

Optimization at the multireference level

S. Hilaire CEA,DAM,DIF

Workshop ESNT

27 NOVEMBRE 2014

www.cea.fr

How we fitted D1M ?

Workshop ESNT

27 NOVEMBRE 2014

www.cea.fr

Collaborators :

S. Goriely S. Péru M. Girod M. Martini J.P. Ebran

Workshop ESNT

27 NOVEMBRE 2014

www.cea.fr

GENERAL MOTIVATION

Providing nuclear reaction models with « credible and coherent » microscopic inputs

- makes (really) senses when dealing with unmeasured target
- the sounder the underlying physics the better the predictive power
- no direct link between xs and n-n interaction for all nuclei
- many inputs needed
 - . Discrete levels properties (masses, J, p, deformation etc ...)
 - . Nuclear level densities up to 200MeV
 - . Gamma strength functions
 - . Fission properties (barriers, broken symetries, = path)
 - . Optical potential (spherical and deformed)
- all this can be derived from nuclear structure more or less directly
- all this can be used mostly through tables
- robust codes needed
- robust methodolodgy (recipes)
 - . to reduce human intervention while producing tables
 - . to fill gaps (even-even limitation for instance)

GENERAL MOTIVATION

Providing nuclear reaction models with « credible and coherent » microscopic inputs

- makes (really) senses when dealing with unmeasured target
- the sounder the underlying physics the better the predictive power

All this has been done with Skm for all nuclei (S. Goriely) !

Let's do it with Gogny !

. Optical potential (sphencal and deformed)

- all this can be derived from nuclear structure more or less directly
- all this can be used mostly through tables
- robust codes needed
- robust methodolodgy (recipes)
 - . to reduce human intervention while producing tables
 - . to fill gaps (even-even limitation for instance)

GENERAL MOTIVATION

Providing nuclear reaction models with « credible and coherent » microscopic inputs

- makes (really) senses when dealing with unmeasured target
- the sounder the underlying physics the better the predictive power

All this has been done with Skm for all nuclei (S. Goriely) !

Let's do it with Gogny !

- \Rightarrow We have codes
- \Rightarrow We have computers
- \Rightarrow We have experts (not me !)
- \Rightarrow We have motivation (me !)

•The starting point : D1S, D1N

- •The starting point : D1S, D1N
- •Methodolodgy, codes

- •The starting point : D1S, D1N
- •Methodolodgy, codes
- •Results

- •The starting point : D1S, D1N
- •Methodolodgy, codes
- •Results
- •Perspectives

THE STARTING POINT : D1S, D1N

A little bit of history

- First interaction D1 in 1980 (Dechargé et al., PRC21 (1980) 1568)
 - Phenomenologic effective interaction
 - 14 parameters adjusted on nuclear matter properties and few data for ¹⁶O, ⁴⁸Ca, ⁹⁰Zr, ²⁰⁸Pb
 - Specificity : finite range in central term : ⇒interaction usable for mean field and pairing (HFB) and beyond
 - provide globally good results
 - requires significant computation time (up to 10' for 14 H.O shells)

- First interaction D1 in 1980 (Dechargé et al., PRC21 (1980) 1568)
- D1S in 1991 (Berger et al., CPC 63 (1991) 365)
 - > fission barriers problem of D1 reduced

- First interaction D1 in 1980 (Dechargé et al., PRC21 (1980) 1568)
- D1S in 1991 (Berger et al., CPC 63 (1991) 365)
 > fission barriers problem of D1 reduced
- AMEDEE database (Hilaire et al., EPJA 33 (2007) 237) online in 2006

- First interaction D1 in 1980 (Dechargé et al., PRC21 (1980) 1568)
- D1S in 1991 (Berger et al., CPC 63 (1991) 365)
 > fission barriers problem of D1 reduced
- AMEDEE database (*Hilaire et al., EPJA 33 (2007) 237*) online in 2006
 > isotopic drift confirmed : known but not really considered

- First interaction D1 in 1980 (Dechargé et al., PRC21 (1980) 1568)
- D1S in 1991 (Berger et al., CPC 63 (1991) 365)
 > fission barriers problem of D1 reduced
- AMEDEE database (*Hilaire et al., EPJA 33 (2007) 237*) online in 2006
 > isotopic drift confirmed : known but not really considered
- D1N in 2007 (Chappert et al., PLB 668(2008) 420)
 > isotopic drift corrected improving neutron matter EOS description

- First interaction D1 in 1980 (Dechargé et al., PRC21 (1980) 1568)
- D1S in 1991 (Berger et al., CPC 63 (1991) 365)
 > fission barriers problem of D1 reduced
- AMEDEE database (*Hilaire et al., EPJA 33 (2007) 237*) online in 2006
 > isotopic drift confirmed : known but not really considered
- D1N in 2007 (Chappert et al., PLB 668(2008) 420)
 > isotopic drift corrected improving neutron matter EOS description
- **D1M in 2009 (***Goriely et al., PRL 102 (2009) 242501* **)**
 - > r.m.s masses reduction to 800 keV (D1S \approx 4 MeV)

- First interaction D1 in 1980 (Dechargé et al., PRC21 (1980) 1568)
- D1S in 1991 (Berger et al., CPC 63 (1991) 365)
 > fission barriers problem of D1 reduced
- AMEDEE database (*Hilaire et al., EPJA 33 (2007) 237*) online in 2006
 > isotopic drift confirmed : known but not really considered
- D1N in 2007 (Chappert et al., PLB 668(2008) 420)
 > isotopic drift corrected improving neutron matter EOS description
- D1M in 2009 (Goriely et al., PRL 102 (2009) 242501)
 r.m.s masses reduction to 800 keV (D1S ≈ 4 MeV)
- D1S « benchmarking » in 2010 (Delaroche et al., PRC 81 (2010) 014303)

FIG. 11. (a) Theoretical 2_1^+ excitation energies of 537 even-even nuclei as a function of their experimental values. (b) Theoretical $B(E2; 0_1^+ \rightarrow 2_1^+)$ transition strengths of 320 even-even nuclei as a function of their experimental values. Several cases showing deviations are labeled by the nucleus. Experimental data are from Refs. [56,57].

D1 type Gogny interaction

- First interaction D1 in 1980 (Dechargé et al., PRC21 (1980) 1568)
- D1S in 1991 (Berger et al., CPC 63 (1991) 365)
 > fission barriers problem of D1 reduced
- AMEDEE database (*Hilaire et al., EPJA 33 (2007) 237*) online in 2006
 > isotopic drift confirmed : known but not really considered
- D1N in 2007 (Chappert et al., PLB 668(2008) 420)
 > isotopic drift corrected improving neutron matter EOS description
- D1M in 2009 (Goriely et al., PRL 102 (2009) 242501)
 r.m.s masses reduction to 800 keV (D1S ≈ 4 MeV)
- D1S « benchmarking » in 2010 (Delaroche et al., PRC 81 (2010) 014303)

Clear will to reduce pathologies

Link with computer power

D2 type interaction(s)

D1 (1980)

D1S (1991) : surface properties improved (fission)

D2 (2007) : finite range in density dependent term (PRC 2015)

D2 type interaction(s)

D1 (1980)

D1S (1991) : surface properties improved (fission)

D2 (2007) : finite range in density dependent term (PRC 2015)

D1N (2008) : better neutron matter EOS description

D1M (2009) : better description of binding energies and Q_{reaction}

New interactions more frequently

Clear will to reduce pathologies

Link with computer power

Things have not been made in order

Summary : D1S, D1N

⇒ Challenge in 2008 : Reduce the r.m.s of binding energies differences Other properties similar or better Cope with local criticisms Obey Bruyères Golden Rule

Summary : D1S, D1N

ONE SHALL ONLY DESIGN EFFECTIVE INTERACTIONS for both mean field and beyond mean field predictions for all nuclei * for all nuclear properties

⇒ Challenge in 2008 : Reduce the r.m.s of binding energies differences Other properties similar or better Cope with local criticisms Obey Bruyères Golden Rule

METHODOLOGY, CODES

Methodology used to fit D1S or D1N

$$v_{12} = \sum_{j=1}^{2} exp \left[-\left(\frac{|\vec{r_{1}} - \vec{r_{2}}|}{\mu_{j}}\right)^{2} \right] (W_{j} + B_{j}P_{\sigma} - H_{j}P_{\tau} - M_{j}P_{\sigma}P_{\tau}) + t_{3} \left(1 + x_{3}P_{\sigma}\right) \delta \left(\vec{r_{1}} - \vec{r_{2}}\right) \rho^{\alpha} \left(\frac{\vec{r_{1}} + \vec{r_{2}}}{2}\right) + iW_{ls} \overleftarrow{\nabla}_{12} \cdot \delta \left(\vec{r_{1}} - \vec{r_{2}}\right) \bigwedge \vec{\nabla}_{12} \cdot \left(\vec{\sigma_{1}} + \vec{\sigma_{2}}\right) + \frac{\left(1 - 2\tau_{1}^{z}\right)\left(1 - 2\tau_{2}^{z}\right)}{4} \frac{e^{2}}{|\vec{r_{1}} - \vec{r_{2}}|}$$

Finite range : avoid pathologies "beyond HF" due to unrealistic behavior of 0-range forces at high relative momenta

Methodology used to fit D1S or D1N

$$v_{12} = \sum_{j=1}^{2} exp \left[-\left(\frac{|\vec{r_{1}}-\vec{r_{2}}|}{\mu_{j}}\right)^{2} \right] \langle W_{j} + B_{j}P_{\sigma} - H_{j}P_{\tau} - M_{j}P_{\sigma}P_{\tau}) \\ + \frac{t_{3}(1+x_{3}P_{\sigma})\delta(\vec{r_{1}}-\vec{r_{2}})\rho^{\alpha}(\frac{\vec{r_{1}}+\vec{r_{2}}}{2})}{+iW_{ls}\overleftarrow{\nabla}_{12}\cdot\delta(\vec{r_{1}}-\vec{r_{2}})\bigwedge\vec{\nabla}_{12}\cdot(\vec{\sigma_{1}}+\vec{\sigma_{2}})} \\ + \frac{(1-2\tau_{1}^{z})(1-2\tau_{2}^{z})}{4}\frac{e^{2}}{|\vec{r_{1}}-\vec{r_{2}}|}$$

14 parameters to fit

Finite range : avoid pathologies "beyond HF" due to unrealistic behavior of 0-range forces at high relative momenta

Methodology used to fit D1S or D1N

➡ "Traditional" method involving small set of magic nuclei (!!!) at SR-level

Methodology used to fit D1S or D1N

"Traditional" method involving small set of magic nuclei (!!!) at SR-level

$$B = B(N_0) + \Delta_{\text{quad}} + \Delta_{\text{quad}}$$

⇒ Infinite basis correction : code AMEDEE

$$\Delta_{\infty} = E(N_0) - E(N = +\infty)$$

⇒ Assumption

$\Delta_{\infty} = 2[E(N_0) - E(N_0 + 2)]$

$$B = B(N_0) + \Delta_{\infty} + \Delta_{quad}$$
$$\Delta_{quad} = ESR - EMR$$

⇒ GCM + GOA : code THEOPHIL + KUMAR

$$\hat{\mathcal{H}}_{\text{coll}} = -\frac{\hbar^2}{2} \sum_{i,j} \frac{\partial}{\partial q_i} [M^{-1}(q)]_{ij} \frac{\partial}{\partial q_j} + \mathcal{V}(q)$$

C M. Girod and B. Grammaticos, Nucl. Phys. A330 40 (1979)

J. Libert, M. Girod and J.-P. Delaroche, Phys. Rev. C60 054301 (1999)

Consequences illustrated with D1S

D1S

Consequences illustrated with D1S

Quadrupole correlations missing \Rightarrow Arches between magic nuclei

D1N : better neutron matter EOS !

⇒ F. Chappert, M. Girod & S. Hilaire, Phys. Lett. B668 (2008) 420.

07

Consequences illustrated with D1N

D1N

Consequences illustrated with D1N

D1N

⇒ Make use of the huge data on masses and incorporate a minimum of effectivity in the functional \Rightarrow MR-level = the best formalism we can use

Parameters kept constant: 4 (can be included in the fit)

 $\mu_1 = 0.7 - 0.8$; $\mu_2 = 1.2$; $x_3 = 1$; $\alpha = 1/3$ (0.2-0.5 investigated)

Parameters constrained: 3

- J ~ 29 32 MeV to reproduce at best neutron matter EoS
- K ~ 230 240 MeV as expected from exp. breathing mode data
- k_F kept constant to reproduce charge radii at best (manually adjusted)

Parameters directly fitted to nuclear masses at MR-level: 7 $(a_v, m^*, W_1, M_1, B_2, H_2, W_{so})$

Matrix inversion gives the rest

$$(a_v, J, m^*, K, k_F) \longleftrightarrow (B_{1'}, H_{1'}, W_{2'}, M_{2'}, t_3)$$

5

5

4

For 1/3 of 2149 exp masses (Audi *et al* 2003) excluding N=Z,N=Z±1, N=Z±2 nuclei

Interpolated for odd-odd and odd-even using neighboring even-even nuclei

For 1/3 of 2149 exp masses (Audi *et al* 2003) excluding N=Z,N=Z±1, N=Z±2 nuclei

Interpolated for odd-odd and odd-even using neighboring even-even nuclei

The new fitting procedure

Nuclear Matter Properties

The new fitting procedure : time scales

$$\{Bexp + \Delta_{\infty} + \Delta_{quad}\}$$

For 1/3 of 2149 exp masses (Audi *et al* 2003) excluding N=Z,N=Z±1, N=Z±2 nuclei

Interpolated for odd-odd and odd-even using neighboring even-even nuclei

r.m.s(F45)~1.36 MeV with $E_{Quad}(D1N)$ but ~2.68 MeV with $E_{Quad}(F45)$ r.ms.(F60)~0.97 MeV with $E_{Quad}(F45)$ but ~1.32 MeV with $E_{Quad}(F60)$ r.m.s(F78)~0.90 MeV with $E_{Quad}(F60)$ but ~1.08 MeV with $E_{Quad}(F78)$ r.m.s(F45)~1.36 MeV with E_{Quad}(D1N) but ~2.68 MeV with E_{Quad}(F45)

r.ms.(F60)~0.97 MeV with E_{Ouad}(F45) but ~1.32 MeV with E_{Ouad}(F60)

r.m.s(F78)~0.90 MeV with $E_{Ouad}(F60)$ but ~1.08 MeV with $E_{Ouad}(F78)$

SLOW CONVERGENCE (1 year) COHERENCE DEGRADING r.m.s

Convergence issues : next steps on TERA

CCRT: 4 Interactions in 1 year

TERA: 15 Interactions in 3 months

	r.m.s masses	r.m.s radii
D08	1.027 MeV	0.0302 fm
D19	1.026 MeV	0.0328 fm
D23	0.857 MeV	0.0302 fm
D28	0.990 MeV	0.0377 fm
D32	0.846 MeV	0.0378 fm
D36	0.954 MeV	0.0385 fm
D38	0.939 MeV	0.0358 fm
D39	0.909 MeV	0.0377 fm
D44	0.853 MeV	0.0312 fm
D45	1.364 MeV	0.0295 fm
D52	0.813 MeV	0.0308 fm
D59	0.893 MeV	0.0304 fm

	r.m.s masses	r.m.s radii
F45	1.365 MeV	0.0295 fm
F60	1.376 MeV	0.0299 fm
F78	1.049 MeV	0.0321 fm
F87	1.360 MeV	0.0299 fm
F91	1.262 MeV	0.0386 fm
F101	1.319 MeV	0.0320 fm

RESULTS

Major goal reached : first Gogny mass model !

RADII

Comparison with 707 Exp. Charge Radii

k_{F} =1.346 fm⁻¹ J=28.6 MeV m^{*}/m =0.746 K_{inf} =225 MeV

NUCLEAR MATTER : effective masses

 k_{F} =1.346 fm⁻¹ J=28.6 MeV m*/m=0.746 K_{inf}=225 MeV

NUCLEAR MATTER EOS in the 4 (S,T) channels

k_{F} =1.346 fm⁻¹ J=28.6 MeV m*/m=0.746 K_{inf}=225 MeV

PAIRING

PAIRING

PAIRING

 ω (MeV)

GIANT RESONANCES

E_{exp} = **14.17 MeV** D. H. Youngblood et al., Phys. Rev. Lett. 82, 691 (1999). **E**_{exp} = **13.43 MeV** B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975).

SPECTROSCOPY

Excitation energies of the first 2⁺ for 519 e-e nuclei

FISSION BARRIERS


```
DE LA RECHERCHE À L'INDUSTRI
```


COMPARISON WITH OTHER MASS FORMULAE

SHELL GAPS

SHELL GAPS

(Cı	PHYSICAL REVIEW C 90, 017302 (2014)	d	
•	wi	Predictive power of nuclear-mass models		
ms (MeV)	1 0	Adam Sobiczewski ^{1,2,3,*} and Yuri A. Litvinov ² ¹ National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland ² GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany		
	0	³ Helmholtz Institute Mainz, 55099 Mainz, Germany (Received 29 April 2014; revised manuscript received 16 June 2014; published 14 July 2014)		
	0	The predictive power of modern nuclear-mass models is studied. To quantify this property, we compare the description of masses which were not experimentally known at the time of the model adjustment to that of older masses. For the latter, the masses evaluated in 2003 are taken. The masses evaluated in 2012 and not	eV)	
ns, δr	0	present in the earlier evaluation of 2003 are considered as the new ones. The predictive power is analyzed for ten often-used models of various natures and also for five different regions in the nuclear chart. A strong dependence		
Ľ	0	of predictive power on the model as well as on the considered region of nuclei is observed. No clear correlation between the accuracy of the description of masses by a model and its predictive power is found.		
	-0.2 - -1	0 1 2 3 4 5 6 7 8 9 10 11 12 Model		

Microscopic models

Comparison between several mass models adjusted with 2003 exp and tested with 2012 exp masses

Microscopic models
PERSPECTIVES

FURTHER IMPROVEMENTS

FURTHER IMPROVEMENTS

+ Sensitivity analysis v.s number of major shells

- N basis = N(N-1) Δ_{∞} values \Rightarrow mean r.m.s and dispersion
- Δ_{quad} also sensitive to basis size
- Beyond 5DCH ?
- Same with RMF?

FURTHER IMPROVEMENTS

FURTHER IMPROVEMENTS

The 11th commandment :

ONE SHALL ONLY DESIGN EFFECTIVE INTERACTIONS * for both mean field and beyond mean field predictions * for all nuclei * for all nuclear properties