Optimization and sensitivity analysis for the UNEDF family of functionals

Workshop on "Recent developments in nuclear density functional models" Saclay, Nov. 24-28, 2014

> Markus Kortelainen University of Jyväskylä

The nuclear landscape

- Nuclear density functional theory (DFT) is applicable throughout the whole nuclear chart
- The key ingredient of the DFT is the energy density functional (EDF)
- Parameters of the EDF model needs to be optimized to experimental input
- What about parameter uncertainties (and uncertainties of predicted observables)?
- Predictive power of the model?

Energy density optimization: UNEDF0 and UNEDF1

•UNEDF1 included data on 4 fission isomers states (²²⁶U, ²³⁸U, ²⁴⁰Pu, ²⁴²Cm)

Energy density optimization: UNEDF2

•Optimization of Skyrme-like ED with respect of 14 parameters at deformed HFB level: Tensor terms now included

$$\rho_{c}, E^{NM} / A, K^{NM}, a_{sym}^{NM}, L_{sym}^{NM}, M_{s}^{-1}$$

$$C_{0}^{\rho \Delta \rho}, C_{1}^{\rho \Delta \rho}, V_{0}^{n}, V_{0}^{\rho}, C_{0}^{\rho \nabla J}, C_{1}^{\rho \nabla J}, C_{0}^{J}, C_{1}^{J}$$

•Single particle energies included in the optimization. These were handled with blocked HFB calculations

$$E_{\text{s.p.}}^{(\text{part.})} = E_{\text{bl}}(A+1) - E(A)$$

 $E_{\text{s.p.}}^{(\text{hole})} = E(A) - E_{\text{bl}}(A-1)$

 Generally, UNEDF2 gives no or only marginal improvement over to UNEDF1
 ⇒ Need to go to novel EDFs UNEDF2: M.K., J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck, S.M. Wild, D. Davesne, J. Erler, A. Pastore, Phys. Rev. C 89 054314 (2014)

Predictions with UNEDF0,1 EDFs: Existing exp. data

Fission properties of UNEDF1

Liquid drop coefficients of UNEDF0 and UNEDF1 (in MeV)

	$a_{\rm vol}$	<i>a</i> _{sym}	$a_{ m sym}^{(2)}$	$a_{\rm surf}$	$a_{\rm curv}$	<i>a</i> _{ssym}
unedf0	-16.056	30.543	4.418	18.7	7.1	-44
unedf1	-15.800	28.987	3.637	16.7	8.8	-29

- •Inclusion of fission isomer data allowed to constrain UNEDF1 EDF to reproduce fission properties in actinide region reasonably well
- •Surface symmetry energy notably different between UNEDF0 and 1

Predictions with UNEDF EDFs: Neutron droplets

Predictions with UNEDF2 EDF: Existing exp. data

TABLE IX.	RMSDs	of s	s.p.	energies	from	empirical	values	of
Ref. [53] (in Me	eV).							

Nuclei	UNEDF0	UNEDF1	UNEDF2
All Light	1.42 1.80	1.38 1.72	1.38 1.74
Heavy	0.94	0.97	0.95

What about extrapolation to experimentally unknown region?

Observable	unedf0	unedf1	unedf2
E	1.428	1.912	1.950
E (A < 80)	2.092	2.566	2.475
$E (A \ge 80)$	1.200	1.705	1.792
S_{2n}	0.758	0.752	0.843
$S_{2n} \ (A < 80)$	1.447	1.161	1.243
$S_{2n} \ (A \ge 80)$	0.446	0.609	0.711
$S_{2\mathbf{p}}$	0.862	0.791	0.778
$S_{2p} \ (A < 80)$	1.496	1.264	1.309
S_{2n} (A > 80)	0.605	0.618	0.572

Assessing theoretical uncertainties

Sensitivity analysis

•With UNEDF0, 1 and 2, a complete sensitivity analysis was done for the obtained minimum

•Gives standard deviations and correlations of optimized EDF parameters (covariance matrix)

UNEDF2 sensitivity analysis

- •UNEDF2 sensitivity analysis shows that UNEDF2 is better constrained that UNEDF0,1
- •Indicates that major improvements not possible

Propagation of uncertainties

$$\sigma_y^2 = \sum_{i,j} \operatorname{Cov}(x_i, x_j) \left[\frac{\partial y}{\partial x_i} \frac{\partial y}{\partial x_j} \right]$$

Y. Gao, J. Dobaczewski, M. Kortelainen, J. Toivanen, and D. Tarpanov, Phys. Rev. C 87, 034324 (2013)

- •One way to assess model uncertainties is to calculate propagated uncertainties
- •Requires the covariance matrix of model parameters
- •Gives statistical uncertainty (but not systematic uncertainty)
- •With UNEDF0, the general tendency is that uncertainties increase when going further away from the valley of stability

M. K., to appear in J.Phys.G, arXiv:1409.1413

Propagation of uncertainties

Neutron skin thickness

- •²⁰⁸Pb neutron skin thickness was measured in PREX and MAMI experiments
- •Experimental error bar in PREX larger than model uncertainties
- •Statistical uncertainty larger compared to the systematic uncertainties
- •Statistical uncertainty comes mostly from the uncertainty related to the density dependence of the symmetry energy

Future directions?

Energy density functional

DME-based functionals with enriched density dependency

- + Relatively easy to implement
- + Computationally comparable to Skyrme
- Density dependency (prohibits beyond mean field calculations)
- Zero-range

Functionals with higher order and/or many-body terms

- + Computationally comparable to Skyrme
- Could have many new parameters to be optimized
- Zero-range

Finite-range functionals

- + Finite range (provides natural cut-off)
- Computationally more expensive

Optimization and post-optimization

Data-set for EDF parameter optimization? Type of data to include**?** Weights of the data points

Uncertainties of EDF parameters and predictions

? Effect of input data-set? Effect of the type of the EDF

Conclusions

- •UNEDF0, 1 and 2 presents a optimization scheme of Skyrme-like EDF, which includes progressively more experimental data
- •Sensitivity analysis shows that further major improvements from UNEDF2 are unlikely
- •Generally, Skyrme-like EDF models can not be improved much. Need to go novel EDFs. This conclusion is also supported by several other studies.
- •To assess the predictive power of the EDF model, sensitivity analysis is mandatory: Should be a standard post-optimization tool with the future EDF optimization schemes.
- •Propagated uncertainties gives statistical uncertainties of predictions. Important when judging predictive power of the EDF model

Backup slides

UNEDF2 parameters

x	$\hat{\pmb{x}}^{(ext{fin.})}$	σ	95% CI
$\rho_{\rm c}$	0.15631	0.00112	[0.154, 0.158]
E/A	-15.8		
K	239.930	10.119	[223.196, 256.663]
$a_{\rm sym}$	29.131	0.321	[28.600, 29.662]
Ĺ	40.0		
$1/M_{s}^{*}$	1.074	0.052	[0.988, 1.159]
$C_0^{ ho\Delta ilde{ ho}}$	-46.831	2.689	[-51.277, -42.385]
$C_1^{ ho\Delta ho}$	-113.164	24.322	[-153.383, -72.944]
V_0^n	-208.889	8.353	[-222.701, -195.077]
V_0^p	-230.330	6.792	[-241.561, -219.099]
$C_0^{ ho abla J}$	-64.309	5.841	[-73.968, -54.649]
$C_1^{\rho \nabla J}$	-38.650	15.479	[-64.246, -13.054]
$\dot{C_0^{JJ}}$	-54.433	16.481	[-81.687, -27.180]
C_1^{JJ}	-65.903	17.798	[-95.334, -36.472]

UNEDF2: effect of data point

UNEDF0,1,2 binding energies

χ^2 and UNEDF0,2 correlation matrix

$$\chi^{2}(\mathbf{x}) = \frac{1}{n_{d} - n_{x}} \sum_{i=1}^{D_{T}} \sum_{j=1}^{n_{i}} \left(\frac{s_{i,j}(\mathbf{x}) - d_{i,j}}{w_{i}} \right)^{2}$$

Assessing theoretical uncertainties

J. Erler, N. Birge, MK, W. Nazarewicz, E. Olsen, A.M. Perhac, M. Stoitsov, Nature 486, 509-512 (2012)

Neutron number, N

Uncertainties of neutron skin thickness

