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MULTIREFERENCE EFFECTIVE HAMILTONIAN THEORIES
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Difficulties with this strategy:!
1.  Intruder state problem!

2.  Redundancy problem (balance the number of parameters and conditions) !



EXAMPLE: THE INTRUDER STATE PROBLEM IN QDPT2

A model for intruder states in QDPT2 !

Quasi-degenerate perturbation theory (Brandow, Lindgren, Freed, …) 
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AN ADAPTIVE STRATEGY TO MULTIREFERENCE PROBLEMS

Energy!

Adaptive!
Diagonalization!

We are developing: !
!
(1)  Renormalization Group (RG) approaches for dynamical electron correlation. !

(2)  Adaptive diagonalization methods to address strong electron correlation (ground 
and excited states). !



THE SIMILARITY RENORMALIZATION GROUP (OR FLOW RG)

Glazek, S. D.; Wilson, K. G. Phys. Rev. D (1994).  Wegner, F. Ann. Phys. (1994), White, S. R. J. Chem. Phys. 
(2002).!

Stanisłav Głazek, Kenneth Wilson, Franz Wegner !

The basic idea behind the SRG approach: !
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THE SIMILARITY RENORMALIZATION GROUP FORMALISM

Unitary flow of the Hamiltonian !

s is a time-like 
parameter!

The bare Hamiltonian!

Normal ordered1 with 
respect to !
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Virtual!
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The flow equation for the Hamiltonian !

The derivative of the Hamiltonian 
depends on the flow generator η(s)!

1) Tsukiyama, K.; Bogner, S. K.; Schwenk, A. Phys. Rev. C (2012) !



THE SRG FORMALISM

The SRG recipe: define a generator and integrate the RG flow equation!

The transformed Hamiltonian !

The SRG(2) keeps only these terms!



CHOOSING THE GENERATOR η(s)
A certain class of flow generators brings the Hamiltonian to a band-diagonal form !

=! +!

Example: the canonical generator of Wegner!

decouples a Slater determinant from the S + D space !



PERTURBATIVE ANALYSIS

Energy!

Q!

P!

How does the SRG avoid problems with small denominators? !

Møller-Plessett 
denominator 
corresponding to!



EXAMPLE: FLOW OF THE HAMILTONIAN

Off-diagonal 
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Hamiltonian!
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GOING BEYOND THE SRG: MOTIVATIONS

Limitations of the SRG:!
1.  Requires solving a set of ODEs !
2.  Appears to work only with a unitary transformation !

The proof of the trace condition relies on the unitarity of the transformation!

Eric Jurgenson’s Ph.D. Thesis !



GOING BEYOND THE SRG: THE DRIVEN SRG1

The basic idea of the DSRG !

Q!

P!

Let the flow of H(s) be defined by the (parameterized) evolution of its off-diagonal 
block.  That is, given R(s) !

1) Evangelista, F.A., J. Chem. Phys. (2014)!



GOING BEYOND THE SRG: THE DRIVEN SRG

The DSRG ansatz and flow !

Unitary or intermediate normalization (CC):!

1) Yanai, T.; Chan, G. K.-L., J. Chem. Phys. (2006) !

The DSRG flow is driven by 
the source operator R(s)!
!

N: non-diagonal diagrams!

The DSRG source operator used in this work (reproduces SRG-MBPT2 results) !

Boundary conditions on the source operator: !



THE SINGLE-REFERENCE UNITARY DSRG(2)

The DSRG conditions yields a set of polynomial equations!

1) Yanai, T.; Chan, G. K.-L., J. Chem. Phys. (2006) !

The unitary DSRG(2) truncation scheme is defined by the following  !

And the BCH expansion is truncated to one- and two-particle contributions1!



COMPARISON WITH OTHER METHODS



IMPLEMENTATION

1)  Turney, J.; Parrish, R.; Evangelista, F. A., Ambit!

Users and developers are welcome! !
See https://github.com/jturney/ambit !
!

Implementation based on an open-source tensor library1!



COMPARISON OF THE SRG AND DSRG ENERGY FLOW



COMPARISON OF THE SRG AND DSRG ENERGY FLOW



STATISTICS FOR ELEVEN DIATOMIC MOLECULES
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A MODIFIED BCH EXPANSION

In CCSD:!

Only ½ of the full 
contribution!

Observation: the following modification fixes leading order (3rd) !

DSRG(2*)!

The approximate BCH expansion contains incorrect prefactors. !



STATISTICS FOR ELEVEN DIATOMICS

0!
0.002!
0.004!
0.006!
0.008!

re (Å)!

0!
10!
20!
30!
40!
50!
60!

ωe (cm−1)!

0.0!
0.5!
1.0!
1.5!
2.0!
2.5!
3.0!

ωexe (cm−1)!

0!
5!

10!
15!
20!

ε (mEh)!

Absolute Mean Deviations from CCSD(T) results !



DISSOCIATING BONDS WITH THE SR-DSRG

Single-reference! Multi-reference!
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EXTENSION TO THE MULTI-REFERENCE CASE: MR-DSRG1

Normal ordered with 
respect to !

Core!
(m,n)!

Virtual!
(e,f)!

Active 
(u,v)!

Based on the generalized normal ordering formalism of Mukherjee and 
Kutzelnigg2 (also see Hergert et al.3) !

1) Li, C.; Evangelista, F.A., J. Chem.. Theory Comput. (2015) !
2) Kutzelnigg, W.; Mukherjee, D. J. Chem. Phys. (1997) !
3) Hergert, H.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R., Phys. Rev. Lett. (2013)!



SECOND-ORDER ANALYSIS OF THE MR-DSRG: DSRG-MRPT2

First-order amplitude equations !

We use the single-reference source operator.  This gives: !

The zeroth-order Hamiltonian!



THE SECOND-ORDER ENERGY



DSRG-MRPT2 EXAMPLES: N2 DISSOCIATION CURVE



DSRG-MRPT2 EXAMPLES: N2 DISSOCIATION CURVE



DSRG-MRPT2: DEPENDENCE OF RESULTS ON S

Error with respect to FCI (ED) as a function of s!

Good News:!
•  It does not get worse than this. !
•  Can improve things: just keep many-body parts !

!



DSRG-MRPT2: FORMAL ASPECTS

Convergence:!
•  We are polishing a formal proof that for certain values of s the 

(MR-)DSRG equations are a contraction. !

Orbital invariance: !
•  The single-reference DSRG can be made orbital invariant, expect the 

same to be true for the MR-DSRG. !

!



CONCLUSIONS

The DSRG methods gives us:!
•  Control over the separation of static and dynamic correlation !
•  A numerically-robust approach to dynamic correlation !
•  A framework to develop adaptive theories for multireference ground 

states and excitation energies !

!Open problems:!
•  Can we find better ways to approximate the BCH series? !
•  Design of source operator, can we do better? !
•  Reduce the dependence of results on the value of s ?!

What we are working on: !
•  Nonperturbative MR-DSRG!
•  Density-fitted implementation of the DSRG-MRPT2!


