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Seniority and Strong Correlation

• The seniority Ω is the number of singly occupied spatial orbitals.
• The Ω = 0 CI often provides a reasonable description of strongly

correlated systems.
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A Few Caveats. . .
• Results of Ω = 0 CI are not invariant to occupied-occupied and

virtual-virtual rotation.
• Sometimes Ω = 0 is not enough to describe strong correlations.
• The cost of Ω = 0 CI is too high for routine application.
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Pair Coupled Cluster Doubles

• Pair CCD (i.e. Ω = 0 CCD) with a suitable reference determinant
and pairing scheme is surprisingly close to Ω = 0 CI.

• The cost of p-CCD for a given set of orbitals and pairing scheme
is O(N3).

• Therefore,
• If the reference determinant and pairing scheme can be readily

obtained, and
• If the p-CCD is close to Ω = 0 CI, and
• If the Ω = 0 CI properly describes strong correlation,
• Then p-CCD offers a cheap but accurate description of strong

correlations (at least energetically).



The Pairing Hamiltonian

The pairing Hamiltonian is

H =
∑

εp Np − G
∑

P†p Pq

where

Np = c†p↑ cp↑ + c†p↓ cp↓ ,

P†p = c†p↑ c†p↓ .

• Originally designed to describe the Cooper problem of an
electron pair interacting with a hole pair in the Fermi sea.

• The weakly attractive pairing Hamiltonian mimics the physics of
the molecular Hamiltonian.

• The Hamiltonian has an intrinsic pairing scheme and seniority is
a symmetry with a good quantum number.

• Ω = 0 CI is thus exact. . .
• . . . but not necessary, because the Hamiltonian is exactly solvable.



p-CCD for the Pairing Hamiltonian

 100

 110

 120

 130

 140

 150

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

E

|G|

HF

CCD

MBPT2

Exact



p-CCD for the Pairing Hamiltonian

 100

 150

 200

 250

 300

 350

 0  5  10  15  20

E

|G|

HF

UHF

CCD

Exact



p-CCD for the Pairing Hamiltonian
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A Few Words on BCS
• Define quasiparticle operators by the unitary transformation

c†p↑ = up α
†
p↑ + vp αp↓

c†p↓ = up α
†
p↓ − vp αp↑ .

• Write a quasiparticle vacuum |0〉 =
∏
αp↑ αp↓ |−〉.

• Minimize the energy with respect to up and vp.
• The quasiparticle vacuum may break number symmetry.
• Include a chemical potential to enforce that we have the right

particle number on average.
• Hartree-Fock is a special limit (vocc = 1, uvrt = 1).

For the pairing Hamiltonian, we have

0 = 2Fp up vp −∆
(

u2
p − v2

p

)
Fp = εp − λ− G v2

p

∆ = G
∑

up vp

〈N〉 = 2
∑

v2
p.



Number and Spin Symmetry Breaking

Let me define

Ecs[P] = 2
∑
〈i|h|j〉Pji +

∑
(2 〈ij|v|kl〉 − 〈ij|v|lk〉) Pki Plj.

UHF:

E = Ecs[P]−
∑
〈ij|v|kl〉Mli Mkj,

M2 = P− P2,

M = P M + M P

RHFB:

E = Ecs[P] +
∑
〈ij|v|kl〉Kij Kkl,

K2 = P− P2,

0 = P K−K P.



Number and Spin Symmetry Breaking

Notes:
• For real orbitals, the energy expressions are the same except for

the sign on the static correlation piece.
• RHFB reduces to RHF for repulsive interactions because the

static correlation piece is non-negative and the minimum of the
closed shell energy occurs at RHF.

• UHF reduces to RHF for attractive interactions because the static
correlation piece is non-negative and the minimum of the closed
shell energy occurs at RHF.

• That is, number symmetry breaking is to attractive interactions
as spin symmetry breaking is to repulsive interactions.



Pair Coupled Cluster Doubles, Revisited

Let’s start with the HF case:
• Write the wave function as eT|0〉where the cluster operator is

T =
∑

ia

Ta
i P†a Pi

P†p = c†p↑ c†p↓ .

• Insert the CC wave function into the Schrödinger equation to get
the working equations:

E = 〈0|e−T H eT|0〉

0 = 〈0|P†i Pa e−T H eT|0〉.



Pair Quasiparticle CCD

The extension to the BCS case is straightforward:
• Write the wave function as eT|0〉where the cluster operator is

T =
1
2

∑
pq

Tpq P†p P†q

P†p = α†p↑ α
†
p↓ .

• Insert the CC wave function into the Schrödinger equation to get
the working equations:

E = 〈0|e−T H eT|0〉,
0 = 〈0|Pp Pq e−T H eT|0〉.

NB: In the Hartree-Fock limit, we get

T =
∑

ia

Ta
i P†a Pi +

1
2

∑
ij

Tij Pi Pj +
1
2

∑
ab

Tab P†a P†b .



Brueckner Coupled Cluster

• Brueckner orbitals just adjust the reference determinant so that
T1 = 0.

• In the pairing Hamiltonian with a Hartree-Fock reference, T1 = 0
by seniority symmetry.

• Once number symmetry is broken, this is not the case, so we add

0 = 〈0|Pp e−T2 H eT2 |0〉.

and adjust u and v to satisfy this.



Brueckner Coupled Cluster

• Brueckner orbitals just adjust the reference determinant so that
T1 = 0.

• In the pairing Hamiltonian with a Hartree-Fock reference, T1 = 0
by seniority symmetry.

• Once number symmetry is broken, this is not the case, so we add

0 = 〈0|Pp e−T2 H eT2 |0〉.

and adjust u and v to satisfy this.

0 = 2Fp up vp −∆
(

u2
p − v2

p

)
Fp = εp − λ− G v2

p

∆ = G
∑

up vp

〈N〉 = 2
∑

v2
p.



Brueckner Coupled Cluster

• Brueckner orbitals just adjust the reference determinant so that
T1 = 0.

• In the pairing Hamiltonian with a Hartree-Fock reference, T1 = 0
by seniority symmetry.

• Once number symmetry is broken, this is not the case, so we add

0 = 〈0|Pp e−T2 H eT2 |0〉.

and adjust u and v to satisfy this.

0 = 2 F̄p up vp −∆
(

u2
p − v2

p

)
+ cp

F̄p = εp − λ− G v2
p + G

∑
q

(
u2

q − v2
q

)
Tpq

cp =
∑

q

Tpq

[
2Fq uq vq −∆

(
u2

q − v2
q

)]



Attractive Pairing; N = L = 100
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Dependence on Number of Levels
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Dependence on Filling Fraction
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Putting it Together
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Calculation of Properties

• Properties can be evaluated as energy derivatives.
• As presented, we would need to know the derivatives of the

amplitudes Tpq.
• As in standard CC, we can avoid this by introducing a

Lagrangian.

Write a Lagrangian

L = 〈0|(1 + Z) e−T H eT|0〉

in terms of the operator

Z =
1
2

∑
pq

Zpq Pp Pq.



Calculation of Properties

• Note that for any Zpq, we have L = E provided we satisfy the CC
equations.

• In other words, we see that

∂L
∂Zpq

= 0

is the amplitude equation.
• To select amplitudes Zpq, we impose

∂L
∂Tpq

= 0.

• Then the Lagrangian is stationary with respect to T and Z, so we
do not need their derivatives.



Calculation of Properties

Explicitly, we have

∂L
∂x

= 〈0|(1 + Z) e−T ∂H
∂x

eT|0〉+
∑

p

∂Ec

∂θp

∂θp

∂x

where I write the BCS amplitudes as

up = cos(θp),

vp = sin(θp)

The second term is because while the BCS energy is stationary with
respect to BCS amplitudes, the correlated energy is not!

We can get ∂θp

∂x by differentiating the BCS amplitude equations:

Important: This term can be pretty large.



Calculation of Properties

• The BCS equations are

h2,0
p [θ(x)] + x V2,0

p [θ(x)] = 0

where V is the pertubation.
• The derivative with respect to x at x = 0 is just

∂h2,0
p

∂θq

∂θq

∂x
+ V2,0

p = 0.

• Note that
∂h2,0

p

∂θq
=
∂2EBCS

∂θp ∂θq

is the BCS quasiparticle HessianMpq.
• Thus, we evaluate properties as

∂L
∂x

= 〈0|(1 + Z) e−T V eT|0〉 −W†M−1 V2,0

where W is the orbital gradient of the correlation energy.



Occupation Numbers
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Attractive Pairing; N = L = 100

-0.001

-0.0005

 0

 0.0005

 0.001

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

δ
n

i

ni

BCS
PBCS

BCS p-CCD



Attractive Pairing; N = L = 100
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The Superconducting Gap

We can generalize the superconducting gap to

∆0 = G
∑

Cp

C2
p = 〈np↑ np↓〉 −

1
4
〈np↑ + np↓〉2.
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Beyond Traditional Coupled Cluster

• We’ve seen the CC Lagrangian

L = 〈0|(1 + Z) e−T H eT|0〉.

• Next obvious step: more sophisticated left-hand state.
• Extended coupled cluster uses

L = 〈0|eZ e−T H eT|0〉.

• For typical problems, this is much more expensive than
traditional coupled cluster.

• Pair extended coupled cluster not too expensive – O(N3).



Quick Overview of Pair Extended Coupled
Cluster

• Write a cluster operator

T =
∑

ia

ta
i P†a Pi.

• Write a de-excitation operator

Z =
∑

ia

zi
a P†i Pa.

• Write a Lagrangian

L = 〈0|eZ e−T H eT|0〉.

• Make the Lagrangian stationary with respect to ta
i and zi

a.



Attractive Pairing; N = L = 100

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0  0.1  0.2  0.3  0.4  0.5  0.6

E
c 

/
 E

cex
ac

t

G / ∆ε

Gc

BCS p-CCD
BCS p-BCCD
PBCS



Attractive Pairing; N = L = 100
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Bogoliubov Pair Extended Coupled Cluster

• Same basic idea, we

T =
1
2

∑
pq

Tpq P†p P†q ,

Z =
1
2

∑
pq

Zpq Pp Pq.

• Computational scaling rises to O(N4).
• Efficient O(N4) code not finished. . . .
• Inefficient O(N6) code done.



Attractive Pairing; N = L = 20
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Attractive Pairing; N = L = 20
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Conclusions
• The p-CCD ∼ Ω = 0 CI holds even for fairly strongly repulsive

pairing Hamiltonians.
• For strongly attractive pairing Hamiltonians, BCS-CCD works

fairly well.
• The Brueckner mean-field of the BCS-CCD is trying to fix

number symmetry breaking.
• In doing so, the Brueckner is also making things worse near Gc.
• For intermediate G, the Brueckner makes things better.
• For large G, the Brueckner makes no real difference.

• For small systems, PBCS = AGP works very well, but it breaks
down for larger N.

• In fact, for very large N, AGP = BCS.
• Pair quasiparticle CCD works across the whole range of G and N.
• Pair extended CCD seems to work pretty well for G not too large.
• Pair quasiparticle extended CCD does not seem to work...
• But with orbital optimization, pair quasiparticle extended CCD

may be a very good method indeed.
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Saclay; Paris)
• Angelo Signoracci (Service de Physique Nucléaire; Centre de
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