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I- SCALAR FORM OF THE NUCLEAR DENSITY FUNCTIONAL

Nuclear eigenstates carry good quantum numbers J and M. In
particular, all doubly even nuclei have J = 0 for their ground
states. The corresponding ground state energies,
E = 〈0|H|0〉 = Tr H |0〉〈0|, live in a world of spherically symmetric

densities, ρ(r) = 〈0|a†rar |0〉 = Tr a
†
rar |0〉〈0|.

For odd nuclei, or those few doubly odd nuclei with J 6= 0 in their
magnetic multiplet of ground states, there exists also a spherically

invariant representation. Indeed, the density operator in
many-body space, D =

∑

M |JM〉〈JM|/(2J + 1), rotates as a
scalar. Concomitantly, the energy, E = Tr H D, corresponds to a
spherical density, ρ(r) = Tr a

†
rar D.

CONCLUSION: The nuclear density functional theory can be,

universally, a one-dimensional theory, using just radial profiles.



II- FLUCTUATIONS AND ERROR BARS FOR COLLECTIVE COORDINATES

Energy surfaces e(b) occur in many nuclear models. Here, b

means the expectation value(s), b ≡ 〈B〉, of one (or several)
collective coordinate operator(s) B . Often, e(b) ≡ 〈H〉 results
from a constrained mean field calculation, where the “free energy”,
ε(λ) ≡ 〈H〉 − λ〈B〉, is made minimal, or at least stationary, as a
function of the Lagrange multiplier(s) λ. An elimination of λ(s)
between 〈H〉 and 〈B〉 returns e(b).

Because of the Kohn-Sham theorem, density functional
calculations amount to mean-field calculations, and energy surfaces
now often result from constrained density functionals.

This talk wants to draw attention upon the difference between
〈B〉2 and 〈B2〉. Error bars, ∆b ≡

√

〈B2〉 − 〈B〉2, can corrupt
e(b), even if one introduces, as usually in the literature, a 〈B〉2

stabilization in the form, 〈H〉 − λ〈B〉 + µ〈B〉2.



Toy model showing BIMODAL solutions making 〈B〉 misleading

Consider H = −d2/dr2 + (r4 − 18r2 − 2r + 93)/120, a 1-D
Hamiltonian, and the constrained ground state wave function ψ
and eigenvalue ε of (H − λr),
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Figure: Dashes, toy potential. Full lines, five cases of ψ. From left to
right, λ = −1,−.04,−.016, 0, 1, and 〈r〉 = −3.84,−1.61, .06, 1.28, 3.86.

When 〈r〉 sits in a valley, ψ shows one peak only, at the correct
spot. However, when 〈r〉 sits on top or near a mountain, tunnel
effects delocalize ψ. Bimodal shapes occur. An increase of ∆r is a
signature that ψ has become a bad probe of the energy landscape.



Such tunnel effects and fluctuations of the constraint have a dire
consequence: one can prove a theorem that, for any Hamiltonian
H and any constraint operator B , the strict minimization of the
constrained energy returns ε(λ) as a concave function. Hence, its
Legendre transform, e(b) ≡ 〈H〉 (〈B〉), is convex. Poor landscape!
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Figure: Same toy model. Left: concavity of 〈(H − λr)〉 as a function of
λ. Right: convexity of e(〈r〉) and mismatch between shapes of e and v .



Introducing B2

To obtain a unimodal ψ as a good quality probe of the landscape,
one must keep track of both 〈B〉 and its error bar, ∆b. A second
constraint operator, µB2, must be added to the first one, −λB .
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Figure: Same model. Left: concavity of 〈(H − λr +µr2)〉 as a function of
λ and µ. Center: contours of ∆r(λ, µ). Right: convexity of e(〈r〉, 〈r2〉).



Representation {b,∆b}

Replace the plot of 〈H〉 in terms of 〈B〉 and 〈B2〉 by a plot in
terms of 〈B〉 and ∆b. Now, ride a line where ∆b is constant. This
keeps constant, and under control, the quality of the probe ψ.
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Figure: Still same model. Left: 〈H〉(〈r〉,∆r). Right: red, 〈H〉(〈r〉) along
∆r = .9; green, same if ∆r = 1; blue, 〈H〉(〈r〉) if µ = 0; dashes, true v .

CONCLUSION: Energy surfaces demand a verification of the

fluctuations of their collective coordinates.



THE THEOREM

Let Q be the projector out of the ground state (g.s.) ψ of the
constrained operator H = H − λB .
We know that the derivative of the g.s.eigenvalue ε is,

dε/dλ = −〈ψ|B |ψ〉.
The Brillouin-Wigner theorem also states that

d |ψ〉/dλ = − Q
ε−QHQ

B |ψ〉.
Consequently, the second derivative reads,

d2ε/dλ2 = 2〈ψ|B Q
ε−QHQ

B |ψ〉,
a negative number since the operator, ε− QHQ, is negative
definite. This makes ε a concave function and its Legendre
transform, the energy 〈H〉, a convex function.

No way to obtain maxima or saddle points.


