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Semantics & history

Many-body Green’s function theory: set of techniques that originated in quantum field 
theory and have then been imported to the many-body problem.

Green’s function: mathematical object (see next slide).

Many-body Green’s functions are applicable to all sorts of complex/many-body 
systems: crystals, molecules, atoms, atomic nuclei, …

Late 1950s, 1960s: import of ideas from QFT and development of formalism.

1970s ➝ today: applications and technical developments.

Self-consistent Green’s functions: many-body Green’s functions with dressed 
propagators (see later).

Many-body Green’s functions are not Green’s function Monte Carlo.



Green’s function in maths
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Time-Independent Green’s Functions

Summary. In this chapter, the time-independent Green’s functions are defined,
their main properties are presented, methods for their calculation are briefly dis-
cussed, and their use in problems of physical interest is summarized.

1.1 Formalism

Green’s functions can be defined as solutions of inhomogeneous differential
equations of the type1

[z − L(r)] G (r, r′; z) = δ (r − r′) , (1.1)

subject to certain boundary conditions (BCs) for r or r′ lying on the surface
S of the domain Ω of r and r′. Here we assume that z is a complex variable
with λ ≡ Re {z} and s ≡ Im {z} and that L(r) is a time-independent, linear,
hermitian2 differential operator that possesses a complete set of eigenfunctions
{φn(r)}, i.e.,

L(r)φn(r) = λnφn(r) , (1.2)

where {φn(r)} satisfy the same BCs as G(r, r′; z). The subscript n may stand
for more than one index specifying uniquely each eigenfunction and the corre-
sponding eigenvalue. The set {φn} can be considered as orthonormal without
loss of generality (see Problem 1.1s at the end of Chap. 1), i.e.,

∫

Ω
φ∗

n(r)φm (r) dr = δnm . (1.3)

1 Several authors write the right-hand side (rhs) of (1.1) as 4πδ(r − r′) or
−4πδ(r − r′).

2 A linear operator, L, acting on arbitrary complex functions, φ(r) and ψ(r), de-
fined on Ω and satisfying given BCs is called hermitian if

R
Ω

φ∗(r)[Lψ(r)]dr =
{

R
Ω

ψ∗(r)[Lφ(r)]dr}∗ =
R

Ω
[Lφ(r)]∗ψ(r)dr.

1

Time-Independent Green’s Functions

Summary. In this chapter, the time-independent Green’s functions are defined,
their main properties are presented, methods for their calculation are briefly dis-
cussed, and their use in problems of physical interest is summarized.

1.1 Formalism

Green’s functions can be defined as solutions of inhomogeneous differential
equations of the type1

[z − L(r)] G (r, r′; z) = δ (r − r′) , (1.1)

subject to certain boundary conditions (BCs) for r or r′ lying on the surface
S of the domain Ω of r and r′. Here we assume that z is a complex variable
with λ ≡ Re {z} and s ≡ Im {z} and that L(r) is a time-independent, linear,
hermitian2 differential operator that possesses a complete set of eigenfunctions
{φn(r)}, i.e.,

L(r)φn(r) = λnφn(r) , (1.2)

where {φn(r)} satisfy the same BCs as G(r, r′; z). The subscript n may stand
for more than one index specifying uniquely each eigenfunction and the corre-
sponding eigenvalue. The set {φn} can be considered as orthonormal without
loss of generality (see Problem 1.1s at the end of Chap. 1), i.e.,

∫

Ω
φ∗

n(r)φm (r) dr = δnm . (1.3)

1 Several authors write the right-hand side (rhs) of (1.1) as 4πδ(r − r′) or
−4πδ(r − r′).

2 A linear operator, L, acting on arbitrary complex functions, φ(r) and ψ(r), de-
fined on Ω and satisfying given BCs is called hermitian if

R
Ω

φ∗(r)[Lψ(r)]dr =
{

R
Ω

ψ∗(r)[Lφ(r)]dr}∗ =
R

Ω
[Lφ(r)]∗ψ(r)dr.

In mathematics: solution of a inhomogeneous differential equation

complex variable

hermitian operator
Green’s function

Contains information about eigenstates & eigenvalues of L
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The left-hand side (lhs) of the last relation can be written as follows:

zG (r, r′; z) − ⟨r |LG(z) | r′⟩ .

By introducing the unit operator,
∫

dr′′ |r′′⟩ ⟨r′′|, between L and G in the last
expression we rewrite it in the form

zG (r, r′; z) −
∫

dr′′ ⟨r |L |r′′⟩ ⟨r′′ |G(z) | r′⟩ .

Finally, taking into account (1.6) we obtain

zG (r, r′; z) − L(r)G (r, r′; z) = δ (r − r′) ,

which is identical to (1.1). The usefulness of the bra and ket notation is that

(i) The intermediate algebraic manipulations are facilitated and
(ii) One is not restricted to the r-representation (e.g., one can express all

equations in the k-representation, which is equivalent to taking the Fourier
transform with respect to r and r′ of the original equations).

If all eigenvalues of z − L are nonzero, i.e., if z ̸= {λn}, then one can solve
(1.1′) formally as

G(z) =
1

z − L
. (1.10)

Multiplying (1.10) by (1.4′) we obtain

G(z) =
1

z − L

∑

n

|φn⟩ ⟨φn| =
∑

n

1
z − L

|φn⟩ ⟨φn| =
∑

n

|φn⟩ ⟨φn|
z − λn

. (1.11)

The last step follows from (1.2′), and the general relation F (L) |φn⟩ =
F (λn) |φn⟩ valid by definition for any well-behaved function F . Equation
(1.11) can be written more explicitly as

G(z) =
∑

n

′ |φn⟩ ⟨φn|
z − λn

+
∫

dc
|φc⟩ ⟨φc|
z − λc

, (1.12)

or, in the r-representation,

G (r, r′; z) =
∑

n

′ φn(r)φ∗
n (r′)

z − λn
+

∫
dc

φc(r)φ∗
c (r′)

z − λc
. (1.13)

Since L is a hermitian operator, all of its eigenvalues {λn} are real. Hence,
if Im {z} ̸= 0, then z ̸= {λn}, which means that G(z) is an analytic function
in the complex z-plane except at those points or portions of the real z-axis
that correspond to the eigenvalues of L. As can be seen from (1.12) or (1.13),
G(z) exhibits simple poles at the position of the discrete eigenvalues of L;
the inverse is also true: the poles of G(z) give the discrete eigenvalues of L. If

more generally

} }

discrete spectrum continuous spectrum

Variance in particle number
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One-body system
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Physical Significance of G.
Application to the Free-Particle Case

Summary. The general theory developed in Chap. 1 can be applied directly to the
time-independent one-particle Schrödinger equation by making the substitutions
L(r) → H(r), λ → E, where H(r) is the Hamiltonian. The formalism presented in
Chap. 2, Sects. 2.1,2.2 is applicable to the time-dependent one-particle Schrödinger
equation.

3.1 General Relations

The nonrelativistic, one-particle, time-independent Schrödinger equation has
the form

[E −H(r)]ψ(r) = 0 , (3.1)

and the corresponding Green’s function satisfies the equation

[E −H(r)]G(r, r′; E) = δ(r − r′) . (3.2)

Here H(r) is the Hamiltonian operator in the r-representation, and G(r, r′; E)
as a function of r or r′ satisfies the same boundary conditions as the wave-
function ψ(r), i.e., continuity of ψ(r) and ∇ψ (unless the potential has an
infinite discontinuity) and finite (or zero) value at infinity. It is clear that the
general formalism developed in Chap. 1 is directly applicable to the present
case with the substitutions

L(r) → H(r) , (3.3a)
λ → E , (3.3b)

λ + is = z → z = E + is , (3.3c)
λn → En , (3.3d)

φn(r) → φn(r) . (3.3e)

Thus, the basic relation expressing G in terms of the eigenvalues En and the
complete set of orthonormal eigenfunctions φn of H is
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G(r, r′; z) =
∑

n

φn(r)φ∗
n (r′)

z − En
, (3.4)

or, in the bra and ket notation,

G(z) =
∑

n

|φn⟩ ⟨φn|
z − En

=
1

z −H . (3.5)

The operator G+(E) ≡ lim(E + is − H)−1 as s → 0+ is also known as the
resolvent operator [13], p. 525.

The singularities of G(z) vs. z are on the real z-axis. They can be used as
follows:

1. The position of the poles of G(z) coincide with the discrete eigenenergies
corresponding to H, and vice versa.

2. The residue at each pole En of G(r, r′; z) equals
∑

i φi(r)φ∗
i (r′), where

the summation runs over the fn degenerate eigenstates corresponding to
the discrete eigenenergy En.

3. The degeneracy fn can be found by integrating the residue (Res) of the
diagonal matrix element G(r, r; En) over r, i.e.,

fn =
∫

drRes{G(r, r; En)} = Tr {Res{G(En)}} . (3.6)

For a nondegenerate eigenstate, fn = 1, and consequently

φn(r)φ∗
n (r′) = Res{G(r, r′; En)} . (3.7)

From (3.7) we see that

|φn(r)| =
√
|Res{G(r, r; En)}| , (3.8)

pn(r) = −i ln

{
Res {G(r, 0; En)}√

|Res {G(r, r; En)} × Res {G(0, 0; En)}|

}
, (3.9)

where pn(r) is the phase of φn(r) [assuming that the phase of φn(r) for
r = 0 is zero].

4. The branch cuts of G(z) along the real z-axis coincide with the continuous
spectrum of H, and vice versa. [We assume that the continuous spectrum
of H consists of extended (or propagating) eigenstates. For the case of
localized eigenstates and continuous spectrum see Problem 3.1s].

5. The density of states per unit volume ϱ(r, E) is given by

ϱ(r; E) = ∓ 1
π

Im
{
G±(r, r; E)

}
. (3.10)

6. The density of states N (E) is given by integrating ϱ(r, E) over r, i.e.,

N (E) =
∫

drϱ(r; E) = ∓ 1
π

Tr
{
Im

{
G±(E)

}}
. (3.11)

Substituting 

which corresponds to the one-particle Schrödinger equation
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a one-particle Hamiltonian

The Green’s function in the case reads



Many-body system

By introducing second-quantised annihilation & creation operators we can express

one-body

many-body

with

Variance in particle number
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Definition

General case
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time-ordering operator
(Exact) ground state of N-body system

Lehmann representation

For time-independent Hamiltonians
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Fourier transform

➟ It describes the process of adding a particle at time t’ and removing it at time t 
(or viceversa if t’>t)
➟ Hence the equivalent name of single-particle propagator
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Many-particle Green’s functions

Variance in particle number
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One can define up to N-body Green’s functions (GFs).
The two-body GF reads

More precisely, this is called the 4-point GF. Depending on the ordering of the 4 times 
one can then define the two-particle (or two-hole) GF

or the particle-hole (~polarisation) propagator
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Similarly, one can introduce up to 2N-point GFs.



Observables

The only two-body expectation value that can be computed exactly solely from the one-
particle GF is the total ground-state energy
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Galitskii-Migdal-Koltun sum rule

where tab are matrix elements of the kinetic energy operator.

All other two-body observables necessitate the two-body GF.

[Galitskii & Migdal 1958; Koltun 1972]



Single-particle Green’s function ⇿ Schrödinger equation

Single-particle GF: matches (psychological & practical) needs of handling one-body objects.

For certain (typically one-body) properties, the exact single-particle GF contains the 
same information as the exact many-body wave function, e.g. expectation values of a 
one-body operator in the ground state.

The knowledge of the (N-body) ground state gives us information about (N±1-body) 
excited states in a single calculation (the magic of Green’s functions!).

For others it does not, and one need to resort to higher-body GFs.



Lehmann or spectral representation
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Re z

Poles represent one-particle excitation energies,
i.e. energies of the N±1-body system w.r.t. the ground state of the N-body system
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Spectral representation: finite systems

Lehmann or spectral representation

spectroscopic amplitudes
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Tracing the latter matrices over the one-body Hilbert space H
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provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H
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A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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Spectral representation: finite systems

Lehmann or spectral representation

Information contained in the GF

denominator denominator + numerator
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[figure from J. Sadoudi]



Connection with experiments

Basic idea: spectroscopy via knock-out reactions

Use a probe to eject a particle we are interested into

Target (N-body)

(N-1)-body

eout

pout

By measuring ein, eout and pout !
get information on pin

pin

Results from (e,e’p) on 16O !
(here in Saclay)

ein

[Mougey et al. 1980]
ω [MeV]

p [M
eV

]

➟ Spectral function S(ω)



Connection with experiments

neutron'
removal�

neutron'
addi.on�

sca1ering�

56Ni�

[Barbieri 2009]

Application to one-neutron removal/addition spectrum of 56Ni.

Self-energy truncation: Faddeev RPA (see later).



Spectral representation: infinite systems

From finite to infinite systems, i.e. taking the thermodynamic limit (N,V ➝ ∞; N/V constant)
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For extended systems (large N) excited states become highly degenerate.

Description in terms of isolated exact excitations no longer meaningful.

Smearing of poles into branch cuts:
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Spectral representation and quasiparticles

The spectral function describes the dispersion in energy of modes with a given momentum.

A(k0,ω)

ω

Idea: associate a well-defined peak with a quasiparticle. 

Excitation of the system would then show up as peaks in A.

Quasiparticles will have, in general,

➟ Modified or renormalised “single-particle” properties (e.g. an effective mass)

➟ A finite lifetime, physically associated with the damping of the excitation
    The lifetime is given by the width of the quasiparticle peak
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Example: Lorentzian spectral function

➟ Damped quasiparticles with a characteristic time

2

Every Green’s function (retarded, advanced, chronologi-
cal, etc) has obviously a very di↵erent time dependence.
In a pure quasi-particle picture (free case or mean-field),
one can compute all these Green’s functions exactly be-
cause the spectral function is given by a �-function at
the quasiparticle energy, "k. The Fourier transform is
then analytical. Transforming the retarded and advanced
components into the time domain one gets:

GR(k, t) = �i⇥(t)e�i"kt (6)

GA(k, t) = i⇥(�t)e�i"kt . (7)

This result is valid at both zero and finite temperature
and shows, in a sense, that these components ”do not
care” about the hole or particle components. In addi-
tion to the expected Heaviside components, the Green’s
function in real time is just an oscillatory factor in time.
The correlation functions, on the other hand, do have a
Fermi-Dirac factor:

G<(k, t) = f("k)e
�i"kt (8)

G<(k, t) = [1� f("k)] e
�i"kt , (9)

and therefore carry information on the statistics of the
system. They are defined for both positive and nega-
tive times. With these one can then compute the (anti-
)chronological propagators, which contain statistical me-
chanics information as well as a discontinuity at t = 0:

GT (k, t) = GR(k, t) + iG<(k, t) = �i [⇥(t)� f("k)] e
�i"kt

(10)

= i {⇥(�t)f("k)�⇥(t) [1� f("k)]} e�i"kt

(11)

GT̃ (k, t) = �GA(k, t) + iG<(k, t) = �i [⇥(�t)� f("k)] e
�i"kt

(12)

= i {⇥(�t) [1� f("k)]�⇥(t)f("k)} e�i"kt .
(13)

These equations illustrate the idea that, for the time-
ordered case, forward (backward) time propagation is
associated to particles (holes) and vice-versa for the anti-
time-ordered case. In all cases, however, the time prop-
agation is given by an undamped oscillatory motion of
modes with frequencies given by single-particle energies.
All of this is of course well-known stu↵, but I have to say
I had not fully grasped its relevance until now!

So now the question is what happens when the spectral
function has a width, right? Let’s try to Fourier trans-
form the retarded propagator. According to Eq. (3), one
should do this by computing the transform of G slightly
above the real axis:

GR(k, t) =

Z 1

�1

d!

2⇡
e�i!tG(k,!+) =

Z

�

dz

2⇡
e�iztG(k, z)

(14)

where the contour � is shown in Fig. 1. For negative
times, we can close the contour on the upper half-plane

cont_1.eps

�

FIG. 1. Initial itegration

path for the retarded prop-

agator.

cont_2.eps

�

0

FIG. 2. Final integration

path for the retarded prop-

agator at t > 0.

and, since G is analytical there, there is no contribution.
For positive times, however, the contour has to be closed
on the lower half-plane. Since there are no poles there
either, the contour can be deformed to �0, as shown in
Fig. 2. As a consequence, one finds:

GR(k, t) = ⇥(t)

Z

�0

dz

2⇡
e�iztG(k, z) = ⇥(t)

Z 1

�1

d!

2⇡
e�i!t {G(k,!+)� G(k,!�)}

= �i⇥(t)

Z 1

�1

d!

2⇡
e�i!tA(k,!) = �i⇥(t)A(k, t) .

(15)

The retarded propagator in the time domain is therefore
given by the Fourier transform of the spectral function
for t > 0. I had never worked that out and I find it very
interesting! For a �-function, this agrees with Eq. (6).
Whenever the spectral function has a width, instead of
a single � peak, we will have a continuous distribution
favouring a given frequency but gating onto the others.
As a consequence, the Fourier transform will give rise to
a damped oscillatory motion.
This can be seen by using a Lorentzian spectral func-

tion:

A(k,!) =
2⇠k�k

(! � "k)2 + �k
, (16)

centered around the quasi-particle energy, with width �k
and strength ⇠k. In this case, the Fourier transform of
the spectral function can be computed analytically:

A(k, t) =

Z 1

�1

d!

2⇡
e�i!t 2⇠k�k

(! � "k)2 + �2
k

=

Z

C

dz

2⇡
e�izt 2⇠k�k

(z � zk)(z � z⇤k)
(17)

= ⇠ke
�i"kte��k|t| . (18)

There are two key points here. First, this integral is
computed analytically by going into the complex plane
in a path following the real axis that is closed either in
the upper or the lower half-planes depending on the sign
of t. As a consequence, one needs to find the analytical

continuation of the spectral function. In the case of the
Lorentzian, this is straightforward, replacing ! ! z in
the argument:

A(k, z) = a.c. [A(k,!)] =
2⇠k�k

(z � zk)(z � z⇤k)
. (19)

3

spectral function can be computed analytically:

A(k, t) =

Z 1

�1

d!

2⇡
e�i!t 2⇠k�k

(! � "k)2 + �2
k

=

Z

C

dz

2⇡
e�izt 2⇠k�k

(z � zk)(z � z⇤k)
(17)

= ⇠ke
�i"kte��k|t| (18)

There are two key points here. First, this integral is computed analytically by going into the complex plane in a path
following the real axis that is closed either in the upper or the lower half-planes depending on the sign of t. As a
consequence, one needs to find the analytical continuation of the spectral function. In the case of the Lorentzian, this
is straightforward, replacing ! ! z in the argument:

A(k, z) = a.c. [A(k,!)] =
2⇠k�k

(z � zk)(z � z⇤k)
. (19)

The time-dependence of the propagator is then given by the poles of A(k, z) at zk = "k ± i�k and its strength is given
by the residue of these poles, ⇠k. The second key point is that the result is given by what we expected: a damped
exponential. Physically, what this says is that any excitation in the system will be damped within a characteristic
time given by ⌧ = �k. These excitations (nothing else than quasiparticles) will then have a finite mean-free path given
by � = v⌧ , where v is the group velocity of the excitation. This is, of course, the connection we are looking for!

The subtlety in all that lies in the fact that we have
had to go into the complex plane to compute these life-
times. In other words, one needs to find the analytical
continuation of the spectral function. For the case of the
Lorentzian this is easy, as seen in Eq. (19). In many-body
systems where A can be computed analytically, one can
find the analytical continuation by letting ! become a
complex variable and continuing any function within A
accordingly [3, 4]. In cases where A is computed numeri-
cally, however, one needs to find a suitable way to define
this analytical continuation. Not only that, but once the
analytical continuation is computed, one needs to find
its poles. The imaginary part of its poles determine the
quasi-particle life-time.

It took me quite a while to realize that, since I had
started thinking about this problem in terms of Eq. (1).
In all the previous analysis, I have not made use of this
equation at all. So how does it come into play? It is im-
portant to find the connection because the standard way
of discussing the poles is more related to that equation
than to what I just discussed. I think the connection goes
as follows. The propagator in the complex plane, G(k, z),
is analytical everywhere except in the real axis. Let us
define a continuation of G(k, z):

G̃(k, z) =
⇢

G(k, z), Im z > 0
G(k, z)� iÃ(k, z), Im z  0

(20)

This function is now continuous across the real axis (an-
alyticity still depends on the derivatives, more on that
later) and it is clearly analytical in the upper half-plane.
The poles of the analytical continuation of A(k, z) will
however show up in the lower half-plane. The reflection
symmetry is lost, G̃(k, z)⇤ 6= G̃(k, z⇤). One can compute
the Fourier transform of this function:

G̃(k, t) =
Z 1

�1

d!

2⇡
e�i!tG̃(k,!) . (21)

Because of the analyticity in the upper half-plane, for
t < 0 one can close the path there, which yields no con-
tribution. For t > 0 the integration has to be performed
in the lower half-plane. Contributions to the integral will
come from the poles of A(k, z) in that region. Assuming
a single, simple pole of residue ⇠k at zk, one finds the
same result as the retarded propagator above:

G̃(k, t) = GR(k, t) = �i⇥(t)⇠ke
�i"kte��kt . (22)

This is the reason why in the literature, Eq. (21) is called
the analytical continuation of the retarded propagator,
even though all the interesting physical issues arise from
the analytical continuation of A. Also, one can see that
the analytical continuation of G(k, z) from the lower into
the upper half-plane gives the advanced propagator in
real time.

To establish the connection with Eq. (1), let us now
define a self-energy from the analytically continued prop-
agator:

⌃̃(k, z) = z � k2

2m
� G̃�1(k, z) . (23)

The poles of G̃ in the lower half-plane are simply zeros
of G̃�1. This equation then becomes the definition of the
complex pole, Eq. (1)! This summarizes the equivalence
between the formulation I described and that generally
found on the literature, concerning analytical continua-
tions. In general, the poles of the propagator are related
to the solutions of Eq. (1) for the analytically contin-
ued self-energy. These poles are, in turn, related to the
damping in the time domain of the propagator.

In this case the Fourier transform can be computed analytically
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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X
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➟ Damping arises from interactions with other quasiparticles

➟ Energy & width of the peak correspond to Re and Im of a pole of G
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Spectral representation and quasiparticles
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Ab initio quasiparticles

General case: look for a pole of G in the complex energy plane.

However, causality imposes analyticity of G in the upper half plane                  . 

➟ Analytical continuation is performed from the physical Riemann sheet!
     across the branch cut on the real axis

4

V. SELF-ENERGY IN THE COMPLEX PLANE

From very general principles, one can show that the
self-energy follows a complex dispersion relation:

⌃(k, z) = ⌃HF (k) +

Z
d!

2⇡

�(k,!)

z � !
(24)

where we have defined the self-energy ”spectral func-
tion”:

�(k,!) = �2 Im⌃(k,!+) = �2 Im⌃R(k,!) , (25)

which is nothing but the self-energy computed slightly
above the real axis, i.e. the retarded self-energy. This is
a positive definite function, �(k,!) � 0. Note that one
can also find Eq. (24) by starting from the ladder self-
energy and performing an analytical continuation to the
complex plane (this is how I got to it on the first place
in our discussion at St Pancras!).

Eq. (24) gives access separately to the real and imagi-
nary parts of the self-energy in the complex plane:

Re⌃ (k,ER + iEI) = ⌃HF (k) +

Z
d!

2⇡

(ER � !)�(k,!)

(ER � !)2 + E2
I

(26)

Im⌃ (k,ER + iEI) = �EI

Z
d!

2⇡

�(k,!)

(ER � !)2 + E2
I

(27)

directly from �(k,!). Note that, since we have access to
this function from the SCGF calculations, we can com-
pute directly the real and imaginary parts of the self-
energy in the complex plane. As a check, it is interesting
to see that, taking the limit EI ! 0+, one recovers the
retarded self-energy:

lim
EI!0+

Re⌃(k,ER + iEI) = ⌃HF (k) + P
Z

d!

2⇡

�(k,!)

ER � !
(28)

lim
EI!0+

Im⌃(k,ER + iEI) = �1

2
�(k,!) = Im⌃(k,!+)

(29)

Before going on, it is interesting also to consider the
analytical properties of the self-energy in the complex
plane. Regarding complex conjugation, the self-energy
fulfills the well-known reflection symmetry:

⌃(k, z)⇤ = ⌃(k, z⇤) , (30)

which, expressed in real and imaginary parts indepen-
dently, becomes:

Re⌃(k, z⇤) = Re⌃(k, z) (31)

Im⌃(k, z⇤) = � Im⌃(k, z) . (32)

As a consequence, the real part of the self-energy is con-
tinuous when crossing the real axis, while the imaginary
part is not. Note that the same equation holds for the

single-particle propagator, Eq. (4). This implies that
Eq. (1) cannot have a complex solution. I have clarified
the reason for this, which is also explained in Ref. [5].
Because of causality, G needs to be analytical in the up-
per half-plane, Im z > 0. If that is the case, the relation
G(k, z)⇤ = G(k, z⇤) implies that G is analytical every-
where in the complex plane and cannot have poles. An-
other way to see this is as follows: if G were to have a
pole at a given z in the lower half-plane, the same rela-
tion implies that it would have a pole at z⇤ and therefore
it could not be analytical in the upper half-plane, thus
violating causality.
The way out of this problem is found by analytically

continuing the ”physical” propagator (the propagator in
the upper half-plane) to the lower half-plane. One thus
obtains a propagator, G̃, which is analytical across the
real axis and has poles in the lower half-plane only. In
contrast to G, G̃ does not fulfill any reflection symmetry
[5]. The self-energy can also be analytically continued in
a similar manner, leading to a new function, ⌃̃:

⌃̃(k, z) =

⇢
⌃(k, z), Im z > 0

⌃(k, z)� i�̃(k, z), Im z  0
(33)

By imposing the Dyson equation be valid for the an-
alytical continuations, Eq. (23), one finds that the an-
alytical continuation of the spectral function and the �
function are related below the real axis:

Ã(k, z) =
�̃(k, z)⇥

z � k2

2m � ⌃(k, z)
⇤ ⇥

z � k2

2m � ⌃(k, z) + i�̃(k, z)
⇤ .

(34)

This is an exact relation linking the analytical continua-
tions of A and �. To find the analytical continuation of
A, one therefore needs to compute the analytical contin-
uation of �. Taking into account the boundary condition:

�̃(k,!�) = �(k,!) = 2 Im⌃(k,!) , (35)

it seems natural to define the analytical continuation of
� in terms of ⌃ in the complex plane:

�̃(k, z) = 2 Im⌃(k, z) . (36)

This is a real-valued function in the complex plane. The
analytical continuation for A becomes:

A(k, z) =
2 Im⌃(k, z)⇥

z � k2

2m � ⌃(k, z)
⇤ ⇥

z � k2

2m � ⌃⇤(k, z)
⇤ (37)

=
2 Im⌃(k, z)

⇥
z � k2

2m � Re⌃(k, z)
⇤2

+ [ Im⌃(k, z)]2
.

(38)

In this expression, the self-energy is the complex self-
energy, not its analytical continuation! For all we know,
this is a reasonable expression. It reduces correctly to
the case of a Lorentzian spectral function or a mean-field
quasi-particle. In the limit close to the real axis this,

Because of the reflection property                                   , i.e. there is no pole!
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S(z) ⌘ TrH1 [S(z)] (46)

=
X

µ2HA+1

SF+

µ �(z � E+

µ ) +
X

⌫2HA�1

SF�
⌫ �(z � E�

⌫ )
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k

�k = 0 �! ⌧ = 1

zk = "k + i�k

G(k, z)⇤ = G(k, z⇤)

Solution: the pole appears in an unphysical Riemann sheet of G.

➟ Good control over the energy dependence of the propagator is needed
➟ Achieved only recently for electronic and nucleonic systems

of the electron Green’s function gives the electron spectral
function as a function of energy,

Ak!E" = −
1
!

Im#Gk!E + i0"$ = −
1
!

Im#G̃k!E + i0"$ .

!17"

Let us suppose for a moment that the analytically continued
Green’s function

G̃!z" =
1

z − "i,k − #̃k!z"
!18"

has only one pole located at zk
qp=ER!k"+ iEI!k" in the lower

half of the complex plane. Then the first-order Laurent ex-
pansion of G̃!z" around zqp is given by

GL!z" =
Zk

qp

z − zk
qp , !19"

with the renormalization factor Zk
qp #Eq. !14"$ evaluated at

zk
qp. Note that Zk

qp is complex in general, and the imaginary
part of the expansion gives rise to two terms,

Ai,k
L !E"! = − Im% Zk

qp

E − zk
qp& =

− EI!k"'Zk
qp'cos!$k

qp"
#E − ER!k"$2 + EI!k"2

+
#ER!k" − E$'Zk

qp'sin!$k
qp"

#E − ER!k"$2 + EI!k"2 ,

where we have defined

$k
qp = Im#ln!Zk

qp"$, Zk
qp = 'Zk

qp'ei$k
qp

. !20"

If $k
qp=0, i.e., if Zk

qp is a real number, the ideal quasiparticle
spectral function is recovered:

Ai,k
L !E" =

− EI!k"/!
#E − ER!k"$2 + EI!k"2 .

The real part of the renormalization factor reflects the total
spectral weight of the quasiparticle state,

Wi,k ( )
−%

%

Ai,k
L !E"dE = cos!$k

qp"'Zk
qp' . !21"

A finite imaginary part of Zk
qp !$k

qp!0" plays the role of
distorting the ideal Lorentzian shape but keeping the total
weight constant #see the approximate Eq. !15"$. If Zk

qp were
purely imaginary it would not give any net contribution to
the spectral function. This is schematically shown in Fig. 1,
taking a pole located at zqp=2− i as an example. The left
panels refer to the case where Zqp is purely real, while the
ones to the right correspond to the case where $=! /6. In the
bottom and top panels we show the model spectral functions
A!z"=−Im#Zqp / !z−zqp"$ /! for a part of the complex plane
and for the real axis, respectively. The contribution of a pole
to G̃!z" behaves like a dipole for A!z" but rotated by an angle
$ with respect to the y axis. A pole with a purely real Zqp

produces a perfectly Lorentzian-shaped spectral function
!left panel", while in case of a finite imaginary component of
Zqp !right panel", i.e., $qp!0, the spectra shows a distorted

shape, with the peak slightly displaced from the real part of
the pole. We will see that even in the simplest Einstein model
the quasiparticle renormalization factors acquire finite imagi-
nary components, with the consequence that the spectral
peaks do not exactly correspond to the real parts of the qua-
siparticle poles. As mentioned, nothing excludes the possibil-
ity of finding several quasiparticle poles when considering a
Dyson equation in the entire complex plane. In this case, one
would straightforwardly generalize Eq. !19", for several qua-
siparticle poles, and a multiple-quasiparticle picture could be
defined as the case in which the expansion approximately
coincides with the actual spectral function

A!E" * AQP!E" ( −
1
!

+
n

Im
Zk,n

qp

E − zqp!k,n"
. !22"

C. Analytic continuation and the Einstein model

The Einstein model is the simplest and most fundamental
problem in the context of electron-phonon interaction. It was
first studied by Engelsberg and Schrieffer at zero
temperature,20 where the analytic continuation was easily ob-
tained due to the special properties of #̃!z" at T=0.

The Einstein model describes a linearly dispersing elec-
tron state, interacting with a single phonon mode with energy
&0. This is a highly idealized case, but as will be demon-
strated below it is very useful even when treating realistic
systems with ab initio quality. For this system, the second-
order self-energy in integral form6 is

FIG. 1. !Color online" Schematic representations of the analyti-
cally continued Green’s function G̃!z" and the corresponding spec-
tral function. We consider the two examples where Zqp is purely
real !left panels", i.e., $qp=0, and where $qp=! /6 !right panels".
The quasiparticle pole is located at zqp=2− i in both cases. The two
lower panels show a contour plot of the spectral function Ai,k

L !z"
, Im G̃!z", with the dashed lines indicating the position of the real
axis. The upper panels exhibit the corresponding spectral functions
evaluated at the real axis.
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Ab initio quasiparticles

Since we have considered a coupling constant given by
!=−!"R!E" /!E #E=0=1, the real part of the renormalization
factor at the Fermi level !ER=0" is Re!Zqp"$1 / !1+!"
$1 /2 at E=0, for both T=0 and T=#0 /10. Note that
Re!Zqp" vanishes continuously when going to ER→#0. At
higher temperatures, such as T=#0, the same qualitative be-
havior is observed, but Re!Zqp" is significantly weakened for
ER$#0. For all temperatures and ER%#0 the damped elec-
tron dominates the full spectral weight since Re!Zqp"→1 for
high energies.

Figures 4 and 5 show the electron spectral functions for
&k=2 at temperatures T=0 and T=#0 /10, respectively. The
bottom panels represent the analytically continued spectral
function Ak!z"=−Im%G̃k!z"& /' for &k=2#0. The top panels
demonstrate Ak!ER" in the real axis. At T=0, two poles are
clearly visible !bottom panels", one located at the real axis at
ER'0.8#0 and the other one at !ER'1.8#0 , EI'−2#0".
The first one corresponds to the polaron state, while the other
one is a damped electron. At finite temperatures, these two
states are again discernible, but several additional states
show up with smaller spectral weight.

D. Momentum-dependent self-energy in real materials

Besides the electron and phonon band structures, a key
ingredient for calculating electron-phonon interaction related
properties is the Eliashberg function6

(2Fi,k!#" = (
q,)

j

#gq,)
i,j #2*!# − #q,)"*!&n!,k+q − &n,k" . !31"

This function is basically the phonon density of states
weighted by the electron-phonon matrix elements, and gives

the probability of an electron-phonon scattering event trans-
ferring energy # at T=0. i and j label the different electron
bands, k and q are the electron and phonon wave vectors,
and #q,) and gq,)

i,j stand for the phonon energy and the
electron-phonon matrix elements !related to the phonon
mode )", respectively.

The Eliashberg function corresponding to the Einstein
model with phonon energy #0 and matrix element g,

(2FEi!#" =
#g#2

#0
*!# − #0" , !32"

is basically a Dirac delta function. Thus Eq. !31" may be
reinterpreted as the superposition of effective Einstein modes
with energies # and (2Fi,k!#" playing the role of the inter-
action strength. In this way, the total second-order self-
energy for an electron with band index i and momentum k
may be written as a sum of contributions of effective Ein-
stein modes.

"̃i,k!z" = )
0

+

d#(2Fi,k!#""̃Ei!z,#" . !33"

"̃i,k!z" is analytic across the real axis because so is "̃Ei!z ,#".
Hence one can use Eq. !33" in the complex Dyson equation
to describe any arbitrary system.

III. IMPLEMENTATION

Equation !33" gives the analytic continuation of the re-
tarded electron self-energy from the upper into the lower half
complex plane, i.e., from the physical into the unphysical

FIG. 4. !Color online" Representations of the analytically con-
tinued spectral function Ak!z"=−Im%G̃k!z"& /' for &k=2#0 and T
=0. The bottom panel shows Ak!z" in the complex plane, and the
top panel demonstrates Ak!ER" in the real axis.

FIG. 5. !Color online" Representations of the analytically con-
tinued spectral function Ak!z"=−1 /' Im%G̃k!z"& for &k=2#0 and T
=#0 /10. The bottom panel shows Ak!z" in complex plane, and top
panel demonstrates Ak!ER" in the real axis.
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Since we have considered a coupling constant given by
!=−!"R!E" /!E #E=0=1, the real part of the renormalization
factor at the Fermi level !ER=0" is Re!Zqp"$1 / !1+!"
$1 /2 at E=0, for both T=0 and T=#0 /10. Note that
Re!Zqp" vanishes continuously when going to ER→#0. At
higher temperatures, such as T=#0, the same qualitative be-
havior is observed, but Re!Zqp" is significantly weakened for
ER$#0. For all temperatures and ER%#0 the damped elec-
tron dominates the full spectral weight since Re!Zqp"→1 for
high energies.

Figures 4 and 5 show the electron spectral functions for
&k=2 at temperatures T=0 and T=#0 /10, respectively. The
bottom panels represent the analytically continued spectral
function Ak!z"=−Im%G̃k!z"& /' for &k=2#0. The top panels
demonstrate Ak!ER" in the real axis. At T=0, two poles are
clearly visible !bottom panels", one located at the real axis at
ER'0.8#0 and the other one at !ER'1.8#0 , EI'−2#0".
The first one corresponds to the polaron state, while the other
one is a damped electron. At finite temperatures, these two
states are again discernible, but several additional states
show up with smaller spectral weight.

D. Momentum-dependent self-energy in real materials

Besides the electron and phonon band structures, a key
ingredient for calculating electron-phonon interaction related
properties is the Eliashberg function6

(2Fi,k!#" = (
q,)

j

#gq,)
i,j #2*!# − #q,)"*!&n!,k+q − &n,k" . !31"

This function is basically the phonon density of states
weighted by the electron-phonon matrix elements, and gives

the probability of an electron-phonon scattering event trans-
ferring energy # at T=0. i and j label the different electron
bands, k and q are the electron and phonon wave vectors,
and #q,) and gq,)

i,j stand for the phonon energy and the
electron-phonon matrix elements !related to the phonon
mode )", respectively.

The Eliashberg function corresponding to the Einstein
model with phonon energy #0 and matrix element g,

(2FEi!#" =
#g#2

#0
*!# − #0" , !32"

is basically a Dirac delta function. Thus Eq. !31" may be
reinterpreted as the superposition of effective Einstein modes
with energies # and (2Fi,k!#" playing the role of the inter-
action strength. In this way, the total second-order self-
energy for an electron with band index i and momentum k
may be written as a sum of contributions of effective Ein-
stein modes.

"̃i,k!z" = )
0

+

d#(2Fi,k!#""̃Ei!z,#" . !33"

"̃i,k!z" is analytic across the real axis because so is "̃Ei!z ,#".
Hence one can use Eq. !33" in the complex Dyson equation
to describe any arbitrary system.

III. IMPLEMENTATION

Equation !33" gives the analytic continuation of the re-
tarded electron self-energy from the upper into the lower half
complex plane, i.e., from the physical into the unphysical

FIG. 4. !Color online" Representations of the analytically con-
tinued spectral function Ak!z"=−Im%G̃k!z"& /' for &k=2#0 and T
=0. The bottom panel shows Ak!z" in the complex plane, and the
top panel demonstrates Ak!ER" in the real axis.

FIG. 5. !Color online" Representations of the analytically con-
tinued spectral function Ak!z"=−1 /' Im%G̃k!z"& for &k=2#0 and T
=#0 /10. The bottom panel shows Ak!z" in complex plane, and top
panel demonstrates Ak!ER" in the real axis.
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Electron-phonon Einstein model



Ab initio quasiparticles
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Infinite nuclear matter
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Recap

The exact one-body G contains some of the information contained in the exact N-body w.f.

➟ Specifically, all one-body properties + ground state energy

➟ If we need more, compute G2, G3, …

➟ Finite systems: spectroscopy of N±1-body neighbours

➟ Infinite systems: elementary collective or coherent excitations

In the following, let us look at how G is typically computed.



Calculation methods for G

I) Equation of motion method

The Green’s functions for an interacting many-body system obey a hierarchy of equations!
(which can be derived starting from the eq. of motion of annihilation/creation operators).

The first one reads [                  ]

The second one connects G2 and G3, and so on…

Simple example: Hartree approximation

with

i.e. a particle that moves independently in the potential VH.
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Calculation methods for G

In general, one needs to decouple the system of N integro-differential equations. 
Introduce an external fictitious time-dependent potential 𝜑. Then

3

in turn requires knowledge of G3 and so on) [4, 6]. In order to obtain a closed expression one
can generalize G(1, 2) to G(1, 2; [']), where an external fictitious time-dependent potential '
is applied to the system. This allows one to express G2 as [7]

G2(3, 4; 2, 4+; [']) = G(3, 2; ['])G(4, 4+; [']) � �G(3, 2; ['])
�'(4)

. (4)

Note that in (4) all GFs are generalized to non-equilibrium since they depend on the perturbing
potential. The equilibria G and G2 in (3) are then obtained by taking ' = 0. Inserting (4) into (3)
yields a set of functional differential equations (DEs) [4] for the unknown G

G(1, 2; [']) = G0(1, 2) +
Z

d3 G0(1, 3)VH(3; ['])G(3, 2; [']) +
Z

d3 G0(1, 3)'(3)G(3, 2; ['])

+ i
Z

d4d3 G0(1, 3)v(3+, 4)
�G(3, 2; ['])
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, (5)

where VH(3) = �i
R

d4 v(3, 4)G(4, 4+; [']) is the Hartree potential. Since the Hartree potential
contains the GF, this term makes the equations nonlinear. We are interested in the solution of
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where one has introduced the self-energy

➟ All many-body effects are transferred from N-body GFs to the self-energy
➟ In practise, approximations are performed at the self-energy level

Dyson equation



Calculation methods for G

II) Diagrammatic method

Basic idea:
1) Separate full Hamiltonian into unperturbed part + perturbation

2) Compute unperturbed propagator

56 4 Green’s Functions and Perturbation Theory

The Green’s functions G0(z) and G(z) corresponding to H0 and H, re-
spectively, are

G0(z) = (z −H0)
−1 and (4.2)

G(z) = (z −H)−1 . (4.3)

Using (4.1) and (4.2) we can rewrite (4.3) as follows:

G(z) = (z −H0 −H1)
−1 =

{
(z −H0)

[
1 − (z −H0)

−1 H1

]}−1

=
[
1 − (z −H0)

−1 H1

]−1
(z −H0)

−1

= [1 − G0(z)H1]
−1 G0(z) . (4.4)

Expanding the operator (1 − G0H1)−1 in power series we obtain

G = G0 + G0H1G0 + G0H1G0H1G0 + · · · . (4.5)

Equation (4.5) can be written in a compact form

G = G0 + G0H1 (G0 + G0H1G0 + · · · ) = G0 + G0H1G (4.6)

or
G = G0 + (G0 + G0H1G0 + · · · )H1G0 = G0 + GH1G0 . (4.7)

In the r-representation, (4.6) becomes

G (r, r′; z) = G0 (r, r′; z)

+
∫

dr1dr2G0 (r, r1; z)H1 (r1, r2)G (r2, r
′; z) . (4.6′)

Usually H1 (r1, r2) has the form δ (r1 − r2)V (r1); then (4.6′) becomes

G (r, r′; z) = G0 (r, r′; z)

+
∫

dr1G0 (r, r1; z)V (r1)G (r1, r
′; z) , (4.8)

i.e., G(r, r′; z) satisfies a linear inhomogeneous integral equation with a kernel
G0 (r, r1; z)V (r1). Equation (4.7) can be written also in a similar form. If we
use the k-representation, we can rewrite (4.6) as follows:

G (k, k′; z) = G0 (k, k′; z) +
∑

k1k2

G0 (k, k1; z)H1 (k1, k2)G (k2, k
′; z) . (4.9)

Taking into account that ⟨r |k⟩ = eik · r/
√

Ω and that

∑

k

= Ω

∫
dk

(2π)d
, (4.10)

3) Express full propagator in terms of       and 
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Simple in the case of one-particle system:
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G(z) = (z −H)−1 . (4.3)

Using (4.1) and (4.2) we can rewrite (4.3) as follows:

G(z) = (z −H0 −H1)
−1 =

{
(z −H0)

[
1 − (z −H0)

−1 H1

]}−1

=
[
1 − (z −H0)

−1 H1

]−1
(z −H0)

−1

= [1 − G0(z)H1]
−1 G0(z) . (4.4)

Expanding the operator (1 − G0H1)−1 in power series we obtain

G = G0 + G0H1G0 + G0H1G0H1G0 + · · · . (4.5)

Equation (4.5) can be written in a compact form

G = G0 + G0H1 (G0 + G0H1G0 + · · · ) = G0 + G0H1G (4.6)

or
G = G0 + (G0 + G0H1G0 + · · · )H1G0 = G0 + GH1G0 . (4.7)

In the r-representation, (4.6) becomes

G (r, r′; z) = G0 (r, r′; z)

+
∫

dr1dr2G0 (r, r1; z)H1 (r1, r2)G (r2, r
′; z) . (4.6′)

Usually H1 (r1, r2) has the form δ (r1 − r2)V (r1); then (4.6′) becomes

G (r, r′; z) = G0 (r, r′; z)

+
∫

dr1G0 (r, r1; z)V (r1)G (r1, r
′; z) , (4.8)

i.e., G(r, r′; z) satisfies a linear inhomogeneous integral equation with a kernel
G0 (r, r1; z)V (r1). Equation (4.7) can be written also in a similar form. If we
use the k-representation, we can rewrite (4.6) as follows:

G (k, k′; z) = G0 (k, k′; z) +
∑

k1k2

G0 (k, k1; z)H1 (k1, k2)G (k2, k
′; z) . (4.9)

Taking into account that ⟨r |k⟩ = eik · r/
√

Ω and that

∑

k

= Ω

∫
dk

(2π)d
, (4.10)
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Calculation methods for G

Many-body case more complicated:
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➟ Unperturbed many-body GFs can be written just as products of one-body GFs
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➟ Several terms cancel out (all disconnected combinations of variables), at the end:

Better to introduce Feynman diagrams and work out the expansion diagrammatically

(Wick theorem)

3

G(1, 10) =

X

n

· · ·
Z Z

· · ·G(0)

2n+1

(

4n+2variablesz }| {
1, 10; 2, 20; 3, 30; · · ·)

n termsz }| {
v · · · v · · ·

X

n

· · ·
Z Z

· · ·G(0)

2n (2, 2
0; 3, 30; · · ·| {z }

4n variables

) v · · · v · · ·| {z }
n terms

(32)

H
1

= v (33)

G
(0)

2n (1, 1
0; 2, 20; 3, 30; · · ·| {z }
4n variables

) =
X

permutations

(�1)P G(0)(1, 1̃0) · · ·G(0)(2n, 2̃n
0
)| {z }

2n one-body GFs

(34)

G =
X

n

X

connected

G(0) · · ·G(0) · · ·| {z }
2n+1propagators

v · · · v · · ·| {z }
n interactions

(35)

H = H
0

+H
1

(36)



Diagrammatic expansion

Introduce exact / unperturbed propagators and interaction lines
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Multiplying by Xk†
f from the left, summing over f and renaming (f, d) to (a, b), one finally obtains the normalization condition

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂"ab(ω)
∂ω

∣∣∣∣
ωk

Xk
b, (A10)

where only the proper self-energy appears as a result of the energy independence of the auxiliary potential. Similarly, one can
derive a condition for Gorkov’s amplitude Y

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂"ab(ω)
∂ω
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−ωk

Yk
b. (A11)

APPENDIX B: DIAGRAMMATIC

1. Diagrammatic rules

A convenient way to express the expansion of the single-
particle propagator is via diagrammatic techniques. By giving
the interaction and the single-particle propagator a graphical
representation and by establishing a set of rules one can
generate diagrams that are in one-to-one correspondence with
the terms appearing in the expansion. As it provides an
immediate insight to physical processes associated with the
various contributions, the diagrammatic expansion is of great
help when choosing a suitable approximation. It is relevant
to discuss diagrammatic rules in some detail here given that
there exist differences compared to rules applicable to the
diagrammatic expansion involving normal contractions only.

In the present work, antisymmetrized interaction matrix
elements are represented by a dashed line labeled by four
single-particle indices,

V̄abcd ≡
c d

a b
. (B1)

Single-particle unperturbed propagators, i.e., Green’s func-
tions associated with the unperturbed Hamiltonian $U intro-
duced in Eq. (31), are depicted as solid lines labeled by two
indices and one energy flowing from the second to the first
index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (B2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (B2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (B2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (B2d)

One should notice that, as opposed to traditional graphical
representations of Dyson’s propagator, Gorkov’s propagators
carry two arrows specifying whether a given propagator
results from the contraction of two creation operators, of two
annihilation operators, or of one creation (annihilation) and
one annihilation (creation) operator.

With building blocks (B1) and (B2) one can construct, order
by order, the (diagrammatic) perturbative expansion for each
of the four Gorkov propagators (22). To obtain all terms of the
expansion at a certain order m and for one of the four Gorkov
propagators, the following rules are employed:

(i) Draw all topologically distinct connected direct dia-
grams with m horizontal interaction lines (with 4 single-
particle indices) and 2m + 1 directed propagation lines
(with 2 single-particle indices each, connecting the 4m
indices of the interaction and the 2 external ones).
Notice that exactly two incoming and two outgoing
lines must be attached to a given interaction vertex,
i.e., the left diagram in Fig. 6 is allowed while right
diagram is not. Topologically distinct diagrams cannot
be transformed into each other by any translation
(in the two-dimensional plane) of any of the vertices
without disconnecting or reconnecting propagation

c

a

d

b

c

a

d

b

FIG. 6. Allowed (left) and forbidden (right) interaction lines.
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
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|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B

31

a set of gauge-angle dependent Gorkov calculations.

ACKNOLEDGEMENTS

We thank S. Baroni, K. Bennaceur, P. Bożek, A. Pas-
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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functions associated with the unperturbed Hamiltonian
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
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Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
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′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B

31

a set of gauge-angle dependent Gorkov calculations.

ACKNOLEDGEMENTS

We thank S. Baroni, K. Bennaceur, P. Bożek, A. Pas-
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Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)
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∞
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m!
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]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
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m

(−i)m

m!

∫
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∫
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[
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|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
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Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[
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b(t

′)
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|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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enter the expansion.
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1. Properties of Clebsch-Gordan coefficients
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efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2
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√
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⎭
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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is constituted by the diagrammatic technique. By giv-
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by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)
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ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...
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†
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]

|Ψ0⟩C , (B1c)
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′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
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ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
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(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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that
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ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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that
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

✺ Dyson equation

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
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ways of approximating the solution. The connection be-
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Gab(ω) = G(0)
ab (ω) +

∑
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G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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Fig. 12.2. The two diagrams contributing to D(1) (see text)

1. Draw all topologically distinct connected diagrams with n interaction
(wavy) lines, two external points, and 2n + 1 directed g0 lines.

2. Label each vertex with a 4-d point xi ≡ ri, ti.
3. For each directed line starting from xν and ending at xµ write a factor

g0(xµ, xν).
4. For each interaction (wavy) line between xi and x′

i write a factor
iv (xi − x′

i).
5. Integrate over all internal variables xi, x′

i.
6. Multiply the expression by (−1)m, where m is the number of closed

fermion loops.
7. Interpret g0 (ri, ti, r′

i, ti) as being equal to g̃<
0 (ri, ti, r′

i, ti).

In Fig. 12.3 we plot all the diagrams for g up to second order. The contribution
of the two first-order diagrams is, according to the rules above,

−i
∫

g0 (x, x1) g0 (x1, x
′) g0 (x′

1, x
′
1) v (x1 − x′

1) dx1dx′
1

+i
∫

g0 (x, x′
1) g0 (x′

1, x1) g0 (x1, x
′) v (x1 − x′

1) dx1dx′
1 .

For translationally invariant systems the calculations are facilitated by
working in momentum-frequency space. This is achieved by expressing all
g(xν −xµ) and v (xi − x′

i) in terms of their Fourier transforms with respect to
the variables xν − xµ and xi − x′

i, respectively. Then the integration over the
internal variables xi can be performed explicitly giving δ-functions expressing
energy-momentum conservation at each vertex. Thus, in momentum space,
we have rules resulting from the previous ones by the following replacement:
2 → 2′, 3 → 3′, 4 → 4′, 5 → 5′, and 7 → 7′, where

2′. Label each line with a four-momentum q ≡ k, ω; conserve energy-
momentum at each vertex.

3′. For each directed line labeled with a four-momentum k, ω write a factor

g0 (k, ω) = lim
s→0+

1
ω − ε0

k + isε̄(ω − µ)
.

4′. For each interaction (wavy) line labeled by k, ω write a factor

iv(k) = i
∫

d3rv(r)e−ik · r .
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Fig. 12.3. Feynman diagrams for g of zero order (first line), first order (second
line), and second order (third, fourth, and fifth lines)

5′. Integrate over all internal independent four-momenta (with a factor 1/2π
for each single integration).

7′. Interpret each g0(k, ω) corresponding to a line starting from and ending at
the same point (or linked by the same interaction line) as being g̃<

0 (k, ω) =
2πiδ(ω − ε0

k)θ(kF − k).

According to the above rules, the contribution to g(q) from the first-order
diagrams shown in Fig. 12.4 is

−i
∫

d4q′

(2π)4
g̃<
0 (q′) v(0)g0(q)g0(q) + i

∫
d4q′

(2π)4
g0(q)g0(q)g̃<

0 (q′) v (k − k′)

= g2
0(q)

[
v(0)

∫
d3k′

(2π)3
θ (kF − k′) −

∫
d3k′

(2π)3
v (k − k′) θ (kF − k′)

]
.
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1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2
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2j1 + 1

, (A2)
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= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
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2J + 1
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CJM
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∑
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CJM
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= δJJ′ δMM ′ , (A7)
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j6m6j8m8
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×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
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⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9
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⎬

⎭
, (A8)
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⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)
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One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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∞
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∞
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†
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∞
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(−i)m
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
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as long as they are taken in the same way.
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d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f
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, (C7)

f
c d
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For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.
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, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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The following relations involving Clebsch-Gordan co-
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volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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the single-particle propagator discussed in Appendix B
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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that
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)
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A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as
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where the operator T orders a and a† according to their
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The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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a†b(t) =
[

a(H)
b (t)

]†
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The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
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Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.

12.2 Diagrammatic Method for Fermions at T = 0 297

g = +

+ +

+ + + +

+ + +

+ +

Fig. 12.3. Feynman diagrams for g of zero order (first line), first order (second
line), and second order (third, fourth, and fifth lines)

5′. Integrate over all internal independent four-momenta (with a factor 1/2π
for each single integration).

7′. Interpret each g0(k, ω) corresponding to a line starting from and ending at
the same point (or linked by the same interaction line) as being g̃<

0 (k, ω) =
2πiδ(ω − ε0

k)θ(kF − k).

According to the above rules, the contribution to g(q) from the first-order
diagrams shown in Fig. 12.4 is

−i
∫

d4q′

(2π)4
g̃<
0 (q′) v(0)g0(q)g0(q) + i

∫
d4q′

(2π)4
g0(q)g0(q)g̃<

0 (q′) v (k − k′)

= g2
0(q)

[
v(0)

∫
d3k′

(2π)3
θ (kF − k′) −

∫
d3k′

(2π)3
v (k − k′) θ (kF − k′)

]
.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t
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∞
∑
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∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B+ ….

0th order

1st order

2nd order

✓ All topologically different diagrams contribute at a given order
✓ Physical processes can be associated to Feynman diagrams
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· · ·
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Diagrammatic expansion

Introduce unperturbed/exact propagators and interaction lines

and write down the expansion for G
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5′. Integrate over all internal independent four-momenta (with a factor 1/2π
for each single integration).

7′. Interpret each g0(k, ω) corresponding to a line starting from and ending at
the same point (or linked by the same interaction line) as being g̃<

0 (k, ω) =
2πiδ(ω − ε0
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According to the above rules, the contribution to g(q) from the first-order
diagrams shown in Fig. 12.4 is
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).
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ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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volving the interacting Hamiltonian ΩI
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B

31

a set of gauge-angle dependent Gorkov calculations.

ACKNOLEDGEMENTS

We thank S. Baroni, K. Bennaceur, P. Bożek, A. Pas-
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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that
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
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Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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Fig. 12.3. Feynman diagrams for g of zero order (first line), first order (second
line), and second order (third, fourth, and fifth lines)

5′. Integrate over all internal independent four-momenta (with a factor 1/2π
for each single integration).

7′. Interpret each g0(k, ω) corresponding to a line starting from and ending at
the same point (or linked by the same interaction line) as being g̃<

0 (k, ω) =
2πiδ(ω − ε0

k)θ(kF − k).

According to the above rules, the contribution to g(q) from the first-order
diagrams shown in Fig. 12.4 is

−i
∫

d4q′

(2π)4
g̃<
0 (q′) v(0)g0(q)g0(q) + i

∫
d4q′

(2π)4
g0(q)g0(q)g̃<

0 (q′) v (k − k′)

= g2
0(q)

[
v(0)

∫
d3k′

(2π)3
θ (kF − k′) −

∫
d3k′

(2π)3
v (k − k′) θ (kF − k′)

]
.
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7
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Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B+ ….

0th order

1st order

2nd order

✓ All topologically different diagrams contribute at a given order
✓ Physical processes can be associated to Feynman diagrams

Define reducible self-energy
(all diagrams without external legs)

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
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j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper
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√
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⎩
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⎭
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agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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∫
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G21
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m

(−i)m

m!
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dt1...
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[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t
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G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B

32

is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā
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at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c
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d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.
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translation (in the two-dimensional plane) of any of
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams

33

propagation lines).

d̄ h

c f̄

b

ī
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ā

g

ē
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. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h
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b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
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that
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where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)
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The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation
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ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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Multiplying by Xk†
f from the left, summing over f and renaming (f, d) to (a, b), one finally obtains the normalization condition

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂"ab(ω)
∂ω

∣∣∣∣
ωk

Xk
b, (A10)

where only the proper self-energy appears as a result of the energy independence of the auxiliary potential. Similarly, one can
derive a condition for Gorkov’s amplitude Y

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂"ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b. (A11)

APPENDIX B: DIAGRAMMATIC

1. Diagrammatic rules

A convenient way to express the expansion of the single-
particle propagator is via diagrammatic techniques. By giving
the interaction and the single-particle propagator a graphical
representation and by establishing a set of rules one can
generate diagrams that are in one-to-one correspondence with
the terms appearing in the expansion. As it provides an
immediate insight to physical processes associated with the
various contributions, the diagrammatic expansion is of great
help when choosing a suitable approximation. It is relevant
to discuss diagrammatic rules in some detail here given that
there exist differences compared to rules applicable to the
diagrammatic expansion involving normal contractions only.

In the present work, antisymmetrized interaction matrix
elements are represented by a dashed line labeled by four
single-particle indices,

V̄abcd ≡
c d

a b
. (B1)

Single-particle unperturbed propagators, i.e., Green’s func-
tions associated with the unperturbed Hamiltonian $U intro-
duced in Eq. (31), are depicted as solid lines labeled by two
indices and one energy flowing from the second to the first
index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (B2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (B2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (B2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (B2d)

One should notice that, as opposed to traditional graphical
representations of Dyson’s propagator, Gorkov’s propagators
carry two arrows specifying whether a given propagator
results from the contraction of two creation operators, of two
annihilation operators, or of one creation (annihilation) and
one annihilation (creation) operator.

With building blocks (B1) and (B2) one can construct, order
by order, the (diagrammatic) perturbative expansion for each
of the four Gorkov propagators (22). To obtain all terms of the
expansion at a certain order m and for one of the four Gorkov
propagators, the following rules are employed:

(i) Draw all topologically distinct connected direct dia-
grams with m horizontal interaction lines (with 4 single-
particle indices) and 2m + 1 directed propagation lines
(with 2 single-particle indices each, connecting the 4m
indices of the interaction and the 2 external ones).
Notice that exactly two incoming and two outgoing
lines must be attached to a given interaction vertex,
i.e., the left diagram in Fig. 6 is allowed while right
diagram is not. Topologically distinct diagrams cannot
be transformed into each other by any translation
(in the two-dimensional plane) of any of the vertices
without disconnecting or reconnecting propagation

c

a

d

b

c

a

d

b

FIG. 6. Allowed (left) and forbidden (right) interaction lines.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[
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†
b(t

′)
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|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
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In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
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Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā
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1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams

33

propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
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′) = −i
∞
∑

m

(−i)m

m!
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dt1...
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′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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†
b(t
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∞
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
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a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation
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where G(0) is the single-particle propagator in the unper-
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The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator
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= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
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is to be intended of the form (1), i.e. āx (ā†x). It follows
that
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The knowledge of G enables us to compute expecta-
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The equations of motion for the Green’s functions take
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particle propagator one can as well derive a perturbative
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agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
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A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
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k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as
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{
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}
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where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.

Dyson equation & self-energy

31

a set of gauge-angle dependent Gorkov calculations.

ACKNOLEDGEMENTS

We thank S. Baroni, K. Bennaceur, P. Bożek, A. Pas-
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑
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(−i)m
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∫

dt1...

∫

dtm ⟨Ψ0|T
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ΩI(t1)...ΩI(tm) ā†a(t) a
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b(t

′)
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|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B

31

a set of gauge-angle dependent Gorkov calculations.

ACKNOLEDGEMENTS

We thank S. Baroni, K. Bennaceur, P. Bożek, A. Pas-
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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functions associated with the unperturbed Hamiltonian
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second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:
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agrams with m horizontal interaction lines (with 4
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Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
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Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
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the vertices (without disconnecting or reconnecting
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b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
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∞
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†
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∞
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m
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dt1...
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dtm ⟨Ψ0|T
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ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
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′) = −i
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∑
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(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)
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′) = −i
∞
∑
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(−i)m

m!

∫
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∫
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∞
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
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b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)
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The knowledge of G enables us to compute expecta-
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ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take
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particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation
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The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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that
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)
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tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
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a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

✺ Dyson equation

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
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where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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Fig. 12.2. The two diagrams contributing to D(1) (see text)
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5. Integrate over all internal variables xi, x′

i.
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i, ti).

In Fig. 12.3 we plot all the diagrams for g up to second order. The contribution
of the two first-order diagrams is, according to the rules above,

−i
∫

g0 (x, x1) g0 (x1, x
′) g0 (x′

1, x
′
1) v (x1 − x′

1) dx1dx′
1

+i
∫

g0 (x, x′
1) g0 (x′

1, x1) g0 (x1, x
′) v (x1 − x′

1) dx1dx′
1 .

For translationally invariant systems the calculations are facilitated by
working in momentum-frequency space. This is achieved by expressing all
g(xν −xµ) and v (xi − x′

i) in terms of their Fourier transforms with respect to
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Fig. 12.3. Feynman diagrams for g of zero order (first line), first order (second
line), and second order (third, fourth, and fifth lines)

5′. Integrate over all internal independent four-momenta (with a factor 1/2π
for each single integration).

7′. Interpret each g0(k, ω) corresponding to a line starting from and ending at
the same point (or linked by the same interaction line) as being g̃<

0 (k, ω) =
2πiδ(ω − ε0

k)θ(kF − k).

According to the above rules, the contribution to g(q) from the first-order
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1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2
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2j1 + 1

, (A2)
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∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3
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2J + 1
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CJM
jmj−m = δM0 C
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CJM
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j6m6j8m8
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×
√
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×
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j4m4j1m1
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⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)
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⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)
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One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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∞
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∞
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†
b(t

′)
]

|Ψ0⟩C , (B1c)
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∞
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(−i)m

m!
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
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One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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that
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
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Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
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with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as
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where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation
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where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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Fig. 12.3. Feynman diagrams for g of zero order (first line), first order (second
line), and second order (third, fourth, and fifth lines)

5′. Integrate over all internal independent four-momenta (with a factor 1/2π
for each single integration).

7′. Interpret each g0(k, ω) corresponding to a line starting from and ending at
the same point (or linked by the same interaction line) as being g̃<

0 (k, ω) =
2πiδ(ω − ε0

k)θ(kF − k).

According to the above rules, the contribution to g(q) from the first-order
diagrams shown in Fig. 12.4 is

−i
∫

d4q′

(2π)4
g̃<
0 (q′) v(0)g0(q)g0(q) + i

∫
d4q′

(2π)4
g0(q)g0(q)g̃<

0 (q′) v (k − k′)

= g2
0(q)

[
v(0)

∫
d3k′

(2π)3
θ (kF − k′) −

∫
d3k′

(2π)3
v (k − k′) θ (kF − k′)

]
.
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B+ ….

0th order

1st order

2nd order

✓ All topologically different diagrams contribute at a given order
✓ Physical processes can be associated to Feynman diagrams

Define irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).
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b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper
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Mm3
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=
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⎩
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⎫
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⎭
, (A8)

⎧

⎨
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j6 j5 j4
j8 j7 0

⎫
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j3 j2 j1
j5 j6 j8

}
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One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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the following rules are employed:

1. Draw all topologically distinct connected direct di-
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connecting the 4m indices of the interaction and
the 2 external ones).
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Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).
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b

, (C3a)

c

a

d
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Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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tore, N. Pillet for...

Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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that
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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that
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(t, t
′) =

∫
dω

2π
e−iω(t−t′) Gab(ω) (12)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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Multiplying by Xk†
f from the left, summing over f and renaming (f, d) to (a, b), one finally obtains the normalization condition

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂"ab(ω)
∂ω

∣∣∣∣
ωk

Xk
b, (A10)

where only the proper self-energy appears as a result of the energy independence of the auxiliary potential. Similarly, one can
derive a condition for Gorkov’s amplitude Y

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂"ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b. (A11)

APPENDIX B: DIAGRAMMATIC

1. Diagrammatic rules

A convenient way to express the expansion of the single-
particle propagator is via diagrammatic techniques. By giving
the interaction and the single-particle propagator a graphical
representation and by establishing a set of rules one can
generate diagrams that are in one-to-one correspondence with
the terms appearing in the expansion. As it provides an
immediate insight to physical processes associated with the
various contributions, the diagrammatic expansion is of great
help when choosing a suitable approximation. It is relevant
to discuss diagrammatic rules in some detail here given that
there exist differences compared to rules applicable to the
diagrammatic expansion involving normal contractions only.

In the present work, antisymmetrized interaction matrix
elements are represented by a dashed line labeled by four
single-particle indices,

V̄abcd ≡
c d

a b
. (B1)

Single-particle unperturbed propagators, i.e., Green’s func-
tions associated with the unperturbed Hamiltonian $U intro-
duced in Eq. (31), are depicted as solid lines labeled by two
indices and one energy flowing from the second to the first
index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (B2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (B2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (B2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (B2d)

One should notice that, as opposed to traditional graphical
representations of Dyson’s propagator, Gorkov’s propagators
carry two arrows specifying whether a given propagator
results from the contraction of two creation operators, of two
annihilation operators, or of one creation (annihilation) and
one annihilation (creation) operator.

With building blocks (B1) and (B2) one can construct, order
by order, the (diagrammatic) perturbative expansion for each
of the four Gorkov propagators (22). To obtain all terms of the
expansion at a certain order m and for one of the four Gorkov
propagators, the following rules are employed:

(i) Draw all topologically distinct connected direct dia-
grams with m horizontal interaction lines (with 4 single-
particle indices) and 2m + 1 directed propagation lines
(with 2 single-particle indices each, connecting the 4m
indices of the interaction and the 2 external ones).
Notice that exactly two incoming and two outgoing
lines must be attached to a given interaction vertex,
i.e., the left diagram in Fig. 6 is allowed while right
diagram is not. Topologically distinct diagrams cannot
be transformed into each other by any translation
(in the two-dimensional plane) of any of the vertices
without disconnecting or reconnecting propagation

c

a

d

b

c

a

d

b

FIG. 6. Allowed (left) and forbidden (right) interaction lines.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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b

a
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b̄

a
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ab (ω) ≡ ↑ ω

b

ā
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G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B

����
����
����
������
�������	��
�����	

!"#$%&'()*+,$%

!"#$%&'()*+,$%-

!,*./*00*+,1*22"-

= + �� +

��

= + +��

��

��

��

��

��

���

��

��

��

+

����
����
����
������
�������	��
�����	

!"#$%&'()*+,$%

!"#$%&'()*+,$%-

!,*./*00*+,1*22"-

= + �� +

��

= + +��

��

��

��

��

��

���

��

��

��

+

����
����
����
������
�������	��
�����	

!"#$%&'()*+,$%

!"#$%&'()*+,$%-

!,*./*00*+,1*22"-

= + �� +

��

= + +��

��

��

��

��

��

���

��

��

��

+

����
����
����
������
�������	��
�����	

!"#$%&'()*+,$%

!"#$%&'()*+,$%-

!,*./*00*+,1*22"-

= + �� +

��

= + +��

��

��

��

��

��

���

��

��

��

+

����
����
����
������
�������	��
�����	

!"#$%&'()*+,$%

!"#$%&'()*+,$%-

!,*./*00*+,1*22"-

= + �� +

��

= + +��

��

��

��

��

��

���

��

��

��

+

����
����
����
������
�������	��
�����	

!"#$%&'()*+,$%

!"#$%&'()*+,$%-

!,*./*00*+,1*22"-

= + �� +

��

= + +��

��

��

��

��

��

���

��

��

��

+

����
����
����
������
�������	��
�����	

!"#$%&'()*+,$%

!"#$%&'()*+,$%-

!,*./*00*+,1*22"-

= + �� +

��

= + +��

��

��

��

��

��

���

��

��

��

+

����
����
����
������
�������	��
�����	

!"#$%&'()*+,$%

!"#$%&'()*+,$%-

!,*./*00*+,1*22"-

= + �� +

��

= + +��

��

��

��

��

��

���

��

��

��

+
R

Tuesday, November 9, 2010

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
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⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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that
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that
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation
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where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
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can be carried out by introducing the operator
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Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (17a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

a

c

d

b

ΣR
cd(ω) (18)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ⋆

cd(ω)Gdb(ω) (19)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
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where the operator T orders a and a† according to their
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The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation
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where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
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Dyson equation & self-energy

31

a set of gauge-angle dependent Gorkov calculations.

ACKNOLEDGEMENTS

We thank S. Baroni, K. Bennaceur, P. Bożek, A. Pas-
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper
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Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.
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(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

d

c

↑ ω b

↑ ω a

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

f

e

b

d

c

a

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

ē f

b

c̄ d

ā

, (C7)

f
c d̄

b

ā

ē . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.

✺ Perturbative expansion of one-body propagator

✺ Irreducible self-energy

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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ā
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ā
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With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]
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3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ ⟨1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f⟩

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc ⟨1:ā; 2:b|V NN |1:c̄; 2:d⟩ , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)

⟨Ô⟩ =
∑

ab

∫
dω

2π
Oab Gab(ω) (13)

Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)

⟨Ĥ⟩ = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (16)

where the operator T orders a and a† according to their
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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that
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that
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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Ô =
∑

ab

Oab a
†
a ab (14)

⟨T̂ ⟩ =
∑

ab

∫
dω

2π
tab Gab(ω) (15)
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āb̄c̄d̄ ≡ ηa ηb ηc ηd ⟨1:ā; 2:̄b|V NN |1:c̄; 2:d̄⟩ , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN

k |ΨN
k ⟩ (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ ⟨ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 ⟩ , (11)

Gab(ω) =

∫

d (t− t′) eiω(t−t′) Gab(t, t
′) (12)
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scribed by the Hamiltonian (2), denoted by |ΨN

0 ⟩, so-
lution of

H |ΨN
k ⟩ = EN
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with the lowest eigenvalue EN
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The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
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∞
∑

m

(−i)m

m!

∫

dt1...

∫
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†
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]
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|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
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Fig. 12.2. The two diagrams contributing to D(1) (see text)

1. Draw all topologically distinct connected diagrams with n interaction
(wavy) lines, two external points, and 2n + 1 directed g0 lines.

2. Label each vertex with a 4-d point xi ≡ ri, ti.
3. For each directed line starting from xν and ending at xµ write a factor

g0(xµ, xν).
4. For each interaction (wavy) line between xi and x′

i write a factor
iv (xi − x′

i).
5. Integrate over all internal variables xi, x′

i.
6. Multiply the expression by (−1)m, where m is the number of closed

fermion loops.
7. Interpret g0 (ri, ti, r′

i, ti) as being equal to g̃<
0 (ri, ti, r′

i, ti).

In Fig. 12.3 we plot all the diagrams for g up to second order. The contribution
of the two first-order diagrams is, according to the rules above,

−i
∫

g0 (x, x1) g0 (x1, x
′) g0 (x′

1, x
′
1) v (x1 − x′

1) dx1dx′
1

+i
∫

g0 (x, x′
1) g0 (x′

1, x1) g0 (x1, x
′) v (x1 − x′

1) dx1dx′
1 .

For translationally invariant systems the calculations are facilitated by
working in momentum-frequency space. This is achieved by expressing all
g(xν −xµ) and v (xi − x′

i) in terms of their Fourier transforms with respect to
the variables xν − xµ and xi − x′

i, respectively. Then the integration over the
internal variables xi can be performed explicitly giving δ-functions expressing
energy-momentum conservation at each vertex. Thus, in momentum space,
we have rules resulting from the previous ones by the following replacement:
2 → 2′, 3 → 3′, 4 → 4′, 5 → 5′, and 7 → 7′, where

2′. Label each line with a four-momentum q ≡ k, ω; conserve energy-
momentum at each vertex.

3′. For each directed line labeled with a four-momentum k, ω write a factor

g0 (k, ω) = lim
s→0+

1
ω − ε0

k + isε̄(ω − µ)
.

4′. For each interaction (wavy) line labeled by k, ω write a factor

iv(k) = i
∫

d3rv(r)e−ik · r .
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One finds again the Dyson equation

Dyson equation & self-energy

! Perturbative expansion of one-body propagator
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (32), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (21).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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3. Write down a V̄ (with the corresponding s.p. in-
dices) for each interaction line and a Gg1g2 (with
the corresponding s.p. indices and energy) for each
propagation line according to representation (C2).
If the energy ω flowing along the propagator has
the opposite direction than in definition (C2), the
corresponding term will be Gg1g2(−ω).

4. Write an overall factor im.

5. Write a factor 1/2 for each pair of equivalent prop-
agation lines, i.e. lines corresponding to the same
Gorkov propagator. This factor is due to the an-
tisymmetrization of the potential, i.e. to the fact
that exchanging the incoming lines of two interac-
tions connected by equivalent lines yields the same
diagram.

d h̄

c f

b

i

j

a

ḡ

e

(C10)

For example diagram (C6) has a pair of equivalent
lines, while diagram (C10) has none.

6. Write a factor 1/2 for each anomalous propagator
starting and ending on the same interaction. This
factor appears for the reason discussed point 5 and
applies e.g. to diagram (C7).

7. Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

8. Interpret equal-time propagators as

lim
t′→t

G11
ab(t, t

′) = G11
ab(0,−η) , (C11a)

lim
t′→t

G12
ab(t, t

′) = G12
ab(0,−η) , (C11b)

lim
t′→t

G21
ab(t, t

′) = G21
ab(0,−η) , (C11c)

lim
t′→t

G22
ab(t, t

′) = G22
ab(0,+η) , (C11d)

which implies that integrations over ω are per-
formed in the complex energy plane, either by clos-
ing the contour in the upper (C ↑) or in the lower

(C ↓) half plane as

∫

dωG11
ab(ω) →

∫

C↑

dωG11
ab(ω) , (C12a)

∫

dωG12
ab(ω) →

∫

C↑

dωG12
ab(ω) , (C12b)

∫

dωG21
ab(ω) →

∫

C↑

dωG21
ab(ω) , (C12c)

∫

dωG22
ab(ω) →

∫

C↓

dωG22
ab(ω) . (C12d)

When equal-time propagators appear the ordering
of the annihilation and creation operators must be
as in the starting Hamiltonian. Hence limits (C11a)
and (C11d) must be taken in opposite ways. Since
the operators in G12 and G21 anticommute the re-
maining two limits can be arbitrarily interpreted,
as long as they are taken in the same way.

9. Sum over all internal single-particle indices and in-
tegrate over all internal energies. The external in-
dices and energy refer to the Gorkov propagator
being expanded.

Once the expansions of the four single-particle Gorkov
propagators are written down, one can derive the corre-
sponding expansions for the self-energies simply by strip-
ping off the external propagation lines, i.e. for example to
the term (C13a) corresponds the self-energy contribution
(C13b):

, (C13a)

d f

c e
↓ ω′ . (C13b)

All self-energy contributions can be divided into two
types: reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that can not
be separated into two parts by cutting one propagation
line. For example diagram (C4) is reducible while dia-
gram (C6) is irreducible. Irreducible contributions can
be further divided into skeleton and composed diagrams.
Skeleton (composed) self-energies are obtained by keep-
ing, at each order, only the terms that can (can not)
be generated by successive insertions of irreducible self-
energy terms of lower order. At first order all diagrams
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propagation lines).

d̄ h

c f̄

b

ī

j

ā

g

ē

, (C4)

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

, (C5)

. (C6)

For example second-order diagrams (C4) and (C5)
are topologically equivalent, while diagram (C6) is
not.

Connected diagrams are diagrams in which each
interaction line is attached to at least three distinct

propagation lines.

e f

a

c d

b

, (C7)

f
c d

b

a

e . (C8)

For example first-order diagram (C7) is connected
while first-order diagram (C8) is disconnected.

For a given diagram, exchange diagrams are de-
rived by exchanging two propagation lines of one
or more interaction lines. For each set of diagrams
obtainable one from each other by means of such
exchange, one should retain only one representative
diagram, arbitrarily chosen and denoted as direct,
and discard all the remaining ones.

d h

c f̄

b

i

j

ā

g

ē

, (C9)

For example if one considers diagram (C6) as direct
(the choice of the present work) it follows that one
must discard diagram (C9).

In cases where it is unclear whether diagrams are
topologically distinct, one can always resort to a
direct application of Wick’s theorem.

2. Assign an energy to all propagation lines such that
the energy in each interaction is conserved (the en-
ergy that enters a vertex must be equal to the en-
ergy that exits). As a result, an m-order diagram
will have m internal energies and the incoming ex-
ternal energy will be equal to the outgoing external
one.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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tore, N. Pillet for...

Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
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′)] |Ψ0⟩C , (B1b)

G21
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) a
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Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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a set of gauge-angle dependent Gorkov calculations.
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H
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= v (33)

G
(0)
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4n variables

) =
X

permutations

(�1)P G(0)(1, 1̃0) · · ·G(0)(2n, 2̃n
0
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2n one-body GFs

(34)

G =
X

n

X

connected

G(0) · · ·G(0) · · ·| {z }
2n+1propagators
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n interactions

(35)

H = H
0

+H
1

(36)

G(1, 2) = G(0)(1, 2) +

Z
d3 d4G(0)(1, 3)⌃⇤(3, 4)G(4, 2) (37)

Partial sums or skeleton vs. composed diagrams

➟ Self-energy can be built with dressed propagation lines;!
    one then keeps only skeleton diagrams   ➟   self-consistency

E.g. will be generated by the self-energy term

dressed propagator

Dyson equation



Dyson equation
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Z
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Dyson equation is exact

…the game is now to choose a suitable approximation for the self-energy.

Having in mind the (composed irreducible) self-energy expansion, !
one can choose to select only certain general classes of diagrams:

1) With polarisation parts inserted in interaction lines
➟ dressed or effective or renormalised interactions

2) With self-energy parts inserted in propagator lines
➟ dressed or renormalised propagators

3) With (irreducible) vertex parts inserted in place of a vertex
➟ dressed vertices



𝛷-functional
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ϕ-derivability

‣ there exists a class of approximations which automatically fulfills thermodynamic 

   constraints [Baym & Kadanoff ’61, ‘62]

‣ Hartree-Fock, second order, T-matrix belong to this class

22 The nuclear many-body problem

⟨Hpot⟩ =
∑

n

1

4

[
... − ...

]

=
1

2

[

T − T

]

Figure 1.7: Interaction energy; n represents the number of interaction lines in each
diagram.

body system. They are connected to the grand-canonical partition function, which
can be constructed in terms of diagrams that contain the single-particle propagator
and from which one can obtain all the thermodynamic observables at the equilibrium.

There are various methods of deriving the partition function from G. They are
all equivalent in the exact theory, but they might lead to different results when an
approximation for the two-body Green’s function is used. This inconsistency is then
reflected into the thermodynamic observables when they are calculated as derivatives
of the partition function with respect to the thermodynamic parameters.

The problem was addressed by Baym and Kadanoff [45, 46] who proved that there
exists a class of approximations which automatically fulfill all the consistency require-
ments. These approximations are related to the existence of a closed functional of the
single-particle propagator G and the potential V , indicated by Φ[G, V ], from which
the self-energy Σ[G, V ] must be derived according to

Σ(1, 1′) =
δ Φ[G, V ]

δ G(1, 1′)
. (1.62)

The functional Φ is directly connected to the logarithm of the partition function, which
at the equilibrium can be identified with the grand-canonical potential Ω, as follows5

Ω = −tr{ln[G−1]}− tr{ΣG} + Φ . (1.63)

In Ref. [46] general prescriptions for constructing Φ are outlined. The Hartree, the
Hartee-Fock and the T-matrix are all Φ-derivable approximation. In Fig. 1.8 we show
the diagrammatic expansion of Φ in the T-matrix case. The series is similar to the
one for the interaction energy (Fig. 1.7), differing only by a factor 1/n in front of each
diagram.

This is in principle all we need in order to compute all other thermodynamic properties

5A standard alternative method of calculating the partition function is to integrate the expectation
value of the potential energy (1.58) with respect to a varying coupling constant.

[ Baym, Phys. Rev. 127 (1962) ]

There exists a class of self-energy approximations that automatically fulfil!
basic conservation laws (number of particles, momentum, energy…).

The condition is the existence of a functional Φ of G and v, such that

Common approximations like Hartree, Fock, 2nd order, T-matrix are Φ-derivable

[Baym & Kadanoff 1961, 1962]

Φ-functional
self-energy



Approximations to the exact self-energy

Hartree       -       Fock

2nd order

➟ Hartree: particles in a common potential, !
    contains unphysical self-interaction
➟ Fock: removes self-interaction

➟ Next term in the renormalisation of the propagator
➟ Introduces leading dynamical correlation

➟ Account for static correlations
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[Somà et al. unpublished]



Approximations to the exact self-energy

pp/hh T-matrix or ladder

or

➟ Contains an infinite number of diagrams

+ exchanges

Electronic systems
➟ Works well at low densities, i.e. close to completely filled or empty bands
➟ Extensively used in Hubbard models

Nuclear systems
➟ Treats the repulsive short-range part of nuclear interactions
➟ Method of choice for nuclear matter (self-consistency obligatory for high densities)

[Galitskii 1958; …]

➟ Applications to finite nuclei very demanding

➟ Resums contributions relevant at low-density and in strongly-interacting systems
➟ Quality decreases at high density as screening becomes important



Random Phase Approximation (RPA) or ring ladder or ph ladder 

Tamm-Dancoff

RPA

[Bohm & Pines 1951, 1952; Gell-Mann & Brueckner 1957; …]

In RPA Pauli correlations are partially neglected, but one assumes that missing!
corrections cancel each other randomly.

➟ Expansion for the polarisation propagator

Approximations to the exact self-energy



Approximations to the exact self-energy

GW

=�

+ …�
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RPA can be applied to resum an interaction (typically electron-electron) in the medium

Lindhard function 
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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➟ Accounts for screening effects
➟ For electrons only Fock term in GW (Hartree ➝ constant electrostatic repulsion)
➟ Different degrees of self-consistency

GWGW0G0W0



Approximations to the exact self-energy

GW

GW approximation can be formally derived from Hedin pentagon of equations

Chapter 3

P̃ (1, 2) = �i

Z

d(34)G(1, 3)G(4, 1+)�(3, 4, 2) (3.14)

to be solved iteratively. Here 1+ = (r
1

, �
1

, t
1

+ �) where � is a positive infinitesimal. The
equations involve G, ⌃, the irreducible polarizability P̃

P̃ (1, 2) =
�n(1)

�U(2)
=

�n(1)

� (Vext(2) + VH(2))
,

the screened Coulomb interaction W , the vertex function

�(1, 2, 3) = ��G�1(1, 2)

�U(3)
= �(1, 2)�(1, 3) +

�⌃(1, 2)

�U(3)
,

and the independent-particle Green function G0. Defined the time-ordered dielectric
function as

"(1, 2) = �(1, 2)�
Z

d3v(1, 3)P̃ (3, 2), (3.15)

the screening equation (3.13) becomes W = "�1v, linking the screened to the bare
Coulomb interaction.
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G=G 0
+G 0 

Σ G
Γ

=1
+(
δΣ

/δ
G

)G
G
Γ

P = GGΓ

W
 = v + vPW

Σ = GWΓ

In order to solve Eq.s (3.10-3.14), one possi-
ble strategy could be to start from the top of the
pentagon, with ⌃ = 0, and obtain in the order:
the Green function G (at this step the Hartree
independent-particle G0), the vertex function (only
a delta function), the polarizability (at this step it
is the independent-particle polarizability P 0 or Ran-
dom Phase Approximation (RPA) polarizability9),
the screening (which corresponds to the RPA screen-
ing WRPA = W 0), and the self-energy ⌃ = iG0W 0

which now has been updated. In principle this pro-
cess should continue until self-consistency is reached.
But in practice, a full self-consistent resolution of the Hedin’s equations has never been
pursued.

Instead, real calculations usually stop once obtained the ⌃ = G0W 0 (i.e. after one
round), or search for the self-consistency of a reduced set of equations, short-cutting the
vertex function. These approximations are called non-self-consistent and self-consistent
GW approximations (GWA), respectively.

9This is a definition of the Random Phase Approximation for the polarizability, i.e. the P = �iG0G0

shape. The connection with the original diagrammatic bubble expansion [114, 115], or even with lin-
earized time dependent Hartree [143] is done via the formal use of a product of two one-particle Green
functions. From now on, and throughout the thesis, the RPA polarizability will be considered of the
form P = �iG0G0.
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[figure from F. Sottile, PhD thesis 2003]

[Hedin 1965]

𝛤 = vertex function
P = polarisability
W = screened interaction

G = single-particle GF
𝛴 =self-energy
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GW

Green functions approach

3.1.3 Real calculations and GWA

Standard GWA

The GW approximation (GWA) consists, hence, in short-cutting the Hedin’s pentagon,
avoiding the calculation of the vertex function � set to a delta function

�GWA(1, 2, 3) = �(1, 2)�(1, 3).

In practical calculations, one needs a starting point for the independent-particle Green
function G0 that is more realistic than the Hartree one. A good choice can be represented
by the solution of the KS equations.10 Once G0 has been obtained, the (independent-
particle) polarizability P 0, the (RPA) screening W 0 and the self-energy ⌃GW become

P 0(1, 2) = �iG0(1, 2)G0(2, 1+)

W 0(1, 2) = v(1, 2) +

Z

d(34)v(1+, 3)P 0(3, 4)W 0(4, 2)

⌃(1, 2) = iG0(1, 2)W 0(1+, 2).

(3.16)

This self-energy ⌃GW = G0W 0 can be used to calculate the quasi-particle energies, via
the quasi-particle equation (3.2). The similarity of (2.9) and (3.2) suggests to treat the
di↵erence of the self-energy and the KS potential as a perturbation. In fact it has turned
out that the quasi-particle wavefunctions and the KS-LDA ones are similar, at least for
many simple bulk materials.11 This leads, in first order, to the quasi-particle energies:

Ei
*

= ✏i +
⌦

�LDA

i

�

� ⌃(Ei
*

) � V LDA

xc

�

��LDA

i

↵

where the ✏i represent the KS eigenvalues. One can see that the quasi-particle energies
appear also as argument of the self-energy. What is usually done, in this so called “stan-
dard GW approximation”, is to expand (with Taylor) at the first order the ⌃(Ei), around
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in order to find the GW corrections (to first order) with respect to the KS energies
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10Caution: the DFT-LDA wavefunctions are eigenstates of a system of independent particles, but
where exchange and correlation e↵ects are partially (i.e. within the local density approximation) taken
into account by the V LDA

xc . While in the definition of G0, by (3.7), all these e↵ects (⌃ = 0) are zero.
So, if DFT-LDA wavefunctions are used to build the independent-particle Green function, for example
the spectral function A(!) has to be rewritten as A(!) = 1
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consequence of the fact that G = G0 + G0(⌃� V LDA

xc )G should replace Eq. (3.8).
11E.g. in silicon
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> 0.999. For details and discussions, see Ref.s [144, 145].
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GW approximation can be formally derived from Hedin pentagon of equations

[figure from F. Sottile, PhD thesis 2003]

Green functions approach

Plasmon-pole model

Another approximation that is often used concerns W . In the calculation of W = "�1v,
the inverse dielectric function is a frequency dependent matrix. The so called plasmon-pole
model [145, 169–171] consists in substituting the frequency dependence of the imaginary
part of every element of the matrix with just a narrow Lorentzian peak, which is related
to the plasmon excitations of the system, since �={"�1} is the loss function. Using the
Kramers-Kronig relations, the resulting dielectric function is, then, in reciprocal space,

"�1

G,G0 = �GG0 +
⌦2

GG0(q)

!2 � !̄2

GG0(q)

where ⌦ and !̄ are parameters giving the strength and the position of the poles, re-
spectively. They can be obtained, for example, using the static screening and sum rules
[144] or fitted to a full calculation along the imaginary energy axis (we use the latter
option). The e↵ects of this approximation have been discussed in Ref. [172]. For the
results contained in this thesis, we always have made use of this approximation for all
GW calculations.

Self-consistent GWA

In order to go beyond the first order expression (3.17), another possibility to calculate
the quasi-particle energies but also the quasi-particle wavefunction is to perform a self-
consistent resolution of the set of Eq.s (3.16) plus the Dyson equation for the Green
function.

Σ

G

ΓP

W

G=G 0
+G 0 

Σ G
Γ

=1
+(
δΣ

/δ
G

)G
G
Γ

P = GGΓ

W
 = v + vPW

Σ = GWΓ

P = GG

This coincides with a short-circuit of the Hedin’s pentagon,
as shown in the scheme, but it is of course, computation-
ally much more cumbersome than the “standard” not self-
consistent GWA.

Some examples of self-consistent GW calculations can
be found in Ref.s [173, 174] for semi-conductors,13 but, in
these works, the results turned out to be worse than those
of the non self-consistent calculations, at least concerning
the quasi-particle energies (often the quasi-particle gap is
overestimated) or the spectra. Improvements due to the
self-consistency can be found, instead, for the description

of total energies [178–180]. This is partially explained with the fulfilling of certain sum
rules [129, 181–183] (conservation of number of particles, conservation of the total mo-
mentum) by the self-consistent GW scheme, which are instead not fulfilled by the non
self-consistent GWA. Then, why does the latter work better than the self-consistent GWA

13Previous self-consistent GW calculations, on the homogeneous electron gas, have also been performed,
see [175–177].
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Iterate all three + Dyson equation

G0W0

GW

[Hedin 1965]

➟ Works well in the high-density regime where screening is important
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How to go beyond ladder-type or GW resummations? 

To extend the domain of applicability one has to combine different correlation channels

Simply summing the two would not work

+ ?

➟ double-counting of second-order diagram
➟ interference terms missing

avoided by starting ladders from 3rd order only   ➟   FLEX [Brickers et al. 1989]



Approximations to the exact self-energy

In general, one needs to consider the full 2p1h / 2h1p propagator R

g2p1h-1p�

α� β� γ�

g1p-2p1h�

 µ� ν� λ�

α� β� γ�

 µ� ν� λ�

g2p1h�

α� β� γ�

 µ� ν� λ�

  R(2p1h/2h1p)�  =� -�where

propagation of three excitations Dyson equation!
takes care of this

R obeys the following (Bethe-Salpeter) equation

+ +

+ +
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Parquet theory

Σ += +    ...

+

+

+

+

+ +    ...

+    ...

+    ... +    ...+

+ +    ... + +    ...

Figure 8: The self energy diagrams generated by the Parquet method. All contributions to the fourth
order are explicitly drawn. The propagators are dressed propagators.

34

[Diatlov et al. 1957; Jackson et al. 1982; Bergli & Hjorth-Jensen 2010]

➟ Couples pp/hh and ph ladders on equal footing

✓ Mainly proof-of-principle applications



Approximations to the exact self-energy

Faddeev RPA (F-RPA) [Barbieri & Dickhoff 2001; Barbieri, Van Neck & Dickhoff 2007]

➟ Strategy is to solve each pp/hh and ph channel separately, then couple to a third line!
    and mix the corresponding amplitudes

➟ All-order summation through a set of Faddeev equations

✓ Realistic applications to nuclei, atoms and molecules
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Algebraic Diagrammatic Construction (ADC) [Schirmer, Cederbaum & Walter 1983]

➟ Exact summation of the self-energy reformulated into a simple algebraic form

➟ ADC(n) includes complete n-th order (dressed) perturbation theory diagrams for G

➟ Results in Hermitian eigenvalue problems within limited spaces of N±1 systemsNEW APPROACH TO THE ONE-PARTICLE GREEN'S FUNCTION. . . 1243

ADC(2$) ,'ADC(4, 5)i
I
I I

Ip/Ih- 2p-1h 2h-1p I 3p- 2h 3h-2p

e.+Z(~) u Ull U U

(K+c)

(K+C)

(K+C)

FIG. 2. Second-order time-ordered (Goldstone) dia-
gram for the self-energy part M'(co ).

FIG. 1. Structure of the eigenvalue problem [Eq. (38)]
for the one-particle Green's function in the ABC ap-
proach. Note that there is no direct coupling between
(n + 1)p-nh excitations of the (N+ 1)-particle system and
(m + 1)h-mh excitations of the (N —1)-particle system for
m, n) 1.

configuration space, however, is defined by all 2h-lp
excitations

(j,k, l), with nznkni= 1 and k &I . (41b)

~e note that in the strict second-order scheme the
modified interaction matrix C vanishes. A straight-
forward extension can be obtained by employing the
first-order expressions for C which, strictly speak-
ing, are derived within the third-order scheme dis-
cussed below:

V V*.pj[kl] qj[kl]
Mpq njnknl .

jk&i ~+~j ~k
(39)

This expression fits trivially into the algebraic form
of Eq. (34) yielding

~(&)+jkl, j'k'1' jkl, j'k'I'

(&)
Cjkl, j'k'I' Cjkl, j'k'1

(428)

(42b)

(&)
Up jkl = Up jkl = Vpj[kl]

+jkljkl ~j +~k +~l
(40a)

(40b) +(k~l) . (42c)

(&)
Cjkl j k I = 5jj Vkl[k I ]—(5kk Vj l[jl ]+511Vj k[jk ])

Cjkl, j'k'I' (40c)

The configuration space is spanned by the 2p-lh ex-
citations

(j,k, l), with njnkn~ ——1 and k &1.
For case II the resulting expressions for K, Up, and
C are formally given also by Eqs. (4Qa)—(4Qc). The

I

The resulting approximation scheme for the self-
energy part M(co) is identical with the two-particle-
hole Tamm-Dancoff approximation (2p-h—TDA)
mentioned in Sec. I.
So that we may construct the third-order ADC

equations, we expand the algebraic form of Eq. (34)
to third order:

M~(co;3) =~U(3)[ni][—K—C(3)] '~U(3)

+ U' "t[co1 L] 'C' "[ni][—K] '—U"'+ 0(4)
I

(43)

This expansion starts with the second-order contri-
bution which has already been considered. Since Up
is at least of first order, the three third-order contri-
butions on the right-hand side of Eq. (43) involve
the second-order terms Up

' and the first-order term
C'". These quantities have to be determined by
comparison with the third-order contribution in the

diagrammatic perturbation expansion for M'(co) or
Mt (ni), respectively. In Fig. 3 the third-order dia-
grams contributing to Mr(co ) are shown. The corre-
sponding analytical expressions have been given else-
where. The diagrams C1,D1 are easily identified
with the last third-order teria of Eq. (43). This
determines C'". The diagrams C3,D3 and C2,D2

✓ Realistic applications to nuclei, atoms and molecules
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FIG. 2. Gorkov ADC(3) diagrams of class B

C33 C32 C31

C23 C22 C21
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FIG. 3. Gorkov ADC(3) diagrams of class C

Notes on Gorkov ADC(3) formalism
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We extend Gorkov-Green’s function formalism to the algebraic diagrammatic construction scheme
at third order [ADC(3)].

I. INTRODUCTION

There are 17 topologically distinct diagrams contribut-
ing to Gorkov ADC(3), all containing three interaction
lines. One interaction line is always connected to the in-
coming propagator, another one to the outgoing propaga-
tor. The diagrams can be then divided into three classes
depending on the nature of the intermediate interaction
line (not connected to any external line):

• Class A (intermediate “particle-particle1”)

• Class B (intermediate “hole-hole”)

• Class C (intermediate “particle-hole”)

We can further label a diagram according to the posi-
tion of the “hole” line (first from the left, second or third)
in the top and bottom interaction respectively, i.e. each
diagram will be denoted with Xij , where X ∈ {A,B,C}
and {i, j} ∈ {1, 2, 3}. In Figs. 1, 2 and 3 diagrams of
class A, B and C respectively are displayed.

1
4

A33

1
2

A32 = A31

1
2

A23 = A13 A11 = A22 = A12 = A21

FIG. 1. Gorkov ADC(3) diagrams of class A
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1 In Dyson language.
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Unified ladder-GW approach [Romaniello, Bechstedt & Reining 2012]

➟ Link between T-matrix and Hedin equations

➟ Keeping 𝛯 = vc leads to GW scheme

✓ First applications promising

BEYOND THE GW APPROXIMATION: COMBINING . . . PHYSICAL REVIEW B 85, 155131 (2012)

FIG. 2. (Color online) Schematic representation of the physical contents of GW (a), pp T matrix (b), and eh T matrix for particles with
collinear spins.

becomes

!(11′) ≈ vH + !x + ivc(12)ϵ−1(72)G(13)

×
[
δ!(31′)
δG(45)

G(47)G(75)
]

. (26)

Note that this is the same equation as Eq. (4), but now with
W = ϵ−1vc replacing the bare Coulomb interaction under
the integral. This leads to a screened matrix O: !(11′) =
G(42)Opp

s (12; 1′4), with O
pp
s = O

pp
s,1 + O

pp
s,2 and

O
pp
s,1(12; 1′4) = −ivc(12)δ(11′)δ(42)

+ iW (12)G(13)G(25)Opp
s,1(35; 1′4), (27)

O
pp
s,2(12; 1′4) = ivc(12)δ(14)δ(1′2)

+ iW (12)G(13)G(25)Opp
s,2(35; 1′4). (28)

In principle, one could include also a nonlocal part of the
exchange-correlation self-energy, but the equations become
more involved.

As for the T matrix, also for the screened version one has
O

pp
s,2(12; 1′4) = −O

pp
s,1(12; 41′). Similarly, one can derive the

electron-hole screened T matrix, which looks like Eqs. (9) and
(10) with W replacing the bare Coulomb potential in the last
term on the right-hand side. When ϵ−1 = 1, and, hence, W =
vc, this version of the screened T matrix reduces to the one
of Refs. 17 and 56. Note that the Hartree and exchange parts
remain unscreened, which is in net contrast with other versions
of the screened T matrix reported in the literature.12,34–39

It is interesting to take the screened T -matrix equation in
its first iteration: In this case, the self-energy (particle-particle
version) becomes

!
pp,(1)
s,1 (11′) = δ(11′)vH (1) + iW (12)G(11′)vc(1′4)L0(24),

(29)

!
pp,(1)
s,2 (11′) = !x(11′) − W (12)G(14)vc(41′)G(21′)G(42),

(30)

with L0(24) = −iG(24)G(42). The electron-hole screened T
matrix produces the same self-energy as the particle-particle
screened T matrix in its first iteration, as in the case of the
T -matrix approximation. Moreover, the resulting self-energy
is exact to second order in the Coulomb interaction.

In the RPA, W (12)vc(1′4)L0(24) = [vc + vcL0vc/(1 −
L0)vc]L0vc = W − vc. The sum of !1 and !2 yields, hence,
GW, plus the last term of !2. In Fig. 3 we report the
diagrammatic representation of this self-energy: The first
two diagrams represent the Hartree and GW contributions,
respectively, whereas the last one is a term corresponding
to the second-order screened exchange (SOSEX). The latter
contribution is becoming popular as correction to RPA in order
to produce accurate results in the description of electronic
correlation in atoms and solids.57

We, hence, can conclude that GW is contained in this
screened T -matrix approach, which, moreover, contains
promising higher-order terms. In literature other versions of
the screened T matrix12,34–39 are proposed which are combined
with the GW approximation to get the total self-energy.
However, since some of the terms in the T matrix are already
contained in the GW approximation, care must be taken
to avoid double counting. In our formulation, instead, the
screened T matrix naturally contains GW ; there is, hence,
no need to add ad hoc corrections.

Because of the appearance of both vc and W , the screened
T -matrix approximation of Eqs. (27) and (28) does not fulfill
some symmetry conditions to be fully conserving, unlike self-
consistent GW and (unscreened) T matrix.17 For example, the
momentum conservation law is violated.

FIG. 3. Diagrams corresponding to the self-energy obtained with the first iteration of the screened T matrix I. The diagrams, from left to
right, represent the Hartree, GW , and second-order screened exchange (SOSEX) terms, respectively. Note that in the GW term we collapsed
the two terms that for ϵ−1 = 1, i.e., W = vc, reduce to the second and first diagrams of !

pp/eh
1 and !

pp/eh
2 , respectively, of Fig. 1.
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matrix. These screened T matrices indeed require appropriate
double counting corrections to keep the second-order terms
exact and to avoid negative spectral functions. Therefore,
in the following we present a unified framework that links
GW , GW!, and T matrix. This allows us to address several
questions, in particular, What is the origin of, and link between,
the particle-particle and the electron-hole contributions to the
T matrix? How do we get a screened version of the T matrix?
How do we translate the physical content of the T matrix into a
vertex correction? These questions will be answered in Sec. II.
In Sec. III we will then apply the T matrix to the Hubbard
molecule at 1/4 and 1/2 filling. This system allows us to
compare the T matrix, GW , and the exact results, and, hence,
to illustrate the performances of the different approximations.
Conclusions are given in Sec. IV.

II. A UNIFIED FRAMEWORK

In order to use a common language for GW! and T
matrix, we start from the following exact expression for the
self-energy:

"(11′) = −ivc(1+2)G2(12; 32+)G−1(31′), (1)

where (1) = (r1,σ1,t1), (1+) = (r1,σ1,t
+
1 ) with t+1 = t1 + δ

(δ → 0+) describe space, spin, and time coordinates, and
integration over indices not present on the left is im-
plicit throughout the paper. By adding a perturbing poten-
tial Uext and using the relation G2(12; 32+; [Uext])|Uext=0 =
G(13)G(22+) − δG(13)

δUext(2) |Uext=0,40 Eq. (1) can be written as

"(11′) = vH (1)δ(11′) − ivc(1+2)G(13)
δG−1(31′)
δUext(2)

∣∣∣∣
Uext=0

, (2)

where δG
δUext

= −G δG−1

δUext
G is used. Here vH (1) =

−iv(1+2)G(22+) is the Hartree potential and the second
term on the right-hand side defines the exchange-correlation
contribution to the self-energy, "xc. With the help of the
Dyson equation for G, Eq. (2) can be further rearranged as

"(11′) = vH (1)δ(11′) + "x(11′) + ivc(1+2)

×G(13)%(35; 1′4)L(42; 52+), (3)

with "x(11′) = iv(1+1′)G(11′), %(35; 1′4) = δ"(31′)
δG(45) the ef-

fective interaction, and L(42; 52) = δG(45)
δUext(2) |Uext=0 the time-

ordered “response” of the system to an external perturbation
Uext. This way of writing the self-energy directly displays the
physics behind it, i.e., the description of a particle interacting
with the system: The particle can scatter against the density of
the system (Hartree term), it can exchange with another particle
of the system (exchange term), and it can do something to the
system (last term), i.e., it can have an effective interaction with
the system (%), the system responds (L), and the particle feels
this response through the Coulomb interaction (vc).

There are two essential ingredients in Eq. (3): The ef-
fective interaction %(35; 1′4) and the response of the system
L(42; 52). Combining approximations to % and to L, various
approximations to the self-energy can be created. In situations
where the screening is important, one should make an effort
to obtain a good L, whereas in situations where the quantum
nature of the interaction is important,41 one would concentrate

on %, although L and % are, of course, in principle, linked
through the Bethe-Salpeter equation33 and one might wish to
keep them approximately consistent.

A. How to get GW

Neglecting the variation of "xc in %, i.e., keeping only
the classical interaction vc, one obtains "xc(11′) = "x +
ivc(12)G(11′)vc(1′4)χ (42), with χ (42) = −iL(42; 42) the
time-ordered response function. Hence, one gets a screening
contribution with respect to "x : This is the GW form, with
W = vc + vcχvc. At this stage it has not been specified yet
how to calculate the screening: Different approximations
to the screening will give the various GW flavors (e.g.,
GWRPA, with W within the random-phase approximation, and
beyond).42 If one keeps an approximate "xc in % one goes
beyond GW and includes vertex corrections. For example,
approximating "xc by the exchange-correlation potential of
DFT, vxc, one gets "xc(11′) = "x + ivc(12)G(11′)[vc(1′4) +
fxc(1′4)]χ (42), where fxc = δvxc

δρ
; this leads to "xc = iGW!

with an approximate vertex function ! = 1 + fxcP , where
P = iGG! is the irreducible polarizability and we used
χ = P + Pvcχ .43

B. How to get the T matrix

One could also use the rough approximation L(42; 52) =
−G(47) δG−1(78)

δUext(2) G(85) ≈ G(42)G(25) but concentrate on a
clever approximation for %. This modifies the exact self-
energy (3) as

"(11′) ≈ vH (1)δ(11′) + "x(11′) + ivc(12)

×G(13)
[
δ"(31′)
δG(45)

G(42)G(25)
]

. (4)

1. An effective four-point interaction O

An appropriate approximation for the functional derivative
on the right-hand side of Eq. (4) still remains to be found. One
can introduce an effective four-point interaction O such that,
similarly to GW,

"(11′) = G(42)O(12; 1′4). (5)

Note that Eq. (5) is closely related to the expression of the
self-energy within the T -matrix approximation as given, e.g.,
by Kadanoff and Baym [see Eq. (56) in Ref. 17], which is the
goal of this derivation. However, at this stage, O is not yet the
T matrix. Since G(42)O(12; 1′4) cannot be inverted to find
O, several choices of O make the correct ".44 First, note that
in Eq. (4) there are direct and exchange terms. Therefore, it
is convenient to divide the self-energy as " = "1 + "2 and,
consequently, O = O1 + O2 with

O1(12; 1′4) = −ivc(12)δ(11′)δ(42) + ivc(12)

×G(13)
[
δ"1(31′)
δG(45)

G(25)
]

, (6)

O2(12; 1′4) = ivc(12)δ(21′)δ(41) + ivc(12)

×G(13)
[

δ"2(31′)
δG(45)

G(25)
]

. (7)
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➟ Good agreement between all methods

Oxygen benchmark

Several ab initio methods recently addressed the oxygen chain

➟ Same input Hamiltonian (NN+3N)

Oxygen dripline in ab-initio calculations

Oxygen dripline including chiral NN+3N forces correctly reproduced
confirmed in ab-initio calculations by different approaches,
treating explicitly all nucleons as degrees of freedom
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➟ Excellent agreement with CCSD calculations

Nuclear matter benchmark

Infinite matter: self-consistent T-matrix.

CORRELATED DENSITY-DEPENDENT CHIRAL FORCES . . . PHYSICAL REVIEW C 90, 054322 (2014)

results are obtained in a perturbative many-body calculation
up to second order [21,62]. The band in all three cases reflects
the uncertainty associated to the LECs.

The width of the band is indicative of the systematic
uncertainties in the calculations. We observe that in all cases
the spread in results due to theoretical uncertainties in the
LECs ranges from less than 1 MeV at subsaturation densities
to about 4 MeV at ρ0. As expected, the error band increases
with density and at 2ρ0 the width becomes almost 10 MeV
wide. Error quantification is one of the major advantages of
chiral EFT-based potentials.

A complete error propagation scheme should also consider
variations on regulators and cutoff constants [29,30]. Whereas
a systematic study lies beyond the scope of our analysis, we
note that the agreement between the results based on a bare
2NF and a SRG-evolved force indicates that these additional
error sources are not significant up to about saturation density.
Looking at Fig. 10, we indeed observe that all three bands
overlap very well up to saturation density, confirming results
already presented in Ref. [60]. In this sense, the theoretical
uncertainties in the neutron-matter equation of state are well
under control. This agrees with indications from perturbative
calculations [21,29,30]. If we now turn to double saturation
density, the difference between the dashed line and the full
band is about 5–7 MeV wide. The fact that this is smaller than
the total width of the band pushes towards the idea that the
uncertainty in the LECs dominates the error of the many-body
calculations at high densities. However, other sources of error
must be investigated, such as missing three- and four-body
forces at higher order in the chiral expansion, as well as missing
induced forces in the SRG-evolved calculation. Furthermore,
the variation of c1 and c3 should be consistently considered in
both the 2B and 3B sector [30].

Finally, we present a series of results to discuss the
consistency within the chiral expansion associated to the
many-body results. We note that from this point on we do
not provide any error analysis. To be consistent in the order
of the chiral expansion, and following our previous study in
SNM [26], we perform PNM calculations at N2LO using the
newly optimized N2LOopt 2NF of Ref. [47]. We construct a
corresponding density-dependent 2NF associated to the N2LO
3B interaction with the corresponding c1 and c3 constants. This
density-dependent force is obtained from a fully correlated
and regulated average. The results obtained with 2NF only
and with the density-dependent 2B forces are presented in
Fig. 11.

We find that whether or not we include density-dependent
2NFs, results obtained with N2LOopt are more repulsive than
the N3LO calculations throughout the whole density regime.
In the 2B only case, the repulsion is around ∼2 MeV at
ρ0 = 0.16 fm−3 and grows with density, up to ∼10 MeV at
2ρ0. When the 3B force is included, the difference between the
N2LO and N3LO results is a bit larger. At the highest density
considered here, a repulsive effect of ∼15 MeV is found. We
note, however, that the effect of including 3NFs is very similar
in both cases. This is indicative of the similarity between
the density-dependent 2B forces at N2LO, which are only
modified by (a) a change in the LECs and (b) the differences in
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FIG. 11. (Color online) PNM energy per nucleon as a function
of density at T = 0 MeV for different chiral interactions. The black
solid line and the green dot-dashed lines show results with 2NF
only, with either N3LO or N2LOopt potentials. The red dashed line
corresponds to calculation performed with 2B N3LO plus the N2LO
density-dependent force obtained in the correlated version with a
full regulator. The blue double-dot-dashed line is obtained from a
2B N2LOopt potential and a density-dependent 2B force with the
corresponding c1,c3 of N2LOopt [47]. The arrows connect the curves
obtained with the N2LO (green dot-dashed) and with the N3LO (black
solid) 2NFs with the respective curves including 3NFs. The symbols
are data from the pp-hh coupled-cluster calculations of Baardsen
et al. [35] and of Hagen et al. [36].

the correlated momentum distribution of each calculation. The
underlying differences in the N2LO and N3LO 2B forces are
more difficult to identify and would ultimately be responsible
for the large variation in the results [26]. We also note that
if the chiral expansion is valid, the error bands associated to
LEC variations at N2LO should be larger than at N3LO [5].

In addition to the uncertainties associated to the NN force,
the theoretical calculations we present are affected by the
systematic uncertainty associated to the many-body method
at choice. Figure 10 indicates that neutron matter is well
described perturbatively below saturation density. Further-
more, a comparison of our nonperturbative calculations with
up-to-third-order results in the energy expansion presented
by Coraggio et al. in Ref. [30] tests the PNM perturbative
behavior up to densities above saturation density. One should
therefore not expect large differences associated to the use
of many-body techniques. We confirm that results are rather
independent of the many-body method at choice by comparing
our results to recent coupled-cluster calculations [35,36]. The
latter account for particle-particle and hole-hole correlations
in the equation of state from a coupled-cluster perspective
rather than a SCGF one. We find that our calculations are
in good agreement with the coupled-cluster results for the
N2LOopt interactions. Calculations with harder interactions
for both methods could provide a benchmark on their quality
at the many-body level. Moreover, comparisons with other
many-body calculations (Monte Carlo, for instance) would
provide indications of the importance of ladderlike correlations
in the equation of state.
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Three-body forces

In nuclear physics, treatment of many-body interactions is required.

Green’s function formalism was recently extended to account for three-body forces.

[Carbone, Cipollone, Barbieri, Rios, Polls 2013]
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FIG. 1. Diagrammatic representation of the effective 1B inter-
action of Eq. (10). This is given by the sum of the original 1B
potential (dotted line), the 2B interaction (dashed line) contracted
with a dressed SP propagator G (double line with arrow), and
the 3B interaction (long-dashed line) contracted with a dressed 2B
propagator GII . The correct symmetry factor of 1/4 in the last term
is also shown explicitly.

A. Interaction-irreducible diagrams

It is possible to further restrict the set of relevant diagrams
by exploiting the concept of effective interactions. Let us
consider an articulation vertex in a generic Feynman diagram.
A 2B, 3B or higher interaction vertex is an articulation vertex
if, when cut, it gives rise to two disconnected diagrams.2

Formally, a diagram is said to be interaction-irreducible if
it contains no articulation vertices. Equivalently, a diagram is
interaction reducible if there exists a group of fermion lines
(either interacting or not) that leaves one interaction vertex and
eventually all return to it.

When an articulation vertex is cut, one is left with a cycle of
fermion lines that all connect to the same interaction. If there
were p lines connected to this interaction vertex, this set of
closed lines would necessarily be part of a 2p-point GF.3 If this
GF is computed explicitly in the calculation, one can use it to
evaluate all these contributions straight away. This eliminates
the need for computing all the diagrams looping in and out
of the articulation vertex, at the expense of having to find the
many-body propagator. An n-body interaction vertex with p
fermion lines looping over it is an n − p effective interaction
operator. Infinite sets of interaction-reducible diagrams can be
subsummed by means of effective interactions.

The two cases of interest when 2B and 3B forces are present
in the Hamiltonian are shown in Figs. 1 and 2 that give,
respectively, the diagrammatic definition of the 1B and 2B
effective interactions. The 1B effective interaction is obtained
by adding up three contributions: the original 1B interaction;
a 1B average over the 2B interaction; and a 2B average
over the 3B force. The 1B and 2B averages are performed
using fully dressed propagators. Similarly, an effective 2B
force is obtained from the original 2B interaction plus a 1B
average over the 3B force. Note that these go beyond usual
normal-ordering “averages” in that they are performed over
fully correlated, many-body propagators. Similar definitions
would hold for higher-order forces and effective interactions
beyond the 3B level.

Hence, for a system with up to 3BFs, we define an effective
Hamiltonian,

H̃1 = Ũ + Ṽ + Ŵ , (9)

21B vertices cannot be split and therefore cannot be articulations.
3More specifically, these fermion lines contain an instantaneous

contribution of the many-body GF that enters and exits the same
interaction vertex, corresponding to a p-body reduced density matrix.

= +

FIG. 2. Diagrammatic representation of the effective 2B interac-
tion of Eq. (11). This is given by the sum of the original 2B interaction
(dashed line) and the 3B interaction (long-dashed line) contracted
with a dressed SP propagator G.

where Ũ and Ṽ represent effective interaction operators.
The diagrammatic expansion arising from Eq. (7) with the
effective Hamiltonian H̃1 is formed only of (1PI, skeleton)
interaction-irreducible diagrams to avoid any possible double
counting. Note that the 3B interaction Ŵ remains the same as
in Eq. (1) but enters only the interaction-irreducible diagrams
with respect to 3B interactions. The explicit expressions for
the 1B and 2B effective interaction operators are

Ũ =
∑

αβ

[
− Uαβ − ih̄

∑

γ δ

Vαγ ,βδ Gδγ (t − t+)

+ ih̄

4

∑

γ ϵ
δη

Wαγ ϵ,βδη GII
δη,γ ϵ(t − t+)

]
a†

αaβ , (10)

Ṽ = 1
4

∑

αγ
βδ

[
Vαγ ,βδ − ih̄

∑

ϵη

Wαγ ϵ,βδη Gηϵ(t − t+)
]
a†

αa†
γ aδaβ .

(11)

We have introduced a specific component of the four-point
GFs,

GII
δη,γ ϵ(t − t ′) = G

4−pt
δη,γ ϵ(t+, t ; t ′, t ′+), (12)

which involves two-particle and two-hole propagation. This
is the so-called two-particle and two-time Green’s function.
Let us also note that the contracted propagators in Eqs. (10)
and (11) correspond to the full 1B and 2B reduced density
matrices of the many-body system:

ρ1B
δγ =

〈
(N

0

∣∣a†
γ aδ

∣∣(N
0

〉
= −ih̄ Gδγ (t − t+), (13)

ρ2B
δη,γ ϵ =

〈
(N

0

∣∣a†
γ a†

ϵaηaδ

∣∣(N
0

〉
= ih̄ GII

δη,γ ϵ(t − t+). (14)

In a self-consistent calculation, effective interactions should
be computed iteratively at each step, using correlated 1B and
2B propagators as input.

The effective Hamiltonian of Eq. (9) not only regroups
Feynman diagrams in a more efficient way, but also defines
the effective 1B and 2B terms from higher order interactions.
Averaging the 3BF over one and two spectator particles in the
medium is expected to yield the most important contributions
to the many-body dynamics in nuclei [31,33]. We note that
Eqs. (10) and (11) are exact and can be derived rigorously
from the perturbative expansion. Details of the proof are
discussed in Appendix B. As long as interaction-irreducible
diagrams are used together with the effective Hamiltonian
H̃1, this approach provides a systematic way to incorporate
many-body forces in the calculations and to generate effective
in-medium interactions. More importantly, the formalism is
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➟ Introduction of one- and two-body effective interactions allows to substantially!
     reduce the number of diagrams
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FIG. 1. Diagrammatic representation of the effective 1B inter-
action of Eq. (10). This is given by the sum of the original 1B
potential (dotted line), the 2B interaction (dashed line) contracted
with a dressed SP propagator G (double line with arrow), and
the 3B interaction (long-dashed line) contracted with a dressed 2B
propagator GII . The correct symmetry factor of 1/4 in the last term
is also shown explicitly.

A. Interaction-irreducible diagrams

It is possible to further restrict the set of relevant diagrams
by exploiting the concept of effective interactions. Let us
consider an articulation vertex in a generic Feynman diagram.
A 2B, 3B or higher interaction vertex is an articulation vertex
if, when cut, it gives rise to two disconnected diagrams.2

Formally, a diagram is said to be interaction-irreducible if
it contains no articulation vertices. Equivalently, a diagram is
interaction reducible if there exists a group of fermion lines
(either interacting or not) that leaves one interaction vertex and
eventually all return to it.

When an articulation vertex is cut, one is left with a cycle of
fermion lines that all connect to the same interaction. If there
were p lines connected to this interaction vertex, this set of
closed lines would necessarily be part of a 2p-point GF.3 If this
GF is computed explicitly in the calculation, one can use it to
evaluate all these contributions straight away. This eliminates
the need for computing all the diagrams looping in and out
of the articulation vertex, at the expense of having to find the
many-body propagator. An n-body interaction vertex with p
fermion lines looping over it is an n − p effective interaction
operator. Infinite sets of interaction-reducible diagrams can be
subsummed by means of effective interactions.

The two cases of interest when 2B and 3B forces are present
in the Hamiltonian are shown in Figs. 1 and 2 that give,
respectively, the diagrammatic definition of the 1B and 2B
effective interactions. The 1B effective interaction is obtained
by adding up three contributions: the original 1B interaction;
a 1B average over the 2B interaction; and a 2B average
over the 3B force. The 1B and 2B averages are performed
using fully dressed propagators. Similarly, an effective 2B
force is obtained from the original 2B interaction plus a 1B
average over the 3B force. Note that these go beyond usual
normal-ordering “averages” in that they are performed over
fully correlated, many-body propagators. Similar definitions
would hold for higher-order forces and effective interactions
beyond the 3B level.

Hence, for a system with up to 3BFs, we define an effective
Hamiltonian,

H̃1 = Ũ + Ṽ + Ŵ , (9)

21B vertices cannot be split and therefore cannot be articulations.
3More specifically, these fermion lines contain an instantaneous

contribution of the many-body GF that enters and exits the same
interaction vertex, corresponding to a p-body reduced density matrix.

= +

FIG. 2. Diagrammatic representation of the effective 2B interac-
tion of Eq. (11). This is given by the sum of the original 2B interaction
(dashed line) and the 3B interaction (long-dashed line) contracted
with a dressed SP propagator G.

where Ũ and Ṽ represent effective interaction operators.
The diagrammatic expansion arising from Eq. (7) with the
effective Hamiltonian H̃1 is formed only of (1PI, skeleton)
interaction-irreducible diagrams to avoid any possible double
counting. Note that the 3B interaction Ŵ remains the same as
in Eq. (1) but enters only the interaction-irreducible diagrams
with respect to 3B interactions. The explicit expressions for
the 1B and 2B effective interaction operators are

Ũ =
∑

αβ

[
− Uαβ − ih̄

∑

γ δ

Vαγ ,βδ Gδγ (t − t+)

+ ih̄

4

∑

γ ϵ
δη

Wαγ ϵ,βδη GII
δη,γ ϵ(t − t+)

]
a†

αaβ , (10)

Ṽ = 1
4

∑

αγ
βδ

[
Vαγ ,βδ − ih̄

∑

ϵη

Wαγ ϵ,βδη Gηϵ(t − t+)
]
a†

αa†
γ aδaβ .

(11)

We have introduced a specific component of the four-point
GFs,

GII
δη,γ ϵ(t − t ′) = G

4−pt
δη,γ ϵ(t+, t ; t ′, t ′+), (12)

which involves two-particle and two-hole propagation. This
is the so-called two-particle and two-time Green’s function.
Let us also note that the contracted propagators in Eqs. (10)
and (11) correspond to the full 1B and 2B reduced density
matrices of the many-body system:

ρ1B
δγ =

〈
(N

0

∣∣a†
γ aδ

∣∣(N
0

〉
= −ih̄ Gδγ (t − t+), (13)

ρ2B
δη,γ ϵ =

〈
(N

0

∣∣a†
γ a†

ϵaηaδ

∣∣(N
0

〉
= ih̄ GII

δη,γ ϵ(t − t+). (14)

In a self-consistent calculation, effective interactions should
be computed iteratively at each step, using correlated 1B and
2B propagators as input.

The effective Hamiltonian of Eq. (9) not only regroups
Feynman diagrams in a more efficient way, but also defines
the effective 1B and 2B terms from higher order interactions.
Averaging the 3BF over one and two spectator particles in the
medium is expected to yield the most important contributions
to the many-body dynamics in nuclei [31,33]. We note that
Eqs. (10) and (11) are exact and can be derived rigorously
from the perturbative expansion. Details of the proof are
discussed in Appendix B. As long as interaction-irreducible
diagrams are used together with the effective Hamiltonian
H̃1, this approach provides a systematic way to incorporate
many-body forces in the calculations and to generate effective
in-medium interactions. More importantly, the formalism is
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(a) (b)

FIG. 3. 1PI, skeleton and interaction-irreducible self-energy di-
agrams appearing at second order in the perturbative expansion of
Eq. (7), using the effective Hamiltonian of Eq. (9).

it corresponds to further interaction-reducible diagrams. By
expanding the effective 2B interaction according to Eq. (11),
the contribution of Fig. 3(a) splits into the four diagrams of
Fig. 4 (see also a similar example in Fig. 16).

The second interaction-irreducible diagram arises from
explicit 3BFs and it is given in Fig. 3(b). One may expect
this contribution to play a minor role due to phase space
arguments, as it involves 3p2h and 3h2p excitations at
higher excitation energies. Moreover, 3BFs are generally
weaker than the corresponding 2BFs (typically, ⟨Ŵ ⟩ ≈ 1

10 ⟨V̂ ⟩
for nuclear interactions [22,46]). Summarizing, at second
order in standard self-consistent perturbation theory, one
would find a total of five skeleton diagrams. Of these, only
two are interaction irreducible and need to be calculated when
effective interactions are considered.

Figure 5 shows all the 17 interaction-irreducible diagrams
appearing at third order. Again, note that, expanding the
effective interaction Ṽ , would generate a much larger number
of diagrams (53 in total). Diagrams Figs. 5(a) and 5(b) are
the only third-order terms that would appear in the 2BF
case. Numerically, these two diagrams only require evaluating
Eq. (11) beforehand, but can otherwise be dealt with using
existing 2BF codes. They have already been exploited to
include 3BFs in nuclear structure studies [21,25,27,35,37].

The remaining 15 diagrams, from Figs. 5(c)–5(q), appear
when 3BFs are introduced. These third-order diagrams are
ordered in Fig. 5 in terms of increasing numbers of 3B
interactions and, within these, in terms of increasing number of
particle-hole excitations. Qualitatively, one would expect that
this should correspond to a decreasing importance of their
contributions. Diagrams Figs. 5(a)–5(c), for instance, only
involve 2p1h and 2h1p intermediate configurations, normally

(a) (b)

(c) (d)

FIG. 4. These four diagrams are contained in diagram Fig. 3(a).
They correspond to one 2B interaction-irreducible diagram (a), and
three interaction-reducible diagrams (b)–(d).

needed to describe particle addition and removal energies to
dominant quasiparticle peaks as well as total ground-state
energies.

Diagram Fig. 5(c) includes one 3B irreducible interaction
term and still needs to be investigated within the SCGF method.
Normal-ordered Hamiltonian studies [31,33] clearly suggest
that this brings in a small correction to the total energy with
respect to diagrams Figs. 5(a) and 5(b). This is in line with
the qualitative analysis of the number of Ṽ and Ŵ interactions
entering these diagrams. Diagrams Figs. 5(a)–5(c) all represent
the first-order term in an all-order summation needed to
account for configuration mixing between 2p1h or 2h1p
excitations. Nowadays, resummations of these configurations
are performed routinely for the first two diagrams in third-order
algebraic diagrammatic construction, ADC(3), and FRPA
calculations [10,11,16].

The remaining diagrams of Fig. 5 all include 3p2h and
3h2p configurations. These become necessary to reproduce
the fragmentation patterns of shakeup configurations in
particle removal and addition experiments, i.e., Dyson orbits
beyond the main quasiparticle peaks. These contributions are
computationally more demanding. Diagrams Figs. 5(d)–5(k)
all describe interaction between 2p1h (2h1p) and 3p2h
(3h2p) configurations. These are split into four contributions
arising from two effective 2BFs and four that contain two
irreducible 3B interactions. Similarly, diagrams Figs. 5(l)–5(q)
are the first contributions to the configuration mixing among
3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to
compute the contribution associated with these diagrams.
Specific expressions for some diagrams in Fig. 5 are given.
We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ ,
interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, !⋆. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and
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Γ6−pt

Σ∗

Γ4−pt

FIG. 9. Diagrammatic representation of the irreducible self-
energy !⋆ by means of effective 1B and 2B potentials and 1PI
vertex functions, as given in Eq. (25). The first term is the energy-
independent part of !⋆ and contains all diagrams depicted in Fig. 1.
The second and third terms are dynamical terms consisting of excited
configurations generated through 2B and 3BFs. This is an exact
equation for Hamiltonians including 3BFs and it is not derived from
perturbation theory.

frequency integrals of the n-point GFs. The diagrammatic
representation of this equation is given in Fig. 10.

To proceed further, we follow the steps of the previous
section and of Ref. [60] and split the eight-point GF into
free dressed propagators and 1PI vertex functions. This
decomposition is shown in Fig. 11. In addition to the already-
defined vertex functions, one needs 1PI objects with four
incoming and outgoing indices. To this end, we introduce
the eight-point vertex #8−pt in the last term. Note that due
care has to be taken of all antisymmetrization possibilities
when groups of fermion lines that are not connected by #8−pt

are considered. The first term, for instance, involves four
noninteracting but dressed fermion lines, and there are 4! = 24
possible combinations. There are ( 4

2 )( 4
2 ) 1

2 = 72 equivalent

terms involving two noninteracting lines and a single #4−pt, as
in the second term of Fig. 11. The double #4−pt contribution
(third term) can be obtained in 6 × 3 = 18 equivalent ways.

G4−pt = − +

G4−pt

+ +

G6−pt G8−pt

FIG. 10. Diagrammatic representation of the EOM for the four-
point propagator, G4−pt, given in Eq. (26). The last term, involving
an eight-point GF, arises due to the presence of 3B interactions.

G8−pt = +

24

Γ4

6

+ +Γ4

3

+Γ6

4

Γ8Γ4

12

6 4

FIG. 11. Exact separation of the eight-point Green’s function,
G8−pt, in terms of noninteracting lines and vertex functions. The
first four terms gather noninteracting dressed lines and subgroups of
interacting particles that are fully connected to each other. Round
brackets with numbers above (below) these diagrams indicate the
numbers of permutations of outgoing (incoming) legs needed to
generate all possible diagrams. The last term defines the eight-point
1PI vertex function #8−pt.

With this decomposition at hand, one can now proceed
and find an equation for the four-point vertex function, #4−pt.
Inserting the exact decompositions of the four-, six- and eight-
point GFs, given, respectively, by Figs. 7, 8, and 11, into the
EOM [Eq. (26)], one obtains an equation with #4−pt on both
sides. The diagrammatic representation of this self-consistent
equation is shown in Fig. 12.

A few comments are in order at this point. The left-hand side
of Eq. (26) in principle contains two dressed and noninteracting
propagators, as shown in the first two terms of Fig. 7. In
the right-hand side, however, one of the 1B propagators is
not dressed. When expanding the GFs in Eq. (26) in terms
of the #2n−pt vertex functions, the remaining contributions
to the Dyson equation arise automatically (Fig. 6). The
free unperturbed line, therefore, becomes dressed. As a
consequence, the pair of dressed noninteracting propagators
cancel out exactly on both sides of Eq. (26). This dressing
procedure of the G(0) propagator happens only partially in
the last three terms of the equation and was disregarded in
our derivation. In this sense, Fig. 12 should be taken as an
approximation to the exact EOM for G4−pt.

Equation (26) links 1B, 2B, 3B, and 4B propagators. Cor-
respondingly, Fig. 12 involves higher-order vertex functions,
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Anomalous Green’s functions: Gorkov theory

Standard expansion schemes fail when pairing correlations are essential.

It is possible to formulate the expansion around a symmetry-breaking reference, !
e.g. a Bogoliubov vacuum.

➟ Remains a single-reference method
➟ Symmetry must be eventually restored (see Duguet’s talk)

5

FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-

dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.
Let us make the hypothesis that ideal one-nucleon pick-

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

S�
a (!) ⌘

X

k

��h A�1
k |aa| A

0 i
��2 �(! � (EA

0 � EA�1
k )) =

1

⇡
ImGaa(!) (16)

Gab(!) =
X

k

h A
0 |aa| A+1

k ih A+1
k |a†a| A

0 i
! � (EA+1

k � EA
0 ) + i⌘

+
X

k

h A
0 |a†a| A�1

k ih A�1
k |aa| A

0 i
! � (EA

0 � EA�1
k )� i⌘

(17)

| 0i ⌘
evenX

A

cA | A
0 i (18)General idea: start from an auxiliary many-body state

[Gorkov 1958]
35

are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ ⟨1:a; 2:b|V NN |1:c; 2:d⟩

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
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ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ ⟨1:a; 2:b|V NN |1:c; 2:d⟩

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)

2

I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (21)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (26a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (26b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (26c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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ā†a(t)āb(t
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considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (21)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (26a)

i G12
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ab(t, t
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|Ψ0⟩ , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated

4

and approximations are introduced by including only a
certain class or subset of terms in the computation of
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esis translates into the fact that the binding energies of
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system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
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where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
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[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the

and consequently define a set of 4 one-body propagators

With these, re-work out all previous slides!



More GFs

Solution of Dyson equation
Due to the presence of poles in G often problematic. However, it can be transformed into 
an energy-dependent eigenvalue equation, which can be further recast into an energy-
independent eigenvalue equation (no poles now!).

Self-consistency
Not always dressed propagators are used in 𝛴, i.e. not always Dyson equation is iterated 
self-consistently.

Generalisations

➟ Finite temperature GFs
➟ Non-equilibrium GFs
➟ …

➟ Effects/benefits/drawbacks of self-consistency
➟ Dependence on G0?
➟ Connection with conservation laws?
➟ Consistency between renormalisations of G, 𝛤 and W?


