities)

= Applications to finite nuclei very demanding



Approximations to the exact self-energy

Random Phase Approximation (RPA) or ring ladder or ph ladder

 Expansion for the polarisation propagator

Y. oY \
@ = 4 Y + /\"- + +eeeeee Tamm-Dancoff

- fO - £ OOV - |

[Bohm & Pines 1951, 1952; Gell-Mann & Brueckner 1957; ...]

> RPA

In RPA Pauli correlations are partially neglected, but one assumes that missing
corrections cancel each other randomly.



Approximations to the exact self-energy

GW

RPA can be applied to resum an interaction (typically electron-electron) in the medium

...<>‘

W(aw) = (@) + (@) T0(a.0) Wiaw)  mp  =Vw) =i [ 5 /dk' Gk — K0 — o) WK, o)

Lindhard function 1Y (q,w)

= Accounts for screening effects

 For electrons only Fock term in GW (Hartree — constant electrostatic repulsion)

= Different degrees of self-consistency

GYWU GWY GW

>£>-> —>£>.» > & >3 5




Approximations to the exact self-energy

GW

GW approximation can be formally derived from Hedin pentagon of equations

& G
v NG Y =self-energy
G = single-particle GF

[Hedin 1965]

X .
5\3 § I’ = vertex function
2, «X
% e P = polarisability
Z 4 . .
W = screened interaction
P =GGI'

[figure from F. Sottile, PhD thesis 2003]



Approximations to the exact self-energy

GW
GW approximation can be formally derived from Hedin pentagon of equations
[Hedin 1965]
e Ao reW4(1,2,3) = §(1,2)6(1,3)
57 ’(004\0

G/Wo

PY(1,2) = —iG°(1,2)G°(2,17)

Wo1,2) =v(1,2) +/d(34)v(1+,3)P0(3,4)W0(4, 2)
3(1,2) =iG°(1,2)W0(1T,2)

[figure from F. Sottile, PhD thesis 2003] GW

[terate all three + Dyson equation

= Works well in the high-density regime where screening is important



Approximations to the exact self-energy

How to go beyond ladder-type or GW resummations?

To extend the domain of applicability one has to combine different correlation channels

Simply summing the two would not work

= interference terms missing

= double-counting of second-order diagram

N\

avoided by starting ladders from 3¢ order only == FLEX [Brickers et al. 1989]



Approximations to the exact self-energy

In general, one needs to consider the full 2p1h / 2h1p propagator R

where

ropagation of three excitations .
propas Dyson equation

, , takes care of this
R obeys the following (Bethe-Salpeter) equation




Approximations to the exact self-energy

Parquet theory [Diatlov et al. 1957; Jackson et al. 1982; Bergli & Hjorth-Jensen 2010]

= Couples pp/hh and ph ladders on equal footing

¥ Mainly proof-of-principle applications



Approximations to the exact self-energy

Faddeev RPA (F-RPA) [Barbieri & Dickhoff 2001; Barbieri, Van Neck & Dickhoff 2007]

= Strategy is to solve each pp/hh and ph channel separately, then couple to a third line
and mix the corresponding amplitudes

= All-order summation through a set of Faddeev equations

v Realistic applications to nuclei, atoms and molecules



Approximations to the exact self-energy

Algebraic Diagrammatic Construction (ADC) [Schirmer, Cederbaum & Walter 1983]

 Exact summation of the self-energy reformulated into a simple algebraic form
= ADC(n) includes complete n-th order (dressed) perturbation theory diagrams for G
= Results in Hermitian eigenvalue problems within limited spaces of N+1 systems

ADC (23) ! ADC(45):
: [

lp/th-  2p-th  2h-1p 13p-2h 3h-2p: = -

g+I(@){ U J" d' 1L .
— % " / ADCR) 1
T
(K+C) %% o _O
(K+C) /A ADC(3) N _O
(K+C)'

v Realistic applications to nuclei, atoms and molecules



Approximations to the exact self-energy

Unified ladder-GW approach [Romaniello, Bechstedt & Reining 2012]

= Re-express the self-energy as

(11) = vy (DHs(11) + =, (A1) +iv.(172)
x G(13)E(35;1'4)L(42;52™),

/ N

Effective interaction Response

= Keeping = = vc leads to GW scheme
= Keeping L = GG leads to T-matrix scheme
= Link between T-matrix and Hedin equations

« Derivation of a screened T-matrix

m ,'___..-;ry_/‘\J-\‘)\z
/ ‘\

1)_

S0= L e

Hartree SOSEX

v First applications promising



Oxygen benchmark

Several ab initio methods recently addressed the oxygen chain

B N L L L L L
-130 = t Z obtained in large many-body spaces -
__-l40 | )4 =
5 F B :
S -150 F (- ~
> B g -
2 -160 - © MR-IM-SRG & ~
= - B IT-NCSM = g 5 * O i H 1. 2013
5 0F o scar > £ O - [Hergert et al. ]
- % Lattice EFT ] [Cipollone et al. 2013] [ADC(3)]
180 - IA CCI | | |_ A1\|/IE 201|2 — [Jansen et al. 2014]
16 18 20 22 24 26 28

Mass Number A

= Same input Hamiltonian (NN+3N)

= Good agreement between all methods



Nuclear matter benchmark

Infinite matter: self-consistent T-matrix.

= Excellent agreement with CCSD calculations

Equation of state of neutron matter
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[Carbone, Rios & Polls 2014]



Three-body forces

In nuclear physics, treatment of many-body interactions is required.

Green’s function formalism was recently extended to account for three-body forces.

[Carbone, Cipollone, Barbieri, Rios, Polls 2013]

= [ntroduction of one- and two-body effective interactions allows to substantially
reduce the number of diagrams

AANK = omX & ~----©+% — —/Py— — — ecece b e — —e— —
o @

effective 1-body effective 2-body

E.g. at 2nd order » In general

WORRILS

With these, re-work out all previous slides!




Anomalous Green’s functions: Gorkov theory

Standard expansion schemes fail when pairing correlations are essential.

[t is possible to formulate the expansion around a symmetry-breaking reference,
e.g. a Bogoliubov vacuum.

 Remains a single-reference method

= Symmetry must be eventually restored (see Duguet’s talk)

evern

General idea: start from an auxiliary many-body state |¥o) = > calvg)

d tly defi t of 4 one-bod t
and consequently define a set of 4 one-body propagators Gorkov 1958

( : O

i GL(1 1) = (Wo|T {aa(t)af (¢} |wo) = u i G2 (1,1) = (Wo[T {al (a] (t') } |Wo)

]
———
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With these, re-work out all previous slides!




More GFs

Solution of Dyson equation

Due to the presence of poles in G often problematic. However, it can be transformed into
an energy-dependent eigenvalue equation, which can be further recast into an energy-
independent eigenvalue equation (no poles now!).

Self-consistency

Not always dressed propagators are used in 2, i.e. not always Dyson equation is iterated
self-consistently.

w Effects /benefits / drawbacks of self-consistency
= Dependence on G?
= Connection with conservation laws?

= Consistency between renormalisations of G, I' and W?

Generalisations

~ Finite temperature GFs

= Non-equilibrium GFs
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