

Resonances of ${ }^{24} \mathrm{O}$ and proton-nucleus interaction potentials of ${ }^{21-24} \mathrm{O}$
via (p, p) scattering at RIBF
using the MUST2 array

The Japanese -French RIBF57 collaboration
MUST2 campaign at RIKEN in 2010 >> combination of unique worldwide array and RIBF intensities

Location of the drip line for light nuclei influenced by the 3-nucleon forces ab-initio calculations by G. Hagen et al., PRC 80, 021306 ('09).
T. Otsuka et al., PRL 105, 032501, (2010).

Challenges for nuclear models:

treatment and interplay between correlations, tensor, 3-body forces, continuum coupling effects

Last bound $N=16$

No Gamma: M. Stanoiu et al., PRC 69, 034312 (2004)
A. Ozawa et al. PRL 84, 24 (2000) Sn trend with Tz
\rightarrow possible change at $N=16$
\rightarrow T. Otsuka et al., PRL 2001-2010

Evolution of the structure at large isospin ?
\rightarrow structure
\rightarrow unbound excited states


```
\({ }^{24} \mathrm{O}\) has no bound excited state ; \(\mathrm{S}_{\mathrm{n}}=4.19\) (10) MeV from Mass Eval. in 2011)
``` >> unbound states via ( \(\mathrm{p}, \mathrm{p}^{\prime}\) ) \& particle spectroscopy >> missing mass method


Reaction energy conservation - Ex from (\(\mathbf{E p}, \boldsymbol{p}\)) \(\left(M_{\text {recoil }} c^{2}\right)^{2}=\left(E_{0}\right)^{2}+2\left(p_{i n c} c^{2}\right)\left(p_{p} c^{2}\right)\left(\cos \Theta_{p}\right)-2 T_{p}\left(E_{i n c}+m_{p} c^{2}\right)\)

Non-local g-matrix potential approach (\(p, p\)) M. Dupuis et al. PRC73, 014605 ('06)
(\(p, p^{\prime}\)) ; PLB 665, 152 ('08) RPA+D1S
\(E_{e x}=M_{\text {recoil }} C^{2}-E_{0}\)

TOP VIEW: MUST2 telescopes in F8 reaction chamber, PPAC and target holder

\section*{ZDS PID via DE-TOF-B \(\rho\)}

BigRIPS PID via DE-TOF-B \(\rho\)

\(\mathrm{dp} / \mathrm{p}=6 \%\) large acceptance mode X,Y,T PPAC F9 (E,T) plastics F9-F11 (3.1mm) 3 settings Brho=7.49T.m,
- \({ }^{23} \mathrm{O}\) : -4.17 \%; - \({ }^{22} \mathrm{O}\) : -4.34 \%
```

MUST2
PID proton ( }\mp@subsup{E}{p}{},\mp@subsup{\Theta}{p}{}
PPACs F8 }->\mathrm{ target (X,Y, ( Oinc}

```

BigRIPS
\({ }^{48} \mathrm{Ca}\) @ \(345 \mathrm{MeV} / \mathrm{n}\)
\({ }^{9}\) Be 15mm thick Target
(X,Y,T) PPAC F5
(E,T) plastics F3-F7 (1.1mm)

PPACs in F8 beam reconstruction on target (FWHM) in X: 9; Y: 12mm
Angle \(0.77^{\circ}\); total \(<2^{\circ}\)
resolution
\(\sigma_{X}=1.2 ; \sigma_{Y}=1.3 \mathrm{~mm}\) \(\sigma(\theta)=0.04 \mathrm{deg}\)
Efficiency: 92\%

Total \(\left({ }^{24} \mathrm{O}\right)=1.0510^{9}\) in 7 days (1760/s) for \(1^{\text {ary }}\) beam @ 180 pnA Purity \(2.5 \%\) of the beam (including \(A / Z=3\) particles) \(D E / E\) (beam) \(=9 \%\)

/Z

PhD analysis by S. Boissinot, SPhN

\(>\) collaboration IRFU, IPN Orsay, GANIL
\(>8\) telescopes \(10 \times 10 \mathrm{~cm}^{2}\) Si-strips/(SiLi 4.5 mm\() / \mathrm{CsI}\)
\(>\) high granularity \(128(\mathrm{X}, \mathrm{Y})\)
ASIC electronics 'MATE' Time and Energy for each channel developed by DAPNIA/SEDI
\(>\) Compact geometry - 1400 channels (E,T)
E. Pollacco et al., EPJA 25, s01, 287 (2005).

Si \(300 \mu \mathrm{~m}\) 128(X,Y) Resolutions:
\(\Delta \mathrm{E} \sim 45 \mathrm{keV}\) at 5.5 MeV ; \(\Delta \mathrm{x}, \Delta \mathrm{y} \sim 0.53 \mathrm{~mm}\)
\(\Delta \theta_{\text {lab }} \sim 0.2^{\circ}\) at \(15 \mathrm{~cm} \quad \Delta T^{\sim} 1.5 \mathrm{~ns}\)
CsI \(40 \mathrm{~mm} ; 16\) pads \(3 \times 3 \mathrm{~cm}^{2} \Delta \mathrm{E} / \mathrm{E} \sim 8 \%\) @ 5 MeV
Conditions for RIBF57:
\(\theta_{\text {lab }} \sim 0.17^{\circ}\) at \(23 \mathrm{~cm} ; \sigma\left(\mathrm{E}_{\mathrm{X}}\right)=34 \mathrm{keV} ; \sigma\left(\mathrm{E}_{\mathrm{Y}}\right)=38 \mathrm{keV}\) Si Threshold \(400 \mathrm{keV} 400 \mathrm{keV}<\mathrm{Ep}<6.2 \mathrm{MeV}\) \(1 \mathrm{MeV}<\mathrm{E}_{\mathrm{CsI}}<90 \mathrm{MeV}\)

One day statistics \({ }^{22} 0\); intensity \({ }^{\sim} 1.410^{4} / \mathrm{s} ; \quad \mathrm{E}=262.5 \mathrm{MeV} / \mathrm{u} ; \mathrm{CH}_{2} 2.7 \mathrm{mg} / \mathrm{cm}^{2}\) at 45 deg

All conditions: Target cut selection +PID BigRIPS, ZDS

Whole statistics of the elastic and inelastic data \({ }^{22} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right) 1936\) counts

gamma-spectroscopy 3.199 (8) MeV
M. Stanoiu et al., PRC 69, 034312 (2004)

Here: Ex = 3.0 \(\pm 0.5 \mathrm{MeV}\);
Ex resolution ~ 1.2 to 1.5 MeV

PhD analysis by S. Boissinot, SPhN

Elastic \% (p, p') orders of magnitude
>> in agreement with calculations at \(262.5 \mathrm{MeV} / \mathrm{n}\)

Theoretical calculations for the spectroscopy of \({ }^{24} \mathrm{O}\), cases of large valence space

Particle-vibration coupling model
G. Colo and H. Sagawa,

NPA695, 167 ('01)
Inclusion of \(\mathrm{f} 7 / 2 \mathrm{p} 3 / 2\)
J.D Holt, J.Menendez, A.Schwenk,

EPJA 49, 39 (2013).

Unbound excited states of \({ }^{24} \mathrm{O}\) above \(\mathrm{S}_{2 n}\), experiment and calculations

\section*{OMP Calculations}

ECIS 06 code
(J Raynal CEA-SPhT)
+ Koning-Delaroche (KD)
global nucleus-nucleon P otential
NPA713, 231(2003)

Full statistics on target (all runs)
\(N\left({ }^{22} \mathrm{O}\right)=1.09 \mathrm{E}+09\)
(1day)
\(N\left({ }^{24} \mathrm{O}\right)=1.05 \mathrm{E}+09\)
(7 days)

Microscopic potentials OMP: H Arellano Univ of Chile,
Densities CEA-DAM HFB D1S Gogny; \({ }^{22} \mathrm{O}(\mathrm{rms})_{m}=3.0 \mathrm{fm} ;{ }^{24} \mathrm{O}(\mathrm{rms})_{m}=3.3 \mathrm{fm}\).
Cf H. F. Arellano and M. Girod PRC 76, 034602 (2007)
Scattering based on Argonne18 bare potential.
Same for Melbourne G-matrix interaction: M Dupuis et al CEA BIII.

Global potentials (KD) (VIx) OMP with ECIS 06
+ Doing (p,p') particle spectroscopy for \({ }^{24} \mathrm{O}\) : to have \(1000 / \mathrm{s}\) at RIBF we worked at 263 . A.MeV
\(\rightarrow\) low cross sections, triton contamination due to \(A / Z=3\)
Difficult path (\(9,4 \mathrm{~m}^{3}+\) heavy 1852 kg of MUST2 equipments !)
but unique way to obtain (p,p) up to now: I ~ 1700/s @RIBF
+Combination of state-of-the-art particle detector array MUST2 and BigRIPS
+ unique worldwide RIBF intensities >>> Rare data but very exclusive
+ Analysis of Ex spectrum UP TO \(35 \mathrm{MeV} \rightarrow\) E1 window !!
Indication of structures at \(\sim 9 \mathrm{MeV}, 16\) and 22 (2) MeV

Low integrated (\(p, \mathrm{p}^{\prime}\)) yields for states below \(\mathrm{S}_{2 n}, \sigma(\mathbf{2 +})<\mathbf{0 . 4} \mathbf{~ m b}\)
\(\rightarrow\) low transition strength,
within microscopic reaction models \(\sigma(2+)=0.53 \mathrm{mb}\)
\(\rightarrow\) consistent with the \(\mathrm{N}=16\) shell gap from Tshoo et al.
Further: study of states \(>S_{2 n}\),
possible probes for the \(s d-f p\) shell gap at \(N=16\) studied within models including 3-body interaction and extended sd-fp space.

E1 window
-

+ First (\(\mathrm{p}, \mathrm{p}\)) elastic cross sections at RIBF energies \(\mathrm{E} \sim 260-290 \mathrm{MeV} / \mathrm{n}\)
Systems: \({ }^{24} \mathrm{O}(\mathrm{p}, \mathrm{p}){ }^{23} \mathrm{O}\) also for \({ }^{23} \mathrm{~F}+\) reference \({ }^{22} \mathrm{O}(\mathrm{p}, \mathrm{p})+{ }^{21} \mathrm{O}\) also for \({ }^{25} \mathrm{~F}\) (Chen, Otsu et al.)
\(\rightarrow\) Whole set of (\(\mathrm{p}, \mathrm{p}\)) for \({ }^{21,22,23,24} \mathrm{O}\) : comparison to OMP microscopic calculations
Further: Extend the reaction models to include (\(\mathrm{p}, \mathrm{pX}\)) knock-out contributions
\(\rightarrow\) Extract the range for the matter rms radii, - smaller rms from \(\sigma_{1}\) measurements Values consistent with the \((p, p)\) data are: \({ }^{22} \mathrm{O}(\mathrm{rms})_{m}=3.0 \mathrm{fm} ;{ }^{24} \mathrm{O}(\mathrm{rms})_{m}=3.3 \mathrm{fm}\).(within \(\left.+/-0.15 \mathrm{fm}\right)\)

Collaboration of the \({ }^{24} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)\) RIBF 57 experiment

Spokespersons:
Hideaki OTSU

RIKEN RIBF
Hideaki OTSU
Tohru MOTOBAYASHI
Mizuki NISHIMURA

\section*{}

MATSUSHIDA德 K. YONEDA

BigRIPS team

Thanks to all members of BIgRIPS team,
Hiroyoshi SAKURAI

Rui Jiu CHEN (PhD)
Maya TAKECHI
Y. TOGANO

Evgueni NIKOLSKI
accelerator team (M. KASE) and to coordinator (H.UENO)
MUST2 collaboration
CEA-Saclay, DSM/IRFU/SPhN:
Simon BOISSINOT (PhD \(\rightarrow\) Dr 12/09/2013), Valérie LAPOUX, Freddy FLAVIGNY, Laurent NALPAS, Corinne LOUCHART, Emmanuel POLLACCO, Alexandre OBERTELLI
CNRS IN2P3 IPN-Orsay: Adrien MATTA, Serge FRANCHOO, Fairouz HAMMACHE, Yorick BLUMENFELD
Technical and engineer support for MUST2-GANIL:
(Technical Board) Patrice GANGNANT, Jean-François LIBIN (Electronics, Data acquisition) Ch. HOUARNER, Frédéric SAILLANT Mechanics, drawings IPN Orsay Emmanuel RINDEL, Philippe ROSIER```

