Nuclear Forces and Exotic Oxygen and Calcium Isotopes

Jason D. Holt

<u>References</u>

- Otsuka, Suzuki, JDH, Schwenk, Akaishi PRL 105, 032501 (2010)
- JDH, Menendez, Schwenk, EPJA **49**, 39 (2013)
- Caesar et al. (R3B), Simonis, JDH, Menendez, Schwenk PRC 88, 034313 (2013)
- Bogner, Hergert, JDH, Schwenk, Binder, Calci, Langhammer, Roth, arXiv:1402.1407

Bundesministerium für Bildung und Forschung

Drip Lines and Magic Numbers: The Nuclear Landscape Toward the Extremes

Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort What are the properties of proton/neutron-rich matter? What are the limits of nuclear existence? 82 How do magic numbers form and evolve?

Advances in many-body methods

Green's Function Monte Carlo (Gezerlis, Carlson, Pieper, Wiringa) Hyperspherical Harmonics (Bacca) No-Core Shell Model (Navratil, Barrett, Vary, Roth) Coupled Cluster (Hagen, Papenbrock, Dean, Roth) In-Medium SRG (Bogner, Hergert, JDH, Schwenk) Many-Body Perturbation Theory (JDH, Hjorth-Jensen, Schwenk) Self-Consistent Green's Function (Barbieri, Soma, Duguet)

Hyperspherical Harmon (Bacca) No-Core Shell Model (Navratil, Barrett, Vary, Ro 2; 2^{0}

3N forces essential for exotic nuclei

Drip Lines and Magic Numbers: 3N Forces in Medium-Mass Nuclei LETTER

Evidence for a new nuclear 'magic number' from the level structure of ^{54}Ca

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, J. Lee², K. Matsui⁵, S. Michimasa¹, T. Motobayashi², D. Nishimura⁶, T. Otsuka^{1,5}, H. Sakurai^{2,5}, Y. Shiga⁷, P.-A. Söderström², T. Sumikama

δZ

Neutron number 34 makes exotic calcium-54 isotopes doubly magic

MAGIC

IERE'S LOOKING

8

UNCHARTED

TERRITORY

neutrons

COMING TO

doi:10.1038/nature12226

NEWS & VIEWS RESEARCH

alcium

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr². M. Rosenbusch¹, L. Schweikhard¹. A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wo

Heavy calcium nuclei weigh in

The configurations of calcium nuclei make them good test cases for studies of nuclear properties. The measurement of the masses of two heavy calcium nuclei provides benchmarks for models of atomic nuclei. SEE LETTER P.346

Oxygen Isotopes

The Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate valence-space Hamiltonian inputs from nuclear forces Interaction matrix elements Single-particle energies (SPEs)

The Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Calculate valence-space Hamiltonian inputs from nuclear forces Interaction matrix elements Single-particle energies (SPEs)

Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
 2) Single-particle energies calculated self consistently
 3) Harmonic-oscillator basis of 13 major shells: converged
 - 4) NN and 3N forces from chiral EFT to 3^{rd} -order MBPT
 - 5) Explore extended valence spaces

Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13 major shells: converged
- \star 4) NN and 3N forces from chiral EFT to 3rd-order MBPT
 - 5) Explore extended valence spaces

NN matrix elements

- Chiral N³LO (Machleidt, $\Lambda_{NN} = 500$ MeV); smooth-regulator $V_{low k}(\Lambda)$

3N force contributions

- Chiral N²LO

c_D, c_E fit to properties of light nuclei with $V_{\text{low }k}$ ($\Lambda = \Lambda_{3N} = 2.0 \text{ fm}^{-1}$)

- Included to 5 major HO shells

Chiral Effective Field Theory: Nuclear Forces

Nucleons interact via pion exchanges and contact interactions

Consistent treatment of NN, 3N,...

3N couplings fit to properties of light nuclei at low momentum

Improve convergence of many-body methods:

$$V_{{
m low}\,k}$$
 or $V_{{
m SRG}}$

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meissner,...

Valence-Space Strategy

- 1) Effective interaction: sum excitations outside valence space to 3rd order
- 2) Single-particle energies calculated self consistently
- 3) Harmonic-oscillator basis of 13 major shells: converged
- 4) NN and 3N forces from chiral $EFT to 3^{rd}$ -order MBPT
- **★**5) Explore **extended valence spaces**

Philosophy: diagonalize in largest possible valence space (where orbits relevant)

Treats higher orbits nonperturbatively When important for exotic nuclei?

Limits of Nuclear Existence: Oxygen Anomaly

Limits of Nuclear Existence: Oxygen Anomaly

Mass Number A

3N Forces for Valence-Shell Theories

Normal-ordered 3N: contribution to valence-space Hamiltonian

Effective one-body

Effective two-body

Combine with NN (Third Order): no empirical adjustments

Oxygen Anomaly

Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

Single-Particle Energies with NN+3N Forces

3N forces: additional repulsion improves SPEs

Orbit a	USDb	$T + V_{\rm NN}$	$T + V_{\rm NN} + V_{\rm 3N}$	SDPF-M	$T + V_{\rm NN} + V_{\rm 3N}$
<i>d</i> _{5/2}	-3.93	-5.43	-3.78	-3.95	-3.46
<i>s</i> _{1/2}	-3.21	-5.32	-2.42	-3.16	-2.20
<i>d</i> _{3/2}	2.11	-0.97	1.45	1.65	1.92
$f_{_{7/2}}$				3.10	3.71
p _{3/2}				3.10	7.72

JDH, Menendez, Schwenk, EPJA (2013)

Similar contributions in standard/extended valence spaces

Comparable with phenomenology

Ground-State Energies of Oxygen Isotopes

Valence-space interaction and SPEs from NN+3N

JDH, Menendez, Schwenk, EPJA (2013)

Repulsive character improves agreement with experiment *sd*-shell results underbound; improved in **extended space**

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N

 $5/2^+$, $3/2^+$ energies reflect ^{22,24}O shell closures

Experimental Connection: Beyond the Dripline

Hoffman, Kanungo, Lunderberg... PRLs (2008+)

Valence-space Hamiltonian from NN + 3N + residual 3N

Repulsion more pronounced for neutron-rich systems: 400 keV at ²⁶O Improved agreement with new data beyond ²⁴O dripline Future: include coupling to continuum

IM-SRG for Valence-Space Hamiltonians

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRL (2011)

$$H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \rightarrow H^{d}(\infty)$$

Decouples reference state from excitations $\langle npnh | H(\infty) | \Phi_c \rangle = 0$

IM-SRG for Valence-Space Hamiltonians

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRC (2012)

Open shell systems:

split particle states into valence states, v, and those above valence space, qRedefine "off-diagonal" to exclude valence particles

 $H(s=0) \rightarrow H(\infty)$

IM-SRG for Valence-Space Hamiltonians

In-Medium SRG applies continuous unitary transformation to drive offdiagonal physics to zero Tsukiyama, Bogner, Schwenk, PRC (2012)

Open shell systems:

split particle states into valence states, v, and those above valence space, qRedefine "off-diagonal" to exclude valence particles

 $H(s = 0) \rightarrow H(\infty)$

Defines new effective valence-space Hamiltonian $H_{\rm eff}$ States outside valence space are decoupled

Nonperturbative Valence-Space Strategy

- 1) Effective interaction: nonperturbative from IM-SRG
- 2) Single-particle energies: nonperturbative from IM-SRG
- 3) Hartree-Fock basis of $e_{\text{max}} = 2n + l = 14$ converged
- \bigstar 4) NN and 3N forces from chiral EFT
 - 5) Explore extended valence spaces in progress

NN matrix elements

- Chiral N³LO (Machleidt, Λ_{NN} = 500MeV); free-space SRG evolution
- Cutoff variation $\lambda_{\text{SRG}} = 1.88 2.24 \text{ fm}^{-1}$
- Vary $\hbar \omega = 20 24 \text{MeV}$
- Consistently include 3N forces induced by SRG evolution

Initial 3N force contributions

- Chiral N²LO Λ_{3N} = 400MeV
- Included with cut: $e_1 + e_2 + e_3 \le E_{3 \max} = 14$

Perturbative vs. Nonperturbative SPEs

3N forces: additional repulsion improves SPEs

Orbit	USDb	MBPT NN	MBPT NN+3N	IM-SRG NN	IM-SRG NN+3N-ind	IM-SRG NN+3N-full
d _{5/2}	-3.93	-5.43	-3.78	-7.90	-3.77	-4.62
s _{1/2}	-3.21	-5.32	-2.42	-6.87	-2.46	-2.96
<i>d</i> _{3/2}	2.11	-0.97	1.45	1.41	2.33	3.17

JDH, Menendez, Schwenk, EPJA (2013) Bogner et al., arXiv:1402.1407

Similar contributions in standard/extended valence spaces

Comparable with phenomenology

IM-SRG Oxygen Ground-State Energies

Valence-space interaction and SPEs from IM-SRG in sd shell

Bogner et al., arXiv:1402.1407

NN+3N-induced reproduce exp well, not dripline NN+3N-full modestly overbound – good behavior past dripline Good dripline properties Very weak $\hbar \omega$ dependence

IM-SRG Oxygen Ground-State Energies

Valence-space interaction and SPEs from IM-SRG in sd shell

Bogner et al., arXiv:1402.1407

NN+3N-induced reproduce exp well, not dripline NN+3N-full modestly overbound – good behavior past dripline Good dripline properties Very weak $\hbar \omega$ dependence

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N forces

Clear improvement with full NN+3N Confirms valence-space results Remarkable agreement with same forces

IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG

Clear improvement with NN+3N-full IM-SRG: comparable with phenomenology

IM-SRG Oxygen Spectra

Oxygen spectra: extended-space MBPT and IM-SRG

Clear improvement with NN+3N-full

Continuum neglected: expect to lower $d_{3/2}$

IM-SRG Oxygen Spectra

Oxygen spectra: IM-SRG predictions beyond the dripline

²⁴O closed shell (too high 2^+)

JDH, Menendez, Schwenk, EPJ (2013) Bogner et al., arXiv:1402.1407

Continuum neglected: expect to lower spectrum Only one excited state in ²⁶O below 6.5MeV

Towards Full sd-Shell with MBPT: Fluorine

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

sd shell filled at 29 F/ 30 Ne

Need extended-space orbits

Towards Full sd-Shell with MBPT: Fluorine

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

NN only: severe overbinding

NN+3N: good experimental agreement through 29 F Sharp increase in ground-state energies beyond 29 F: incorrect dripline

Towards Full sd-Shell with MBPT: Neon

Next challenge: valence protons + neutrons

Neutron-rich fluorine and neon

Similar behavior in Neon isotopes

Revisit cross-shell valence space theory – **non-degenerate valence spaces** Tsunoda, Hjorth-Jensen, Otsuka

Calcium Isotopes

Exploring the frontiers of nuclear science:

Worldwide joint experimental/theoretical effort

What are the properties of proton/neutron-rich matter?

50

What are the limits of nuclear existence?

protons

8

2

28

28

neutrons

20

20

8

How do magic numbers form and evolve?

<u>References</u>

- JDH, Otsuka, Schwenk, Suzuki, JPG 39, 085111 (2012)
- Gallant et al., PRL 109, 032506 (2012)
- JDH, Menendez, Schwenk, JPG 40, 075105 (2013)

82

- Wienholtz et al., Nature 486, 346 (2013)
- JDH, Menendez, Simonis, Schwenk, in prep.

Key physics problems:

- *N*=28 magic number
- Shell evolution through ⁵²Ca, ⁵⁴Ca
- Spectra, transition rates
- Pairing gaps: interface with EDF

Calcium Isotopes: Magic Numbers

GXPF1: Honma, Otsuka, Brown, Mizusaki (2004) KB3G: Poves, Sanchez-Solano, Caurier, Nowacki (2001)

Phenomenological Forces

Large gap at ⁴⁸Ca
Discrepancy at N=34

Microscopic NN Theory

Small gap at ⁴⁸Ca

N=28: first standard magic

number not reproduced
in microscopic NN theories

Calcium Ground State Energies and Dripline

Signatures of shell evolution from ground-state energies?

No clear dripline; flat behavior past ⁵⁴Ca – Halos beyond ⁶⁰Ca?

 $S_{2n} = -[BE(N,Z) - BE(N-2,Z)] \text{ sharp decrease indicates shell closure}$ $\Delta_n^{(3)} = \frac{(-1)^N}{2} [BE(N+1,Z) + BE(N-1,Z) - 2BE(N,Z)] \text{ peak indicates shell closure}$

Two-Neutron Separation Energies: Mass of 52Ca

Compare with AME2003 data

NN+3N Predictions

Reproduce ⁴⁸Ca shell closure

Predictions too bound past ⁵⁰Ca

Experimental Connection: Mass of 52Ca

New mass measurements of ^{51,52}Ca at **TITAN**: Penning trap experiment

TITAN Measurement

⁵²Ca mass 1.75MeV *more* bound than AME2003 value

NN+3N Predictions

Confirmed with new measurements

Good reproduction of pairing gaps

Pairing for Shell Evolution N=28

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca Agreement with CC throughout chain Hagen et al. PRL (2012)

N=28 strong peak

JDH, Menendez, Schwenk, JPG (2013)

Pairing for Shell Evolution N=32

Peak in pairing gaps: complementary signature for shell closure Compare with 2^+ energies for Ca Agreement with CC throughout chain Hagen et al. PRL (2012) N=28 strong peak N=32 moderate peak Close to data with new TITAN value Experimental measurement of ⁵³Ca mass needed to reduce uncertainty

JDH, Menendez, Schwenk, JPG (2013)

Experimental Connection: Mass of 54Ca

New precision mass measurement of ^{53,54}Ca at **ISOLTRAP**: multi-reflection ToF

ISOLTRAP *Measurement* Sharp decrease past ⁵²Ca Unambiguous closed-shell ⁵²Ca Test predictions of various models

MBPT NN+3N

Excellent agreement with new data Reproduces closed-shell ^{48,52}Ca Weak closed sell signature past ⁵⁴Ca

Experimental Connection: Mass of 54Ca

New precision mass measurement of ^{53,54}Ca at **ISOLTRAP**: multi-reflection ToF

ALEXANDRA GADE

Pairing for Shell Evolution N=34

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca Agreement with CC throughout chain Hagen et al. PRL (2012)

N=28 strong peak

N=32 moderate peak

N=34 weak signature
3N forces suppress closed-shell feature

JDH, Menendez, Schwenk, JPG (2013)

Neutron-Rich Ca Spectra Near N=34

Neutron-rich calcium spectra with NN+3N

JDH, Menendez, Schwenk, JPG (2013) JDH, Menendez, Simonis, Schwenk, in prep

Phenomenology: inconsistent predictions

NN+3N: signature of new *N*=34 magic number (also predicted in CC theory) **Agrees with new measurements from RIKEN**

Steppenbeck et al., Nature (2013)

N=28 Magic Number: *M1* Transition Strength

 $B(M1:0_{gs}^{+} \rightarrow 1^{+})$ concentration indicates a single particle (spin-flip) transition Not reproduced in phenomenology von Neumann-Coesel, *et al.* (1998)

NN-only: highly fragmented strength, well below experiment

N=28 Magic Number: *M1* Transition Strength

 $B(M1:0_{gs}^{+} \rightarrow 1^{+})$ concentration indicates a single particle (spin-flip) transition Not reproduced in phenomenology von Neumann-Coesel, *et al.* (1998)

NN-only: highly fragmented strength, well below experiment

pf-shell:

3N concentrates strength Peaks below experiment

JDH, Otsuka, Schwenk, Suzuki, JPG (2012)

N=28 Magic Number: M1 Transition Strength

 $B(M1:0_{gs}^{+} \rightarrow 1^{+})$ concentration indicates a single particle (spin-flip) transition Not reproduced in phenomenology von Neumann-Coesel, *et al.* (1998)

NN-only: highly fragmented strength, well below experiment

pf-shell:

3N concentrates strength Peaks below experiment

JDH, Otsuka, Schwenk, Suzuki, JPG (2012)

 $pfg_{9/2}$ -shell:

3N gives additional concentration Peak close to experimental energy

Supports N=28 magic number

Transition Rates

Neutron-rich calcium B(E2) rates

JDH, Menendez, Simonis, Schwenk, in prep. Reasonable agreement with experiment – comparable to phenomenology Uses effective charges

Effective Operators

Investigate many-body effects on effective charges and quenching of g_A

Use low-momentum interactions and 3N forces

Conclusion/Outlook

• Nuclear structure theory of medium-mass nuclei with 3N forces, extended spaces

Non-empirical valence-space methods

- First calculations based on NN+3N forces
- Extended valence spaces needed
- Cures NN-only failings: dripline, shell evolution, spectra
- Residual 3N forces improve predictions beyond dripline

New directions

- Promising first results for F/Ne ground states to
- Non-perturbative IM-SRG excellent binding energies, spectra in sd shell only!

• Large-space ab-initio methods

- Similar improvements with NN+3N as in valence-space methods
- Agreement between methods encouraging for future benchmarking valuable!

Acknowledgments

Collaborators

J. Menendez, J. Simonis, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth

