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Motivation

» Hartree—Fock provides a reasonable zeroth-order description of
weakly correlated systems.

» Weak correlations can be accurately described by traditional
quantum chemical methods with polynomial scaling.

» Strong correlations can only be accurately described by expensive
methods (typically combinatorial scaling).



Motivation

» Hartree—Fock provides a reasonable zeroth-order description of
weakly correlated systems.

» Weak correlations can be accurately described by traditional
quantum chemical methods with polynomial scaling.

» Strong correlations can only be accurately described by expensive
methods (typically combinatorial scaling).

We aim to provide an approach that can:
» Account for at least some of the strong correlations at a reduced
computational cost (mean-field).
» Be systematically improved towards the exact answer.

» Provide a description of the full quantum mechanical character of
the system (access ground and excited states).

» Be fully variational. (This seems to be inconsistent with being
extensive.)
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strong correlation in molecular dissociations

This strong correlation in molecular dissociation curves is a fairly general
phenomenon: it occurs when closed shell molecules dissociate into
open-shell fragments.

In general, the correct treatment of breaking of g bonds requires
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broken symmetry HF

» Unrestricted HF (UHF) can partially capture some of the strong
correlations by localizing the electrons.

» This is accomplished at a mean-field cost.
> Broken symmetry HF is always size-consistent.

» The UHF wavefunction is, to some extent, unphysical: good
quantum numbers are lost. For instance, spin symmetry breaking
leads to spin contamination.

» Correlated approaches based on UHF-type wavefunctions are not
better than RHF-based ones.



broken symmetry HF

» Unrestricted HF (UHF) can partially capture some of the strong
correlations by localizing the electrons.

» This is accomplished at a mean-field cost.
> Broken symmetry HF is always size-consistent.

» The UHF wavefunction is, to some extent, unphysical: good
quantum numbers are lost. For instance, spin symmetry breaking
leads to spin contamination.

» Correlated approaches based on UHF-type wavefunctions are not
better than RHF-based ones.

A symmetry-adapted formalism is needed in order to compare with
experimental (spectroscopic) results. Broken symmetries are unphysical
in finite systems.
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1D periodic Hubbard Hamiltonian

Describes a set of electrons in a lattice of L sites:

b t
A=—t> > [aj+1a 3jo + 3, a,+10} T UZ 2351 3], 31

» periodic boundary conditions are used:
sites j and j + L are equivalent

> kinetic energy due to hopping to nearest-neighbor sites

> on-site repulsion for opposite-spin electrons



1D periodic Hubbard Hamiltonian
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Hartree—Fock



Lowdin's symmetry dilemma

If the Hamiltonian A has a given symmetry A,
{F/,/A\} —0,
then exact solutions |W) are symmetry adapted:

vy = E|v), AW) =\ |W).

For approximate wavefunctions |®) this need not be true. The imposition
of symmetry constraints can only raise the energy.



Lowdin's symmetry dilemma
If the Hamiltonian A has a given symmetry A,
{F/,/A\} —0,
then exact solutions |W) are symmetry adapted:
Hiw)y=E), AW =xv).
For approximate wavefunctions |®) this need not be true. The imposition
of symmetry constraints can only raise the energy.

Symmetry dilemma:

» A symmetry-adapted solution |®) possesses good quantum numbers,
but it has higher energy.

» A broken-symmetry solution |®’) is lower in energy, but the good
quantum numbers are gone.



a way around the dilemma?

Consider the ansatz ) o
W) = P|o).

|®) is a broken-symmetry Slater determinant

Piis a projection operator that recovers the j-th quantum number

This symmetry-projected HF ansatz, proposed by Léwdin [Phys. Rev.
97, 1509 (1955)], gets around the dilemma:

» Quantum numbers are restored.

» Correlations due to symmetry breaking can still be recovered.



broken symmetries and deformed states
Let U(«) be a unitary operator such that

A= U'(a) A U(a).

Then U(«) represents an invariance of the Hamiltonian.
Here, o may be a continuous or discrete label.
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broken symmetries and deformed states
Let U(«) be a unitary operator such that

A= U'(a) A U(a).

Then U(«) represents an invariance of the Hamiltonian.
Here, o may be a continuous or discrete label.

If |®) is a broken-symmetry state, then all states of the form
|[®()) = U(a)[®)
are degenerate. That is,

(®(a)|HIO(a)) = (®|H|®).

~—

Peierls and Yoccoz [Proc. Phys. Soc. A 70, 381 (1957)] realized that
diagonalizing the Hamiltonian in this subspace achieves:

» The degeneracy is lifted.

» Symmetries are restored.



on the form of projection operators
For generally non-Abelian groups (such as spin), we use projection-like

operators
Pl =" lism) (ji k|-
They trivially satisfy

A sl ~

P
('D{nk)Jr = P{(m



on the form of projection operators
For generally non-Abelian groups (such as spin), we use projection-like

operators
Pl =" lism) (ji k|-
They trivially satisfy

A sl ~

P
('D{nk)Jr = P{(m

Projection operators are written as integrals (or sums) over unitary
operators, e.g.:

Ao 2s+1 s A
mk = W/dQ Dii(2) R(2),

where Q = (a, 8,7). IA?(Q) is the standard spin-rotation operator:

R(Q) = exp(—iaS,) exp(—iBS,) exp(—ivS,).



detour: Lowdin spin-projection

The spin-projected ansatz was popular in quantum chemistry. It was
difficult to handle due to the form of the spin projection operator:

A S2—(1+1)
P _gs(s+1)—/(/+1)'

Note that this is a many-body operator, as opposed to the one-body
exponential shown before.



projected Hartree—Fock ansatz

We write our symmetry projected ansatz as:
W) =D Pl o),
k

where |®) is a Slater determinant. Here, {f} is a set of linear variational
coefficients.

The linear combination guarantees independence with respect to the
orientation of the deformed determinant.



projected Hartree—Fock ansatz

We write our symmetry projected ansatz as:
W) =D fiPll®),
K
where |®) is a Slater determinant. Here, {f} is a set of linear variational
coefficients.

The linear combination guarantees independence with respect to the
orientation of the deformed determinant.

The projection operator is generically written as

Prao= 1 | 40wl DRO),

where R(0) is a unitary, one-body rotation operator.



projected HF optimization
In standard HF, we make the ansatz |W) = |®). The energy is given by

Futo = 101

In symmetry-projected HF, we make the ansatz [W/ ) =, kaADJ,;Tk|¢>.
The energy is given by

2 e T T <¢|/5/];m H ’Sr;,k'|¢> = 2o T i <¢|H ﬁf;k'|¢>

Epue[{f}, @] = A ~; :
Zkk’ fk* fk' <¢‘P{<m ijk"¢> Zkk’ fk* fk/ <¢|P{<k’|¢)>



projected HF optimization
In standard HF, we make the ansatz |W) = |®). The energy is given by

Futo = 101

In symmetry-projected HF, we make the ansatz [W/ ) =, kaADJ,;Tk|¢>.

The energy is given by

S i fi (PP, HPLI®) Sy i fir (BIF Py |®)
D okkr B i (@IPy, Pl | ) D T Fir (®[Ppo | @)

Epne[{f}, ®] =

Two choices:

> projection-after-variation (PAV): Minimize Enr[®] and then perform
a single-shot evaluation of Eppr[{f}, ®].

» variation-after-projection (VAP): Minimize Eppe[{f}, ®].



quick detour: notation

type of reference determinant |®) (suffix)
restricted HF (RHF) (rlx2i—1)=ui(r) |
(rlx2i) = ui(r) [ 1)
unrestricted HF (UHF)  (r|x2i—1) = ui(r) | 1)
(rlx2i) = vi(r) [ 1)
generalized HF (GHF)  (r|x;) = us(r) | 1) + (1) )
type of symmetry projection (prefix)
S spin projection
K complex conjugation projection
Cs, Gy, Doy, ... spatial symmetry projection

D,,S-GHF: spin + Dy, projection based on a GHF reference
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projected HF optimization

In a VAP approach, we minimize the energy functional

S i o (O|H PL,|®)

Eppe[{f}, ®] = _
el Ol = e 0lB, )

with respect to the variational coefficients {f} and |®).



projected HF optimization

In a VAP approach, we minimize the energy functional

S i e (@1 P 1)
See fi o (0P 1)

Epne[{f}, @] =
with respect to the variational coefficients {f} and |®).
» The variation with respect to {f} leads to a generalized eigenvalue

problem that can be solved on each iteration.

» We parametrize the determinant |®) using Thouless’ theorem:
Any Slater determinant |®) can be expressed as a Thouless rotation
from a non-orthogonal reference determinant |®g):

) = exp(2)|Po),

7= Zicla
ai

The Z matrix is unique and its elements become the variational
parameters.



projected HF optimization

A necessary and sufficient condition for a stationary point in the PHF
optimization is that the local gradient vanishes:

S i Fio (OF(H — E1) Py |®)
Zkk’ fk* fk’<¢|Pf<k/|¢>

=0 A a, i,

where
|07) = cf ci[®).

This is a generalized Brillouin condition that implies the orthogonality of
the optimized state with respect to symmetry-projected particle-hole
configurations.



detour: evaluation of matrix elements
The projection operator was generically written as

Pra= 1 | 40wl DRO),

The energy functional was written as

S fi fio (I Pl @)
Zkk’ fk* fk’ <¢|P{<k’|¢'>

Epne[{f}, @] =

The Hamiltonian and norm matrix elements can be evaluated as
o h . -
(O1F1 Pl |0) = 7 [ o i ()01 R o)

(@Pl19) = { [ diwl (1)(@1R@)9)

Note that the evaluation of these matrix elements is embarrasingly
parallel.



evaluation of matrix elements

The norm matrix elements,
(®|R(9)|®),

can be evaluated in the same way as the overlap between two
non-orthogonal Slater determinants.

(®|R(9)|P) = det My
M, = C'Ry C,

where C is the M x N matrix of occupied orbitals in |®) and Ry is the
matrix representation of the operator R(4).



Hamiltonian matrix elements

The Hamiltonian matrix elements,
(®|H R(9)|®)

can be evaluated using a generalized Wick’s theorem.

(®|HR(9 Zh,k Po)ki + sz/: (ijl|kl) (Po)ki (Po)i
ij

Here, the transition density matrices

(0]a] aR(9)|0)
(P = o Rw)9)

can be evaluated as
py =Ry CM;* CI.



dissociation of F,
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N, energy
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structure of the underlying determinants

S-UHF calculation for N (cc-pVDZ basis, equilibrium distance)

> left: electron density difference with respect to RHF (isosurface:
0.004 a.u.)

> right: spin density of underlying determinant (isosurface: 0.020 a.u.)



structure of the underlying determinants

DoopS-UHF calculation for Ny (cc-pVDZ basis, equilibrium distance)

> left: electron density difference with respect to RHF (isosurface:
0.004 a.u.)

> right: spin density of underlying determinant (isosurface: 0.020 a.u.)



symmetry-projected HF recap

A symmetry-projected HF ansatz has several great features:

» Good quantum numbers are preserved.
» Correlations due to symmetry breaking are accounted for.

» The wavefunction is fully determined by a single determinant; one
can still relate to a single-particle-like picture.

Using symmetry-projected HF wavefunctions is straightforward:

> The cost is mean field (with an O(Ngiq) prefactor).
> Analytic energy gradients have been derived and implemented.
» Density matrices (of arbitrary order) can be easily computed.

Incorporating dynamical correlation is not straightforward.



size consistency in PHF

PHF is not size-consistent. That is,
E[N2](r — o0) — 2 E[N] > 0.
For KSUHF, the size inconsistency error is a2 17 kcal /mol.

Size inconsistent methods cannot be blindly used in association /
dissociation reactions.



size consistency in PHF

PHF is not size-consistent. That is,
E[N2](r — o0) — 2 E[N] > 0.
For KSUHF, the size inconsistency error is a2 17 kcal /mol.

Size inconsistent methods cannot be blindly used in association /
dissociation reactions.

This is because the ansatz is not factorizable into fragments:
Pl®ag) # P|da) ® Plog)

even though
|Pag) = |PA) ® |Pp).



size extensivity in PHF
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size extensivity in PHF

4.0 T
—&— UHF

35 —— SG-UHF
—o— S-UHF

3.0 —o— SGS-UHF
—*— exact

2.5

2.0

(Euwr — E)/t

1.5
1.0
05 ——

00 1 1 1 1 1 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12

1/L

Hubbard chain calculations; U = 4t at half-filling (N = L)
exact results from solution to Lieb-Wu equations



size extensivity in PHF

For large L, rotated determinants become orthogonal to reference one.
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size extensivity in PHF

For large L, rotated determinants become orthogonal to reference one.
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beyond SPHF:
configuration mixing



exact diagonalization

A full configuration interaction ansatz can be written as

|wsm) mek fo.k|P) +Zﬂak\¢a + Z f,a,ka|¢ab
ia,k ijab,k

Note, however, that

» The Hamiltonian is dense.

» One has to deal with the presence of an overlap matrix, which leads
to a generalized eigenvalue problem.

» Each matrix element is expensive to evalute: O(M3 Ngiq).

Moreover, truncated Cl expansions have been abandoned for the most
part in quantum chemistry in favor of CC theory because they are not
extensive.



configuration mixing

Recall that the symmetry-projected HF ansatz is given by
2R Z  fi|®)

where |®) is a Slater determinant.

We can prepare a more general ansatz by superposition of several
symmetry-projected configurations

W) =3 P D ).
k i

In general, we shall let the different broken-symmetry determinants to be
non-orthogonal: (®;|®;) # 0



configuration mixing
W) =D P D ful @)
k i

There are two-extreme approaches for optimizing this wavefunction with
respect to the set of Slater determinants {|®;)}:

» resonating HF (RES): all are optimized at the same time

Pros: The ansatz is fully optimized.
Cons: Expensive; hard to converge.

H. Fukutome, Prog. Theor. Phys. 80, 417 (1988)

» few-determinant (FED): only the last-added one is optimized

Pros: Cheaper; convergence is typically easier.
Cons: The ansatz is not fully optimized.

K. W. Schmid, et al., Nucl. Phys. A 499, 63 (1989)



FED approach in detail

Suppose we have the symmetry-projected HF state at hand

wmy = ZP fi|®1).

We now consider the ansatz

whm) = Z {flk|¢1 +f2k|¢2>}

k

The energy functional

(W3 AvE™)

Ej [{f}v ¢2] = <\Uj,m|wj,m>
2 2

is minimized with respect to all {f} and |®,).

> |®;) is kept fixed throughout the optimization



FED approach in detail

In general, we can have an n — 1 expansion and look for the n-th most
correlating configuration:

n
WMy =3P o).
k i=1

Because the optimization is carried out variationally, one can prove that
E-EBE>E-E>--->E_1-E,.

That is, each added determinant will bring less correlation than the
previous one.



ground state energy of N,
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dissociation profile of N,
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size extensivity in FED-PHF
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beyond SPHF:
excited electronic states



excited states

The symmetry-projected HF ansatz is given by

w-my ZPJ fie|®)

where |®) is a Slater determinant.

An excited state wavefunction must be orthogonal with respect to the
ground state.



excited states

The symmetry-projected HF ansatz is given by
Whmy =3 Pl fil®)
k

where |®) is a Slater determinant.

An excited state wavefunction must be orthogonal with respect to the
ground state.

Two approaches to optimize excited states:

> Use the same ansatz as in PHF; enforce orthogonality with respect
to the ground state via a Lagrange multiplier.

» Use an ansatz that is explicitly orthogonal to the ground state.



excited VAMP strategy

We write the symmetry-projected ground state as

WE™) = [h™) Z . 7] o).

In the excited VAMP strategy of Schmid, et al. [Nucl. Phys. A 452, 493
(1986)], the ansatz for the first excited state is

(1-3)wim = (1-%) Z  F1®1),

s _ Ml
(Wl

)

> |®1) is a Slater determinant; {f1} are variational coefficients.

» The ansatz is explicitly orthogonal to the symmetry-projected
ground state (with the same symmetry).



excited VAMP strategy

The ansatz for the n-th excited state is given by

wimy = (1= 8l = (1- );
= S i Az

r,s=0

Ars = (P Lm)

The energy functional becomes

o pmy = 5 (1; 5) HA(I - 5:7) i
Wi (1= 5) 1)

» The variation with respect to {f"} leads to an eigenvalue problem.

> |®,) optimized with a Thouless parametrization: |®,) — exp(Z)|®)



excited VAMP strategy

Even though the states {|\|Jf,'"> | =0,1,...,n} obtained by the excited
VAMP strategy are orthogonal, they can interact through the
Hamiltonian.

We perform a final diagonalization of the Hamiltonian among such
states, or alternatively, among the [¢/}"™") configurations.

In this way, one may account for further correlations in the ground state
wavefunction.



vertical excitation spectrum of formaldehyde (H,C=0)
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dissociation profile of C,
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spectrum
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correlations in excited states

The excited VAMP strategy can be easily combined with the FED
approach in order to account for further correlations.

Each state is written as a linear combination of symmetry-projected
configurations:

ny
07"y =D Pl D ik 190).
k i=1



conclusions

> A symmetry-projected HF ansatz has several key advantages:

1. Good quantum numbers are preserved.
2. Correlations due to symmetry breaking are accounted for.
3. The wavefunction is fully determined by a single determinant.

» The single-configuration PHF approach is neither size-consistent nor
size-extensive.



conclusions

» Further correlations in the ground state can be accounted by a
symmetry-projected configuration mixing approach (FED or RES).

A few configurations are enough to obtain near-FCl results in simple
molecular systems.

» For increasingly larger systems, more configurations are needed to
maintain the quality of the wavefunction.

» Excited states of the same symmetry as the ground-state can be
obtained using an excited VAMP strategy.

This approach can be combined with FED (or RES) to obtain
high-quality results for both ground and excited states.

» Each state is described by a (short) expansion in terms of
symmetry-projected configurations. This allows one to easily grasp
the physics in the wavefunctions.
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