Basics of many-body Green's function theory

Vittorio Somà (CEA Saclay)

Forze nello spazio I

Forze nello spazio II

ESNT workshop

Near-degenerate systems in nuclear structure and quantum chemistry from ab initio many-body methods

Outline

1. Introduction and definitions
2. Spectral representation and connection to experiments
3. Calculation methods
4. Approximations to the exact self-energy
5. Extra time: three-body forces and Gorkov formalism

Semantics \& history

Many-body Green's function theory: set of techniques that originated in quantum field theory and have then been imported to the many-body problem.

Green's function: mathematical object (see next slide).

Many-body Green's functions are applicable to all sorts of complex/many-body systems: crystals, molecules, atoms, atomic nuclei, ...

Self-consistent Green's functions: many-body Green's functions with dressed propagators (see later).

Many-body Green's functions are not Green's function Monte Carlo.

Late 1950s, 1960s: import of ideas from QFT and development of formalism.
1970s \rightarrow today: applications and technical developments.

Green's function in maths

In mathematics: solution of a inhomogeneous differential equation

Contains information about eigenstates \& eigenvalues of L

$$
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\langle\boldsymbol{r}| \frac{1}{z-L}\left[\sum_{n}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|\right]\left|\boldsymbol{r}^{\prime}\right\rangle=\sum_{n}\langle\boldsymbol{r}| \frac{1}{z-L}\left|\phi_{n}\right\rangle\left\langle\phi_{n} \mid \boldsymbol{r}^{\prime}\right\rangle=\sum_{n} \frac{\left\langle\boldsymbol{r} \mid \phi_{n}\right\rangle\left\langle\phi_{n} \mid \boldsymbol{r}^{\prime}\right\rangle}{z-\lambda_{n}}
$$

more generally

$$
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\sum_{n}^{\prime} \frac{\phi_{n}(\boldsymbol{r}) \phi_{n}^{*}\left(\boldsymbol{r}^{\prime}\right)}{z-\lambda_{n}}+\int \mathrm{d} c \frac{\phi_{c}(\boldsymbol{r}) \phi_{c}^{*}\left(\boldsymbol{r}^{\prime}\right)}{z-\lambda_{c}}
$$

One-body system

Substituting $L(\boldsymbol{r}) \rightarrow \mathcal{H}(\boldsymbol{r}), \lambda \rightarrow E$ with $\mathcal{H}(\boldsymbol{r})$ a one-particle Hamiltonian

$$
[E-\mathcal{H}(\boldsymbol{r})] G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; E\right)=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

which corresponds to the one-particle Schrödinger equation

$$
[E-\mathcal{H}(\boldsymbol{r})] \psi(\boldsymbol{r})=0
$$

The Green's function in the case reads

$$
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\sum_{n} \frac{\phi_{n}(\boldsymbol{r}) \phi_{n}^{*}\left(\boldsymbol{r}^{\prime}\right)}{z-E_{n}}
$$

Many-body system

By introducing second-quantised annihilation \& creation operators we can express

$$
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\sum_{n} \frac{\left\langle\boldsymbol{r} \mid \phi_{n}\right\rangle\left\langle\phi_{n} \mid \boldsymbol{r}^{\prime}\right\rangle}{z-E_{n}}=\sum_{n} \frac{\langle 0| a_{\boldsymbol{r}}\left|\phi_{n}\right\rangle\left\langle\phi_{n} \mid a_{r}^{\dagger}\right\rangle|0\rangle}{z-E_{n}}
$$

$G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{N}\right| a_{\boldsymbol{r}}\left|\Psi_{\mu}^{N+1}\right\rangle\left\langle\Psi_{\mu}^{N+1}\right| a_{r}^{\dagger}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\mu}^{+}}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{N}\right| a_{\boldsymbol{r}^{\prime}}^{\dagger}\left|\Psi_{\nu}^{N-1}\right\rangle\left\langle\Psi_{\nu}^{N-1}\right| a_{2}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\nu}^{-}}$
with

$$
\begin{aligned}
& \left|\Psi_{0}^{N}\right\rangle \\
& \left|\Psi_{\kappa}^{N \pm 1}\right\rangle \\
& E_{\mu}^{+} \equiv E_{\mu}^{N+1}-E_{0}^{N} \longrightarrow \text { (Exact) ground state of } N \text {-body system } \\
& E_{\nu}^{-} \equiv E_{0}^{N}-E_{\nu}^{N-1} \longrightarrow \text {-excited state of (N} \mathbf{} \longrightarrow 1 \text {)-pody system } \\
& \text { one-particle (removal) separation energy }
\end{aligned}
$$

Definition

General case

time-ordering operator
(Exact) ground state of N -body system
$\| \rightarrow$ It describes the process of adding a particle at time t^{\prime} and removing it at time t (or viceversa if $t^{\prime}>t$)
$\rightarrow \rightarrow$ Hence the equivalent name of single-particle propagator
For time-independent Hamiltonians

$$
G_{a b}\left(t, t^{\prime}\right)=G_{a b}\left(t-t^{\prime}\right) \quad \xrightarrow[\text { Fourier transform }]{ } \quad G_{a b}(z)
$$

Lehmann representation

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{N}\right| a_{a}\left|\Psi_{\mu}^{N+1}\right\rangle\left\langle\Psi_{\mu}^{N+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{N}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{N-1}\right\rangle\left\langle\Psi_{\nu}^{N-1}\right| a_{a}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

Many-particle Green's functions

One can define up to N-body Green's functions (GFs).
The two-body GF reads

$$
G_{2 a b c d}\left(t_{a}, t_{b}, t_{c}, t_{d}\right) \equiv-i\left\langle\Psi_{0}^{N}\right| \mathcal{T}\left[a_{b}\left(t_{b}\right) a_{a}\left(t_{a}\right) a_{c}^{\dagger}\left(t_{c}\right) a_{d}^{\dagger}\left(t_{d}\right)\right]\left|\Psi_{0}^{N}\right\rangle
$$

More precisely, this is called the 4-point GF. Depending on the ordering of the 4 times one can then define the two-particle (or two-hole) GF

$$
G_{a b c d}^{p p / h h}\left(t, t^{\prime}\right) \equiv-i\left\langle\Psi_{0}^{N}\right| \mathcal{T}\left[a_{b}(t) a_{a}(t) a_{c}^{\dagger}\left(t^{\prime}\right) a_{d}^{\dagger}\left(t^{\prime}\right)\right]\left|\Psi_{0}^{N}\right\rangle
$$

or the particle-hole (\sim polarisation) propagator

$$
G_{a b c d}^{p h}\left(t, t^{\prime}\right) \equiv-i\left\langle\Psi_{0}^{N}\right| \mathcal{T}\left[a_{b}^{\dagger}(t) a_{a}(t) a_{c}^{\dagger}\left(t^{\prime}\right) a_{d}\left(t^{\prime}\right)\right]\left|\Psi_{0}^{N}\right\rangle
$$

Similarly, one can introduce up to $2 N$-point GFs.

Observables

For one-body operators

$$
\left\langle\Psi_{0}^{N}\right| \mathcal{O}\left|\Psi_{0}^{N}\right\rangle=\sum_{a b} \int \frac{d z}{2 \pi i} G_{b a}(z) o_{a b} \quad \text { with } \quad o_{a b}=\langle a| \mathcal{O}|b\rangle
$$

The only two-body expectation value that can be computed exactly solely from the oneparticle GF is the total ground-state energy

$$
E_{0}=\left\langle\Psi_{0}^{N}\right| \mathcal{H}\left|\Psi_{0}^{N}\right\rangle=\frac{1}{2} \sum_{a b} \int \frac{d z}{2 \pi i} G_{b a}(z)\left[t_{a b}+z \delta_{a b}\right]
$$

where $t_{a b}$ are matrix elements of the kinetic energy operator.
All other two-body observables necessitate the two-body GF.

Single-particle Green's function $\leftrightarrow \leftrightarrow$ Schrödinger equation

Single-particle GF: matches (psychological \& practical) needs of handling one-body objects.

For certain (typically one-body) properties, the exact single-particle GF contains the same information as the exact many-body wave function, e.g. expectation values of a one-body operator in the ground state.

For others it does not, and one need to resort to higher-body GFs.

The knowledge of the (N-body) ground state gives us information about ($N \pm 1$-body) excited states in a single calculation (the magic of Green's functions!).

Spectral representation: finite systems

Lehmann or spectral representation

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{N}\right| a_{a}\left|\Psi_{\mu}^{N+1}\right\rangle\left\langle\Psi_{\mu}^{N+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{N}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{N-1}\right\rangle\left\langle\Psi_{\nu}^{N-1}\right| a_{a}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

$" \rightarrow$ Set of poles along the real energy axis

Poles represent one-particle excitation energies,
i.e. energies of the $N \pm \mathbf{1}$-body system w.r.t. the ground state of the N-body system

$$
\begin{aligned}
& E_{\mu}^{+} \equiv E_{\mu}^{N+1}-E_{0}^{N} \\
& E_{\nu}^{-} \equiv E_{0}^{N}-E_{\nu}^{N-1}
\end{aligned}
$$

Spectral representation: finite systems

Lehmann or spectral representation

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{N}\right| a_{a}\left|\Psi_{\mu}^{N+1}\right\rangle\left\langle\Psi_{\mu}^{N+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{N}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{N-1}\right\rangle\left\langle\Psi_{\nu}^{N-1}\right| a_{a}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

spectroscopic amplitudes

$$
\begin{aligned}
U_{\mu}^{b} & \equiv\left\langle\Psi_{0}^{N}\right| a_{b}\left|\Psi_{\mu}^{N+1}\right\rangle \\
V_{\nu}^{b} & \equiv\left\langle\Psi_{0}^{N}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{N-1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
S_{\mu}^{+a b} & \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| a_{a}\left|\Psi_{\mu}^{\mathrm{A}+1}\right\rangle\left\langle\Psi_{\mu}^{\mathrm{A}+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
S_{\nu}^{-a b} & \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| a_{a}^{\dagger}\left|\Psi_{\nu}^{\mathrm{A}-1}\right\rangle\left\langle\Psi_{\nu}^{\mathrm{A}-1}\right| a_{b}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

spectral function

$$
\mathbf{S}(z) \equiv \sum_{\mu \in \mathcal{H}_{A+1}} \mathbf{S}_{\mu}^{+} \delta\left(z-E_{\mu}^{+}\right)+\sum_{\nu \in \mathcal{H}_{A-1}} \mathbf{S}_{\nu}^{-} \delta\left(z-E_{\nu}^{-}\right)
$$

spectroscopic factors

$$
\begin{aligned}
S F_{\mu}^{+} & \equiv \operatorname{Tr}_{\mathcal{H}_{1}}\left[\mathbf{S}_{\mu}^{+}\right]=\sum_{a \in \mathcal{H}_{1}}\left|U_{\mu}^{a}\right|^{2} \\
S F_{\nu}^{-} & \equiv \operatorname{Tr}_{\mathcal{H}_{1}}\left[\mathbf{S}_{\nu}^{-}\right]=\sum_{a \in \mathcal{H}_{1}}\left|V_{\nu}^{a}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { spectral strength distribution } \\
& \qquad \begin{aligned}
\mathcal{S}(z) & \equiv \operatorname{Tr}_{\mathcal{H}_{1}}[\mathbf{S}(z)] \\
& =\sum_{\mu \in \mathcal{H}_{A+1}} S F_{\mu}^{+} \delta\left(z-E_{\mu}^{+}\right)+\sum_{\nu \in \mathcal{H}_{A-1}} S F_{\nu}^{-} \delta\left(z-E_{\nu}^{-}\right)
\end{aligned}
\end{aligned}
$$

Spectral representation: finite systems

Lehmann or spectral representation

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{N}\right| a_{a}\left|\Psi_{\mu}^{N+1}\right\rangle\left\langle\Psi_{\mu}^{N+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{N}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{N-1}\right\rangle\left\langle\Psi_{\nu}^{N-1}\right| a_{a}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

Information contained in the GF

[figure from J. Sadoudi]

Connection with experiments

Basic idea: spectroscopy via knock-out reactions
Use a probe to eject a particle we are interested into

Target (N-body)

Results from (e, ép) on ${ }^{16} \mathrm{O}$ (here in Saclay)
\rightarrow Spectral function $\mathbf{S}(\omega)$

Connection with experiments

Application to one-neutron removal/addition spectrum of ${ }^{56} \mathrm{Ni}$. Self-energy truncation: Faddeev RPA (see later).

Spectral representation: infinite systems

For extended systems (large N) excited states become highly degenerate.
Description in terms of isolated exact excitations no longer meaningful.
Smearing of poles into branch cuts:

From finite to infinite systems, i.e. taking the thermodynamic limit ($N, V \rightarrow \infty ; N / V$ constant $)$

$$
G_{a b}(z) \longrightarrow G(k, z)=\int \frac{d \omega}{2 \pi} \frac{\mathcal{A}(k, \omega)}{z-\omega} \longrightarrow \longrightarrow \text { spectral function }
$$

Spectral representation and quasiparticles

The spectral function describes the dispersion in energy of modes with a given momentum. Excitation of the system would then show up as peaks in A.

Idea: associate a well-defined peak with a quasiparticle.

Quasiparticles will have, in general,
$\xrightarrow{\prime \rightarrow}$ Modified or renormalised "single-particle" properties (e.g. an effective mass)
$\xrightarrow{\prime} \rightarrow$ A finite lifetime, physically associated with the damping of the excitation The lifetime is given by the width of the quasiparticle peak

$$
\tau \sim \gamma_{k}^{-1}
$$

Spectral representation and quasiparticles

Example: Lorentzian spectral function

$$
\mathcal{A}(k, \omega)=\frac{2 \xi_{k} \gamma_{k}}{\left(\omega-\varepsilon_{k}\right)^{2}+\gamma_{k}}
$$

In this case the Fourier transform can be computed analytically

$$
\begin{aligned}
\mathcal{A}(k, t) & =\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega t} \frac{2 \xi_{k} \gamma_{k}}{\left(\omega-\varepsilon_{k}\right)^{2}+\gamma_{k}^{2}}=\int_{C} \frac{\mathrm{~d} z}{2 \pi} e^{-i z t} \frac{2 \xi_{k} \gamma_{k}}{\left(z-z_{k}\right)\left(z-z_{k}^{*}\right)} \\
& =\xi_{k} e^{-i \varepsilon_{k} t} e^{-\gamma_{k}|t|}
\end{aligned}
$$

$\xrightarrow{\rightarrow} \rightarrow$ Damped quasiparticles with a characteristic time $\tau \sim \gamma_{k}^{-1}$
$\rightarrow \rightarrow$ Damping arises from interactions with other quasiparticles
$\xrightarrow{\prime} \rightarrow$ Energy \& width of the peak correspond to Re and Im of a pole of G

$$
z_{k}=\varepsilon_{k}+i \gamma_{k}
$$

Ab initio quasiparticles

General case: look for a pole of G in the complex energy plane.
However, causality imposes analyticity of G in the upper half plane $\operatorname{Im} z>0$.
Because of the reflection property $G(k, z)^{*}=G\left(k, z^{*}\right)$, i.e. there is no pole!
Solution: the pole appears in an unphysical Riemann sheet of G.

[Eiguren, Ambrosch-Draxl \& Echenique 2008]
$\xrightarrow{\prime} \rightarrow$ Analytical continuation is performed from the physical Riemann sheet across the branch cut on the real axis
$\xrightarrow{\prime} \rightarrow$ Good control over the energy dependence of the propagator is needed
\rightarrow Achieved only recently for electronic and nucleonic systems

Ab initio quasiparticles

Electron-phonon Einstein model

[Eiguren, Ambrosch-Draxl \& Echenique 2008]

Ab initio quasiparticles

Infinite nuclear matter

Propagator - Imaginary part at k=2kf

Analytical continuation

[Rios \& Somà 2012 + in preparation]

Ab initio quasiparticles

Infinite nuclear matter

[Rios \& Somà 2012 + in preparation]

Recap

The exact one-body G contains some of the information contained in the exact N-body w.f.
\rightarrow Specifically, all one-body properties + ground state energy
$\rightarrow \rightarrow$ Finite systems: spectroscopy of $\mathbf{N} \pm \mathbf{1}$-body neighbours
\rightarrow Infinite systems: elementary collective or coherent excitations
$\quad \rightarrow$ If we need more, compute G_{2}, G_{3}, \ldots

In the following, let us look at how G is typically computed.

Calculation methods for G

I) Equation of motion method

The Green's functions for an interacting many-body system obey a hierarchy of equations (which can be derived starting from the eq. of motion of annihilation/ creation operators).

The first one reads [$1 \equiv\left(\boldsymbol{r}_{1}, t_{1}\right)$]

$$
\left(i \frac{\partial}{\partial t_{1}}+\frac{\nabla_{r_{1}}^{2}}{2 m}\right) G(1,2)=\delta(1,2)-\int d 3 v\left(1^{+}, 3\right) G_{2}\left(1,3 ; 2,3^{+}\right)
$$

The second one connects G_{2} and G_{3}, and so on...
Simple example: Hartree approximation

$$
\begin{gathered}
G_{2}\left(1,2 ; 1^{\prime}, 2^{\prime}\right) \approx G\left(1,1^{\prime}\right) G\left(2,2^{\prime}\right) \\
{\left[i \frac{\partial}{\partial t_{1}}+\frac{\nabla_{r_{1}}^{2}}{2 m}+V_{H}(1)\right] G(1,2)=\delta(1,2) \quad \text { with } \quad V_{H}(1) \equiv \int d 2 v(1,2) G\left(2,2^{+}\right)}
\end{gathered}
$$

i.e. a particle that moves independently in the potential V_{H}.

Calculation methods for G

In general, one needs to decouple the system of N integro-differential equations. Introduce an external fictitious time-dependent potential φ. Then

$$
G_{2}\left(3,4 ; 2,4^{+} ;[\varphi]\right)=G(3,2 ;[\varphi]) G\left(4,4^{+} ;[\varphi]\right)-\frac{\delta G(3,2 ;[\varphi])}{\delta \varphi(4)}
$$

$G(1,2 ;[\varphi])=G_{0}(1,2)+\int d 3 G_{0}(1,3) V_{\mathrm{H}}(3 ;[\varphi]) G(3,2 ;[\varphi])+\int d 3 G_{0}(1,3) \varphi(3) G(3,2 ;[\varphi])+\mathrm{i} \int d 4 d 3 G_{0}(1,3) v\left(3^{+}, 4\right) \frac{\delta G(3,2 ;[\varphi])}{\delta \varphi(4)}$

Dyson equation

$$
G(1,2)=G_{0}(1,2)+\int d 3 G_{0}(1,3) V_{\mathrm{H}}(3) G(3,2)+\int d 4 d 3 G_{0}(1,3) \Sigma(3,4) G(4,2)
$$

where one has introduced the self-energy

$$
\Sigma(1,3)=\left.\mathrm{i} \int d 4 d 2 v\left(1^{+}, 4\right) \frac{\delta G(1,2 ;[\varphi])}{\delta \varphi(4)}\right|_{\varphi=0} G^{-1}(2,3)
$$

$n \rightarrow$ All many-body effects are transferred from N-body GFs to the self-energy
$\xrightarrow{\prime} \rightarrow$ In practise, approximations are performed at the self-energy level

Calculation methods for G

II) Diagrammatic method

Basic idea:

1) Separate full Hamiltonian into unperturbed part + perturbation

$$
\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}
$$

2) Compute unperturbed propagator

$$
G_{0}(z)=\left(z-\mathcal{H}_{0}\right)^{-1}
$$

3) Express full propagator in terms of G_{0} and \mathcal{H}_{1}

Simple in the case of one-particle system:

$$
\begin{aligned}
& G(z)=\left(z-\mathcal{H}_{0}-\mathcal{H}_{1}\right)^{-1}=\left\{\left(z-\mathcal{H}_{0}\right)\left[1-\left(z-\mathcal{H}_{0}\right)^{-1} \mathcal{H}_{1}\right]\right\}^{-1} \\
&=\left[1-\left(z-\mathcal{H}_{0}\right)^{-1} \mathcal{H}_{1}\right]^{-1}\left(z-\mathcal{H}_{0}\right)^{-1} \\
&=\left[1-G_{0}(z) \mathcal{H}_{1}\right]^{-1} G_{0}(z) . \\
& \quad \quad \quad \text { expand }\left(1-G_{0} \mathcal{H}_{1}\right)^{-1} \text { in power series } \\
& G=G_{0}+G_{0} \mathcal{H}_{1}\left(G_{0}+G_{0} \mathcal{H}_{1} G_{0}+\cdots\right)=G_{0}+G_{0} \mathcal{H}_{1} G
\end{aligned}
$$

Calculation methods for G

Many-body case more complicated:
$" \rightarrow$ Separation $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ exploited by working in interaction representation
$\mathrm{m} \rightarrow$ One-body Green's function is expanded as (now $\mathcal{H}_{1}=v$)

$$
G\left(1,1^{\prime}\right)=\frac{\sum_{n} \cdots \iint \cdots G_{2 n+1}^{(0)}(\overbrace{1,1^{\prime} ; 2,22^{\prime} ; 3,3^{\prime} ; \cdots}^{4 n+2 \text { variables }}) \overbrace{v \cdots v{ }^{2}}^{n \text { terms }}}{\sum_{n} \cdots \iint \cdots G_{2 n}^{(0)}(\underbrace{2,2^{\prime} ; 3,3^{\prime} ; \cdots}_{4 n \text { variables }} \underbrace{v \cdots v \cdots}_{n \text { terms }}}
$$

" \rightarrow Unperturbed many-body GFs can be written just as products of one-body GFs

$$
G_{2 n}^{(0)}(\underbrace{1,1^{\prime} ; 2,2^{\prime} ; 3,3^{\prime} ; \cdots}_{4 n \text { variables }})=\sum_{\text {permutations }}(-1)^{P} \underbrace{G^{(0)}\left(1, \tilde{1}^{\prime}\right) \cdots G^{(0)}\left(2 n, \tilde{2 n}^{\prime}\right)}_{2 n \text { one-body GFs }}
$$

$\xrightarrow{\prime} \rightarrow$ Several terms cancel out (all disconnected combinations of variables), at the end:

Better to introduce Feynman diagrams and work out the expansion diagrammatically

Diagrammatic expansion

Introduce exact / unperturbed propagators and interaction lines
 in

$$
G=\sum_{n} \sum_{\text {connected }} \underbrace{G^{(0)} \ldots G^{(0)} \ldots}_{2 n+1 \text { propagators }} \underbrace{v \cdots v \cdots}_{\text {interactions }}
$$

and write down the expansion for G
\checkmark All topologically different diagrams contribute at a given order \checkmark Physical processes can be associated to Feynman diagrams

Diagrammatic expansion

Introduce unperturbed / exact propagators and interaction lines

in

$$
G=\sum_{n} \sum_{\text {connected }} \underbrace{G^{(0)} \ldots G^{(0)} \ldots}_{2 n+1 \text { propagators }} \underbrace{v \cdots v \cdots}_{\text {interactions }}
$$

and write down the expansion for G
\checkmark All topologically different diagrams contribute at a given order \checkmark Physical processes can be associated to Feynman diagrams

Diagrammatic expansion

Introduce unperturbed / exact propagators and interaction lines

and write down the expansion for G
\checkmark All topologically different diagrams contribute at a given order \checkmark Physical processes can be associated to Feynman diagrams
$0^{\text {th }}$ order
$1^{\text {st }}$ order
$2^{\text {nd }}$ order

Define irreducible self-energy

Dyson equation

One finds again the Dyson equation $\quad G(1,2)=G^{(0)}(1,2)+\int d 3 d 4 G^{(0)}(1,3) \Sigma^{*}(3,4) G(4,2)$

Partial sums or skeleton vs. composed diagrams
$\xrightarrow{\prime} \rightarrow$ Self-energy can be built with dressed propagation lines; one then keeps only skeleton diagrams $\quad \mathrm{m} \rightarrow$ self-consistency

will be generated by the self-energy term

Dyson equation

Dyson equation is exact

$$
G(1,2)=G^{(0)}(1,2)+\int d 3 d 4 G^{(0)}(1,3) \Sigma^{*}(3,4) G(4,2)
$$

...the game is now to choose a suitable approximation for the self-energy.
Having in mind the (composed irreducible) self-energy expansion, one can choose to select only certain general classes of diagrams:

1) With polarisation parts inserted in interaction lines
$\rightarrow \rightarrow$ dressed or effective or renormalised interactions
2) With self-energy parts inserted in propagator lines
$\quad \rightarrow$ dressed or renormalised propagators
3) With (irreducible) vertex parts inserted in place of a vertex
$\rightarrow \rightarrow$ dressed vertices

Φ-functional

There exists a class of self-energy approximations that automatically fulfil basic conservation laws (number of particles, momentum, energy...).

The condition is the existence of a functional Φ of G and v, such that

$$
\Sigma(1,2)=\frac{\delta \Phi[G, v]}{\delta G(1,2)}
$$

Common approximations like Hartree, Fock, 2nd order, T-matrix are $\boldsymbol{\Phi}$-derivable

(a)
(b)

Approximations to the exact self-energy

Hartree - Fock

\rightarrow Hartree: particles in a common potential, contains unphysical self-interaction
$\| \rightarrow$ Fock: removes self-interaction
$\xrightarrow{\prime \rightarrow}$ Account for static correlations

SCGF calculations in nuclei
[Somà et al. unpublished]

Approximations to the exact self-energy

$\mathrm{pp} / \mathrm{hh}$ T-matrix or ladder

+ exchanges

[Galitskii 1958; ...]
$\rightarrow \rightarrow$ Contains an infinite number of diagrams
\rightarrow Resums contributions relevant at low-density and in strongly-interacting systems
\rightarrow Quality decreases at high density as screening becomes important
Electronic systems
$\mu \rightarrow$ Works well at low densities, i.e. close to completely filled or empty bands
\rightarrow Extensively used in Hubbard models
Nuclear systems
$\xrightarrow{ } \rightarrow$ Treats the repulsive short-range part of nuclear interactions
$\xrightarrow{\prime \rightarrow}$ Method of choice for nuclear matter (self-consistency obligatory for high densities)
\rightarrow Applications to finite nuclei very demanding

Approximations to the exact self-energy

Random Phase Approximation (RPA) or ring ladder or ph ladder
$\xrightarrow{\prime} \rightarrow$ Expansion for the polarisation propagator

In RPA Pauli correlations are partially neglected, but one assumes that missing corrections cancel each other randomly.

Approximations to the exact self-energy

GW

RPA can be applied to resum an interaction (typically electron-electron) in the medium

$W(\mathbf{q}, \omega)=v(\mathbf{q})+v(\mathbf{q}) \Pi^{(0)}(\mathbf{q}, \omega) W(\mathbf{q}, \omega) \quad \Rightarrow \quad \Sigma^{G W}(\mathbf{k}, \omega)=i \int \frac{d \omega^{\prime}}{2 \pi} \int \frac{d \mathbf{k}^{\prime}}{(2 \pi)^{3}} G\left(\mathbf{k}-\mathbf{k}^{\prime}, \omega-\omega^{\prime}\right) W\left(\mathbf{k}^{\prime}, \omega^{\prime}\right)$
$\xrightarrow{\prime \rightarrow} \rightarrow$ Accounts for screening effects
$\xrightarrow{\prime \rightarrow}$ For electrons only Fock term in GW (Hartree \rightarrow constant electrostatic repulsion)
$\quad \mathrm{m} \rightarrow$ Different degrees of self-consistency

$G W^{0}$

Approximations to the exact self-energy

GW

GW approximation can be formally derived from Hedin pentagon of equations

$$
\begin{aligned}
& \Sigma=\text { self-energy } \\
& \mathrm{G}=\text { single-particle GF } \\
& \Gamma=\text { vertex function } \\
& \mathrm{P}=\text { polarisability } \\
& \mathrm{W}=\text { screened interaction }
\end{aligned}
$$

[figure from F. Sottile, PhD thesis 2003]

Approximations to the exact self-energy

GW

GW approximation can be formally derived from Hedin pentagon of equations
[Hedin 1965]

[figure from F. Sottile, PhD thesis 2003]

$$
\Gamma^{G W A}(1,2,3)=\delta(1,2) \delta(1,3)
$$

$$
G^{0} W^{0}
$$

$$
P^{0}(1,2)=-i G^{0}(1,2) G^{0}\left(2,1^{+}\right)
$$

$$
W^{0}(1,2)=v(1,2)+\int d(34) v\left(1^{+}, 3\right) P^{0}(3,4) W^{0}(4,2)
$$

$$
\Sigma(1,2)=i G^{0}(1,2) W^{0}\left(1^{+}, 2\right)
$$

GW

Iterate all three + Dyson equation
$\xrightarrow{\prime} \rightarrow$ Works well in the high-density regime where screening is important

Approximations to the exact self-energy

How to go beyond ladder-type or GW resummations?
To extend the domain of applicability one has to combine different correlation channels

?

Simply summing the two would not work

" \rightarrow interference terms missing
$\rightarrow \rightarrow$ double-counting of second-order diagram
avoided by starting ladders from $3^{\text {rd }}$ order only $" \rightarrow$ FLEX [Brickers et al. 1989]

Approximations to the exact self-energy

In general, one needs to consider the full $2 \mathrm{p} 1 \mathrm{~h} / 2 \mathrm{~h} 1 \mathrm{p}$ propagator R

propagation of three excitations
Dyson equation
R obeys the following (Bethe-Salpeter) equation

Approximations to the exact self-energy

Parquet theory [Diatlov et al. 1957; Jackson et al. 1982; Bergli \& Hjorth-Jensen 2010]
\rightarrow Couples $\mathrm{pp} / \mathrm{hh}$ and ph ladders on equal footing

\checkmark Mainly proof-of-principle applications

Approximations to the exact self-energy

Faddeev RPA (F-RPA)
\rightarrow Strategy is to solve each $\mathrm{pp} / \mathrm{hh}$ and ph channel separately, then couple to a third line and mix the corresponding amplitudes
$" \rightarrow$ All-order summation through a set of Faddeev equations

\checkmark Realistic applications to nuclei, atoms and molecules

Approximations to the exact self-energy

Algebraic Diagrammatic Construction (ADC)

$\xrightarrow{\prime} \rightarrow$ Exact summation of the self-energy reformulated into a simple algebraic form
$\rightarrow \operatorname{ADC}(n)$ includes complete n-th order (dressed) perturbation theory diagrams for G
$\xrightarrow{\prime} \rightarrow$ Results in Hermitian eigenvalue problems within limited spaces of $N \pm 1$ systems

Ip/lh-	2p-1h	$\begin{gathered} \triangle D C(2,3) \\ 2 h-1 p \end{gathered}$	$3 p-2 h$	$\operatorname{ADC}(4,5)$ 3h-2p	
$\varepsilon+\Sigma(\infty)$	u^{\prime}	$u^{\prime \prime}$	u^{\prime}	$U^{\prime \prime}$	
	$(k+C)^{\prime}$	PRाR	c^{\prime}	\square	
		$(k+c)^{\prime \prime}$		$c^{\prime \prime}$	
			$(K+C)^{\prime}$		
				$(K+C)^{\prime \prime}$	

ADC(2)

ADC(3)

\checkmark Realistic applications to nuclei, atoms and molecules

Approximations to the exact self-energy

Unified ladder-GW approach

$\xrightarrow{\prime} \rightarrow$ Re-express the self-energy as

$$
\begin{aligned}
& \Sigma\left(11^{\prime}\right)= v_{H}(1) \delta\left(11^{\prime}\right)+\Sigma_{x}\left(11^{\prime}\right)+i v_{c}\left(1^{+} 2\right) \\
& \times G(13) \Xi\left(35 ; 1^{\prime} 4\right) L\left(42 ; 52^{+}\right), \\
& \text {Effective interaction }
\end{aligned}
$$

\rightarrow Keeping $\Xi=v c$ leads to GW scheme
$" \rightarrow$ Keeping $L=G G$ leads to T-matrix scheme
\rightarrow Link between T-matrix and Hedin equations
$\rightarrow \rightarrow$ Derivation of a screened T-matrix

\checkmark First applications promising

Oxygen benchmark

Several ab initio methods recently addressed the oxygen chain

[Hergert et al. 2013]
[Cipollone et al. 2013] [ADC(3)]
[Jansen et al. 2014]
$\rightarrow \rightarrow$ Same input Hamiltonian (NN+3N)
$\xrightarrow{\prime} \rightarrow$ Good agreement between all methods

Nuclear matter benchmark

Infinite matter: self-consistent T-matrix.
$\rightarrow \rightarrow$ Excellent agreement with CCSD calculations

Equation of state of neutron matter

[Carbone, Rios \& Polls 2014]

Three-body forces

In nuclear physics, treatment of many-body interactions is required.
Green's function formalism was recently extended to account for three-body forces.
[Carbone, Cipollone, Barbieri, Rios, Polls 2013]
$\xrightarrow{ } \rightarrow$ Introduction of one- and two-body effective interactions allows to substantially reduce the number of diagrams

effective 1-body
effective 2-body
E.g. at $2^{\text {nd }}$ order

With these, re-work out all previous slides!

Anomalous Green's functions: Gorkov theory

Standard expansion schemes fail when pairing correlations are essential.
It is possible to formulate the expansion around a symmetry-breaking reference, e.g. a Bogoliubov vacuum.
$\xrightarrow{\prime} \rightarrow$ Remains a single-reference method
$\xrightarrow{\prime} \rightarrow$ Symmetry must be eventually restored (see Duguet's talk)
General idea: start from an auxiliary many-body state $\left|\Psi_{0}\right\rangle \equiv \sum_{A}^{\text {even }} c_{A}\left|\psi_{0}^{A}\right\rangle$ and consequently define a set of 4 one-body propagators
[Gorkov 1958]

$$
i G_{a b}^{11}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \overbrace{b}^{a} \quad i G_{a b}^{21}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv{ }_{\bar{b}}^{\bar{a}} \|
$$

With these, re-work out all previous slides!

More GFs

Solution of Dyson equation

Due to the presence of poles in G often problematic. However, it can be transformed into an energy-dependent eigenvalue equation, which can be further recast into an energyindependent eigenvalue equation (no poles now!).

Self-consistency

Not always dressed propagators are used in Σ, i.e. not always Dyson equation is iterated self-consistently.
\rightarrow Effects/benefits / drawbacks of self-consistency
\rightarrow Dependence on G^{0} ?
\rightarrow Connection with conservation laws?
$\xrightarrow{\prime \prime} \rightarrow$ Consistency between renormalisations of G, Γ and W ?

Generalisations

\rightarrow Finite temperature GFs
$\xrightarrow{\prime \rightarrow} \rightarrow$ Non-equilibrium GFs
$\xrightarrow{\prime \prime \rightarrow}$.

