

Actinides on the high priority request list & Experiences with modeling (n,n'g) reactions using TALYS

Arjan Plompen EC-JRC-IRMM, SN3S Unit

European Commission, Joint Research Centre,

Institute for Reference Materials and Measurements

Standards for Nuclear Safety, Safeguards and Security

www.jrc.ec.europa.eu

High Priority Request List for nuclear data was renewed in 2004 Current entries 2005-2008 www.oecd-nea.org/dbdata/hprl

Home	About Us We	ork Areas Da	ta Bank	Publicatio	ns Delegate	es' Area	Press Room		
	NEA				Search	BETTER P	OLICIES FOR BETTER LIVES		
Data Bank >	Nuclear Data Services								
NEA Nu	ıclear Data High Pr	iority Request	List, HPRL						
HPRL-Mai	_		request quidelines		ted references				
Request ID	18		Status of the requ	lect	High Priority reque	et			
	Reaction and process	Incident Energy	· · ·	nergy or angle Target uncertainty					
92-U-238		65 keV-20 MeV	Emis spec.		See details	Y			
Field	Subfield	Date Request created	Date Request acc	te Request accepted O		·]			
Fission	Fast Reactors EFR, SFR, ABTR	. 28-MAR-08	11-SEP-08						
Send a (comment on this request to NEA								
Requester: Prof. Massimo SALVATORES at CADARACHE, FR Email: massimo.salvatores@cea.fr									
Project (context): NEA WPEC Subgroup 26									
Impact: Design phas	es of selected reactor and fuel	cycle concepts require	improved data and	methods	in order to reduce r	margins for b	oth		
	and safety reasons. A first indic								
			Joint						

23 of the 36 requests concern actinides

3 of 23 requests are exclusively thermal-resolved resonance region. Rest cover the unresolved region and the lower fast region (< 6 MeV). Few cases up to 10 or 20 MeV.

For completeness and consistency, modeling is essential.

All cross sections (total and partial, all energies). All physics aspects (spectra, ddx).

In most cases the result should be very accurate.

Detailed reproduction of high quality measurements. Account for important physics aspects that are known. Implement these without approximation. Identify what is not done yet. Account for remaining model defects.

- 1. H3,H4 239Pu and 235U prompt fission gammas
 - a. Deficiencies found in TLD measurements for JHR/RJH at MINERVE and at EOLE (C/E = 0.7, origin request: Rimpault, May 2006)
 - b. Required uncertainty PFG data: 7.5%.
 - c. Follow-up:
 - SG-27 (Jacqmin) i.
 - ii. New measurements IRMM, CEA, CNRS, JAEA

Centre

New fission modeling codes (GEF, LANL, CEA 2x) iii.

The y-heating in a center of a typical fast reactor core [Lut01] comes from several components, roughly:

20% from the v produced in radiative capture

40% from the prompt y emitted by fission fragments

30% from the delayed y produced by fission products

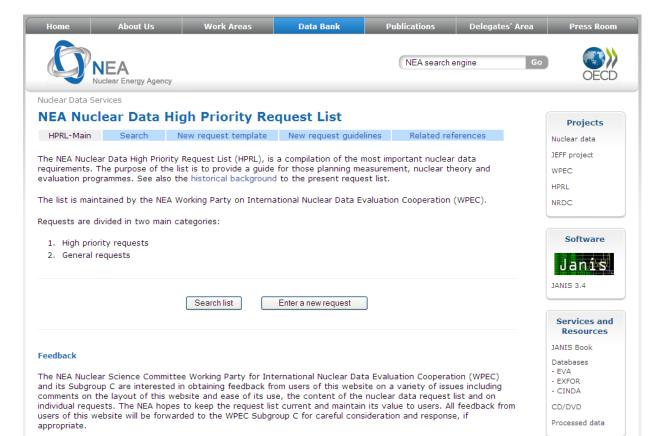
***0% from the inelastic scattering reactions

- 2. H6, H9 U-233(n,g) and nu-bar
 - a. G. Noguere (CEA, April 2006, (n,g) 10 keV 1 MeV)
 - b. Underestimation by 9% in Profil & Profil2 experiments Phenix
 - c. Required uncertainty 9%.
 - d. A. Bidaud (CNRS, April 2007, (n,g) and nu-bar thermal-10 keV
 - e. For design studies of Molten Salt Reactors
 - f. Desired uncertainty nubar: 0.5%, capture 5%
 - g. Follow-up: Measurements are planned at CNRS

- 3. H11 Pu-239(n,f), (n,g) SIG, ETA, ALPHA
 - a. L. Leal (ORNL, May 2007, jefdoc-1158)
 - b. 1 meV to 1 eV
 - c. <1% for fission, < 2% for capture
 - d. K-eff estimates for thermal MOX bearing reactors
 - e. Need for energy dependence
 - f. Follow-up
 - i. Experimental follow-up would be needed
 - ii. Efforts?

- 4. H12 U-235(n,g), SIG, Resonance parameters
 - a. Y. Nagaya (JAEA, Fast Breeder Reactor test data)
 - b. 3-8% uncertainty depending on energy (100 eV 1 MeV)
 - c. Follow-up
 - i. WPEC Subgroup 29 (Iwamoto, concluded 2011)
 - ii. Recommendations: new alpha measurements in the keV region, new resonance analysis 0.1-2.5 keV region, other sources of overestimation k? (FCA, BFS, ZEUS)
 - iii. New experiments n_TOF and CNRS in progress
 - iv. Capture measurement LANL was completed

H14 ²⁴²Pu (Noguere, 0.5 eV – 2 keV, SIG tot.& (n,g), PROFIL).
 H15 ²⁴¹Am (Nakagawa, ²⁴¹Am, thermal, SIG tot.& (n,g))
 H16, H17 (Sasa, ²⁴³Am, ²⁴⁴Cm, th-10 MeV, PFNS)


9. H18, 19, 21, 22, 25, 27, 29, 32-39: Salvatores, WPEC SG-26, 2008

High priority request list for nuclear data

Request list coordinated by Action leader

www.oecd-nea.fr/dbdata/hprl/

Send feedback to the mailing list: hprlinfo@oecd-nea.org

HPRL discussion list: Archive of HPRL feedback and discussion

WPEC Working party on evaluation cooperation

NSC Nuclear Science Committee

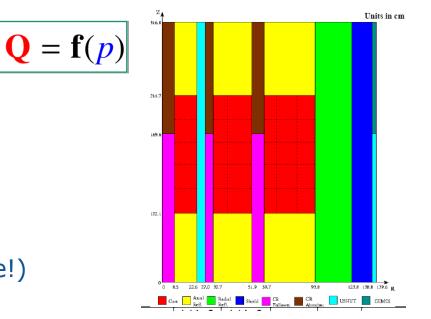
OECD-NEA Nuclear Energy Agency

Databank

Sensitivity analysis

Quantitative underpinning of requests

System modeling


- A simple principle...
- Conceptual systems
- Good understanding

• Future

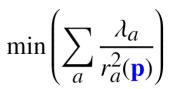
Better capabilities More modeling Actual designs (design dependence!) Better feedback from experiments

Multiplication factor (BOL)	300 pcm
Power peak (BOL)	2%
Burn-up reactivity swing	300 pcm
Reactivity coefficients (coolant void and Doppler – BOL)	7%
Major nuclide density at end of irradiation cycle	2%
Other nuclide density at end of irradiation cycle	10%

Sensitivity analysis

Back propagation method

- System constraints
- Sensitivity coefficients
- Leave a domain of acceptable uncertainties
- Use the freedom to find the best route to achieve the final goal
- Cost function minimization


System uncertainty limits L_i :

 $r_i(\mathbf{Q}) < L_i \text{ for } 1 \le i \le k$

Equivalently for the parameters:

$$\sum_{a,b} S_{ia} S_{ib} C_{ab}(\mathbf{p}) r_a(\mathbf{p}) r_b(\mathbf{p}) < L_i^2, \quad i = 1..k$$

For each Q_i an ellipsoid in $\mathbf{r}(\mathbf{p})$ -space

The cost parameters λ_a may be changed according to the relative difficulty of obtaining low uncertainties for the parameter p_a .

Sensitivity analysis Target uncertainties for nuclear data

In many cases very tight requirements

Table 26. SFR: uncertainty reduction requirements needed to meet integral parameter target accuracies

			Uncertainty (%)					
Isotope	Cross-Section	Energy range	Initial	Required				
		-	Initial	λ=1	λ≠1 ^(a)	λ≠1 ^(b)		
U238	$\sigma_{\rm capt}$	24.8 - 9.12 keV	9	4	3	3		
0238	σ_{inel}	6.07 - 0.498 MeV	20	5	6	10		
	σ_{capt}	183 - 24.8 keV	20	12	12	10		
Pu238	σ_{fiss}	$6.07 - 0.09 \; { m MeV}$	20	3	3	3		
	ν	1.35 - 0.067 MeV	7	3	3	2		
Pu239	$\sigma_{\rm capt}$	498 – 2.03 keV	12	6	4	4		
Pu239	σ_{inel}	6.07 – 0.498 MeV	25	12	15	22		
	σ_{capt}	498 - 9 keV	12	5	5	4		
Pu240	σ_{fiss}	6.07 – 0.0045 MeV	10	2	2	2		
	ν	2.23 – 0.183 MeV	4	2	2	1		
					20. 1			

10.H18 U-238(n,inl), SIG, Emission spectrum

Request ID	18		Status of the request	High Priority reque	est
Target	Reaction and process	Incident Energy	Secondary energy or angle	Target uncertainty	Covariance
92-U-238	(n,inl) SIG	65 keV-20 MeV	Emis spec.	See details	Υ
Field	Subfield	Date Request created	Date Request accepted	Ongoing action	
Fission	Fast Reactors EFR,SFR,ABTR	28-MAR-08	11-SEP-08		

Energy Range	Initial versus target uncertainties (%)					
Ŷ	Initial	ABTR	SFR	EFR	GFR	LFR
6.07-19.6 MeV	29	12			7	
2.23-6.07 MeV	20	3	5	4	2	3
1.35-2.23 MeV	21	4	5	4	2	2
0.498-1.35 MeV	12	7	6	5	2	2
67.4-183 keV	11	7		9	7	4

ABTR: advanced breeder test reactor SFR: sodium-cooled fast reactor EFR: European fast reactor GFR: gas-cooled fast reactor LFR: lead-cooled fast reactor

10.H18 U-238(n,inl), SIG, Emission spectrum

Request ID	18		Status of the request	High Priority reque	est
Target	Reaction and process	Incident Energy	Secondary energy or angle	Target uncertainty	Covariance
92-U-238	(n,inl) SIG	65 keV-20 MeV	Emis spec.	See details	Υ
Field	Subfield	Date Request created	Date Request accepted	Ongoing action	
Fission	Fast Reactors EFR,SFR,ABTR	28-MAR-08	11-SEP-08		

Follow-up:

- Measurements IPHC Strasbourg (next presentation).
- Measurements RPI (Capote, yesterday).
- Improved modeling (Capote, Dupuis, Iwamoto, Kawano, Romain).

Decisive results from experiment alone have been elusive. Interaction between theory and experiment is essential.

To make best use of available data (avoid approximations).

New experiments are planned

Improve structure data, New data for 2+ to 0+, Neutron spectra.

н	19 🦻	94-PU-238	(n,f)	SIG	9 keV-6 MeV	See details	Y Fission	31-MAR-08
н	21 🦻	95-AM-241	(n,f)	SIG	180 keV-20 MeV	See details	Y Fission	31-MAR-08
н	22 🥬	95-AM-242	(n,f)	SIG	0.5 keV-6 MeV	See details	Y Fission	31-MAR-08
н	25 🥬	96-CM-244	(n,f)	SIG	65 keV-6 MeV	See details	Y Fission	04-APR-08
н	27 🥬	96-CM-245	(n,f)	SIG	0.5 keV-6 MeV	See details	Y Fission	04-APR-08
н	32 🥬	94-PU-239	(n,g)	SIG	0.1 eV-1.35 MeV	See details	Y Fission	04-APR-08
н	33 🥬	94-PU-241	(n,g)	SIG	0.1 eV-1.35 MeV	See details	Y Fission	04-APR-08
н	35 🥬	94-PU-241	(n,f)	SIG	0.5 eV-1.35 MeV	See details	Y Fission	04-APR-08
н	36 🥬	92-U-238	(n,g)	SIG	20 eV-25 keV	See details	Y Fission	15-SEP-08
н	37 🥬	94-PU-240	(n,f)	SIG	0.5 keV-5 MeV	See details	Y Fission	15-SEP-08
н	38 🥬	94-PU-240	(n,f)	nubar	200 keV-2 MeV	See details	Y Fission	15-SEP-08
н	39 🥬	94-PU-242	(n,f)	SIG	200 keV-20 MeV	See details	Y Fission	15-SEP-08

Experiences modeling with TALYS

Measurements with GAINS spectrometer and its predecessors at the GELINA facility of IRMM

(n,n'g) data. Some activation data.

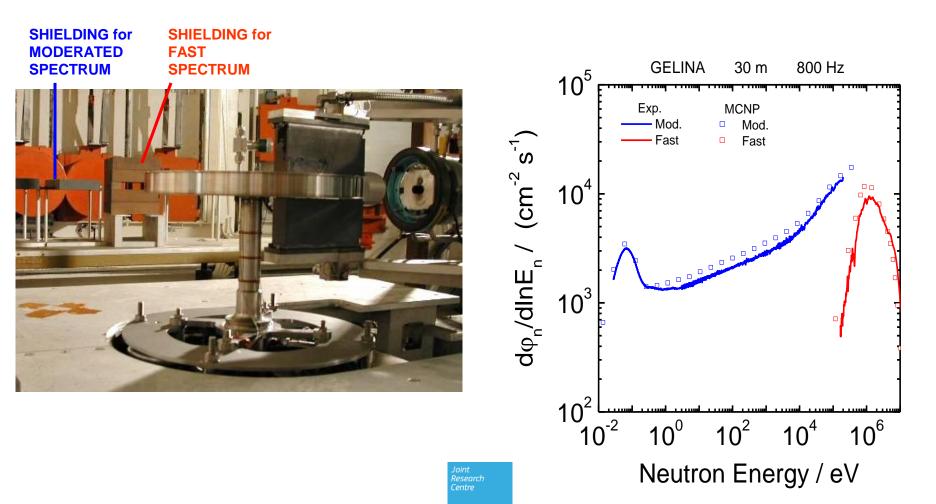
Start with short overview of projects relevant to HPRL

FREET.

JRC Neutron Facilities

VdG

JRC-Geel (IRMM) is a major provider in Europe of Nuclear Data for nuclear energy applications


- Pulsed white neutron source
 10 meV < E_n < 20 MeV
- Neutron energy : time-of-flight (TOF)
- Multi-user facility: 10 flight paths

10 m - 400 m

Joint Research Centre

Neutron Production

Neutron induced reactions studied at IRMM

A+I X

Neutron +

elastic scattering (n,n)

radiative capture (n,γ)

> fission (n,f)

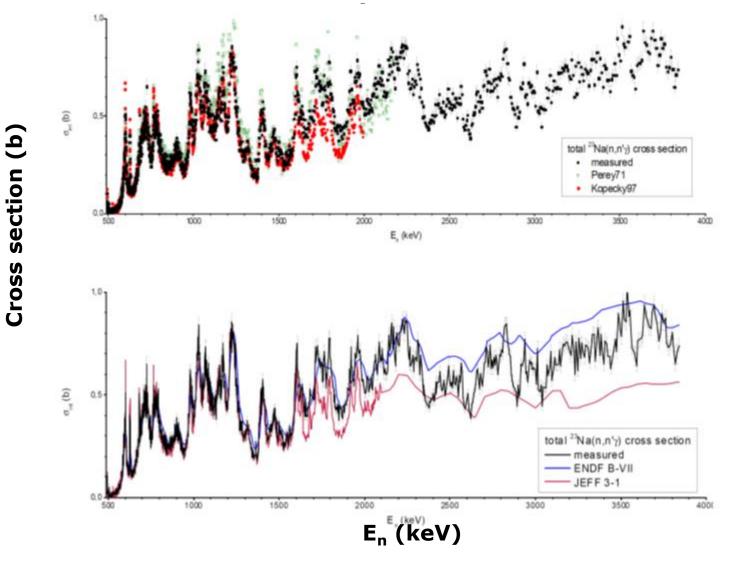
inelastic scattering (n,n'γ)

other reactions (n,p), (n,d), (n,α)

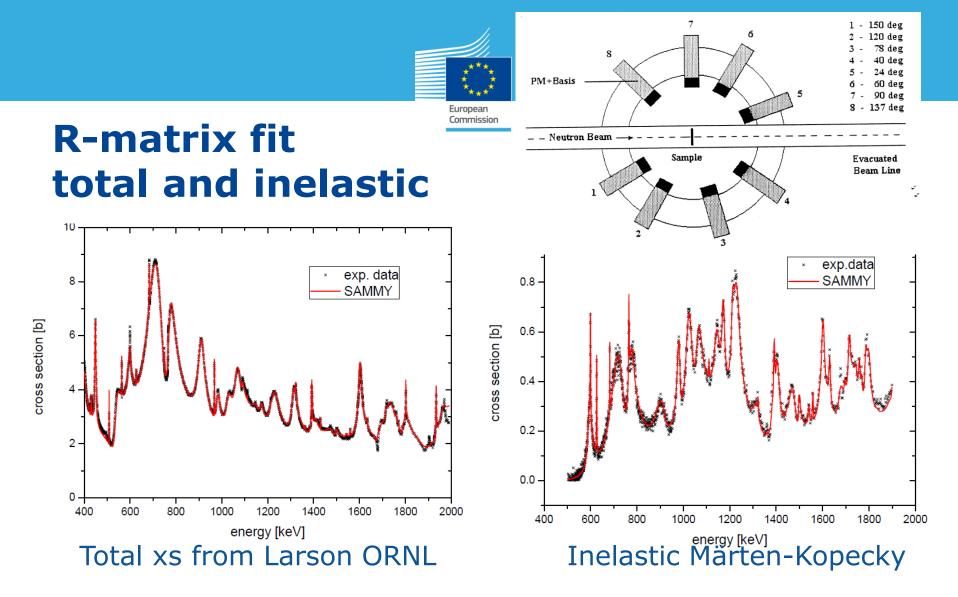
Joint Research Centre

²³Na(n,n')

Na inelastic scattering with GAINS

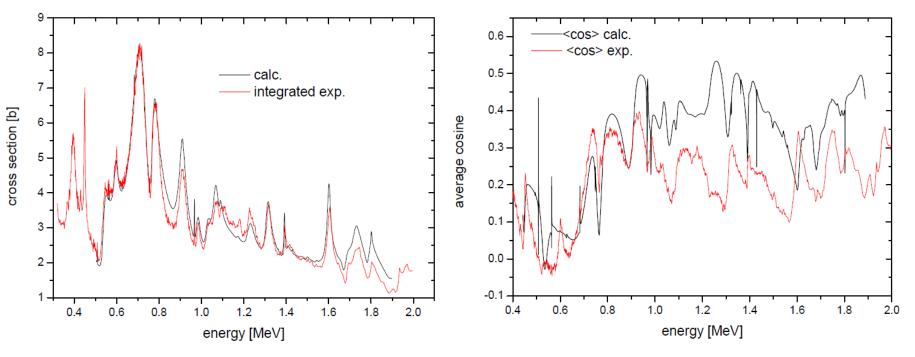

C. Rouki et al., Nucl. Instrum. Meth. A 672 (2012) 82 Na elastic and inelastic scattering with eight liquid scintillators

S. Kopecky and A. Plompen "R-matrix analysis of the total and inelastic scattering cross sections" EUR 25067 EN (LANA-25067-EN-N.pdf)

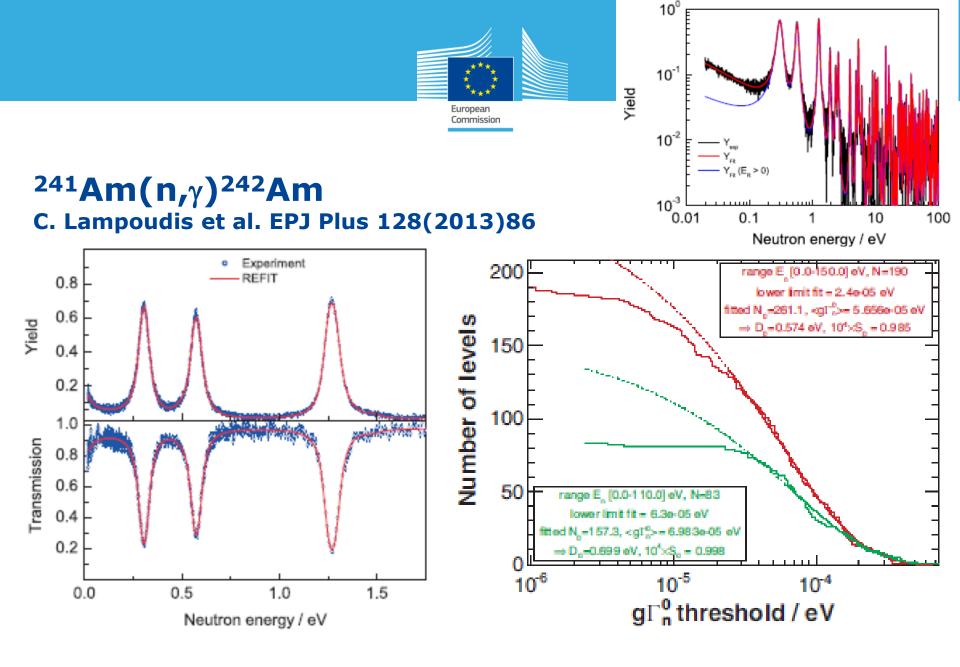


Inelastic versus other data and evaluations

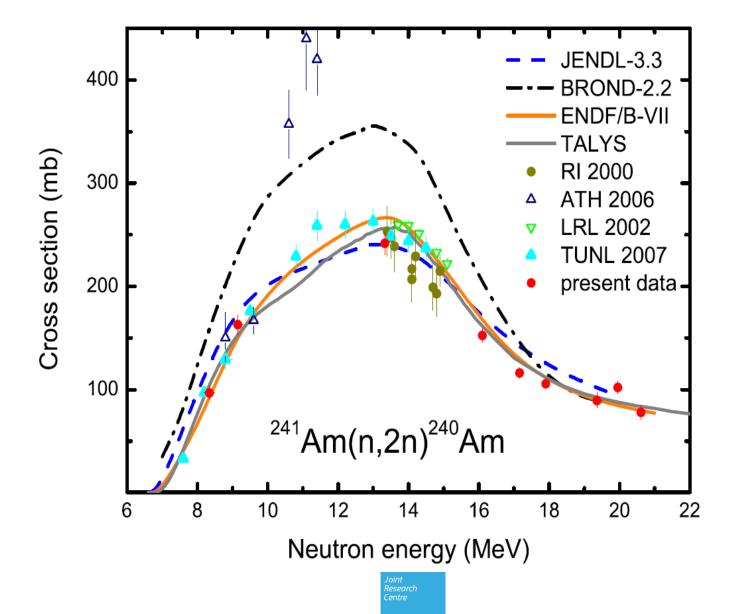
Joint Research Centre



Good description, 85 resonances, 35 negative parity Hilaire et al. expect 120 resonances, 20 negative parity

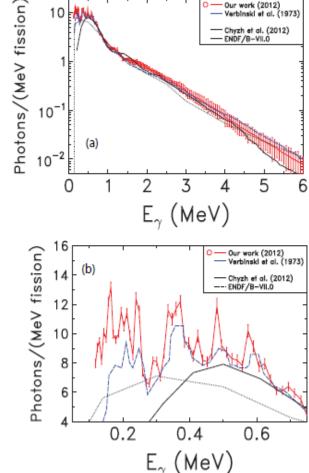

Experimental and calculated σ_{el} , μ

Significant discrepancies


- Experimental difficulties
- R-matrix parameter ambiguities

Results

Prompt fission gammas



Research

New gamma-ray detectors: LaBr₃, LaC Testing and characterisation First demonstration ²⁵²Cf Ongoing/nearly completed ²³⁵U TOF, FIC vs gamma detector Neutron-gamma separation

PRC87(2013)024601 Billnert et al.

IRMM and EU experiments 240,242Pu(n,f) cross sections

IRMM

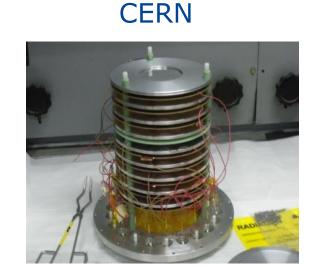
1,8

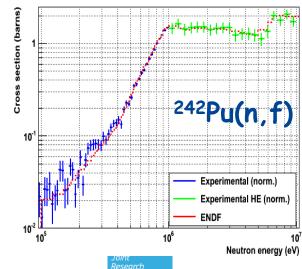
1,6 -

1,4 -

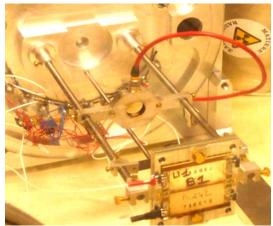
1,2 -

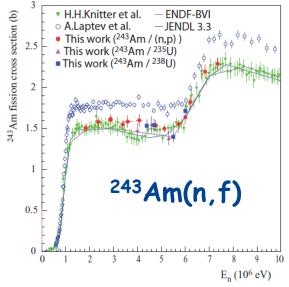
α (parn) 8,0 c

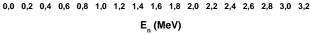

0,6


0,4 ·

0,2


0,0


²⁴²Pu(n, f)



CENBG

Relative to Paradela

May 2011

July 2012

August 2012

December 2011

ENDF/B-VII.0 ENDF/B-VII.I

JEFF 3.1

Relative to ENDF

V

4

JENDL 4.0

May 2011

May 2012

July 2012

August 2012

December 2011

Germanium Array for Inelastic Neutron Scattering

GAINS @ FP3/200m 12 HPGe 80 mm ø x 80 mm L 1 keV resolution at 1 MeV (neutrons) Cross sections 3-5 %

GAINS

Angle integration: $\lambda \leq 3$ Efficiency: calib+MC Time-response 12bit 440 MSPS dig. Flux: U-235(n,f)

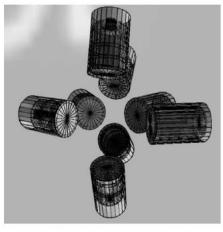
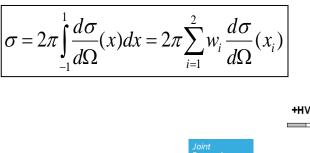
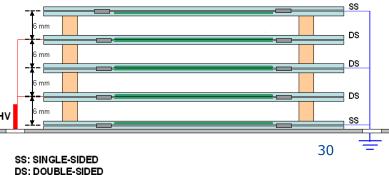




Fig. 1. GAINS. Drawing of the simulated geometry. 19 March 2014

L.C. Mihailescu et al. NIMA531(2004)375 L.C. Mihailescu et al. NIMA578(2007)298 D. Deleanu et al. NIMA624(2010)130 A. Plompen et al. KPS59(2011)1581 ⁵²Cr: L.C. Mihailescu et al. NPA786(2007)1 ²⁰⁹Bi: L.C. Mihailescu et al. NPA799(2008)1 ²⁰⁸Pb: L.C. Mihailescu et al. NPA811(2008)1 ²³Na: C. Rouki et al. NIMA672(2012)82 ²³⁵U: M. Kerveno et al. PRC87(2013)024609 $0v2\beta$ bgs: A. Negret et al. PRC...(2013)... ¹²C, ²⁴Mg, ²⁸Si, ⁵⁶Fe, ⁵⁸Ni, ⁷⁶Ge, ²⁰⁶Pb, ²⁰⁷Pb, ²³²Th, ²³⁸U: conf. Ongoing: ⁵⁷Fe, ⁶³Cu, ⁶⁵Cu, Mo, Zr

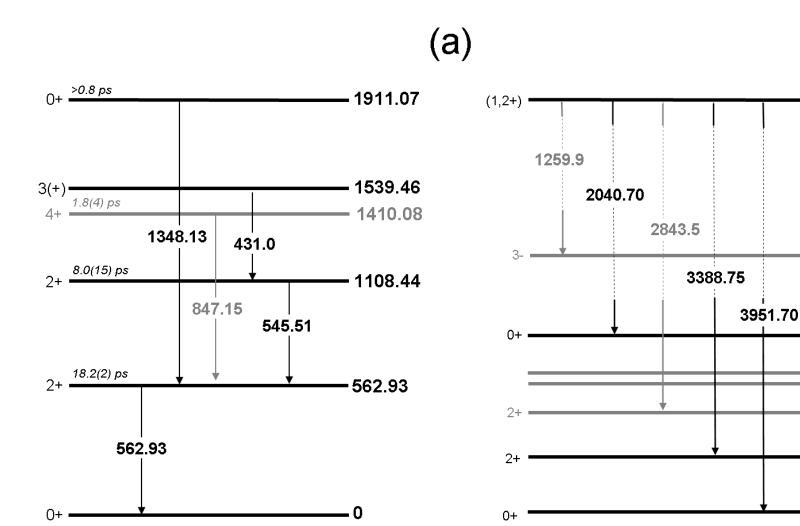
ββ


GERDA

⁷⁶Ge(n,n'g)⁷⁶Ge w. K. Zuber, A. Domula TUD

- Motivation: background in $0\nu\beta\beta$ -experiments
- •Is a neutrino its own antiparticle?
- •What is the neutrino mass?

GERDA experiment


- •⁷⁶Ge, $Q_{\beta\beta}$ = 2039 keV, $T_{1/2}$ < 2 10²⁵ y
- •⁷⁶Ge high purity detectors, 9 coaxial 8 x 8cm ø
- •Gran Sasso, 3600 mwe
- •Background goal 10⁻³ keV⁻¹ kg⁻¹ y⁻¹
- •Components few times 10⁻⁴ keV⁻¹ kg⁻¹ y⁻¹
- Two concerns for neutrons
 - Direct production of 2040 keV transition
 - Indirect background due to Eg + Erecoil in inelastic scattering

Relevant portions level scheme ⁷⁶**Ge**

(b)

3951.89

2692.40

1911.07

1539.46 1410.08

1108.44

562.93

0

Research Centre

Experiment ⁷⁶Ge(n,n'g)⁷⁶Ge

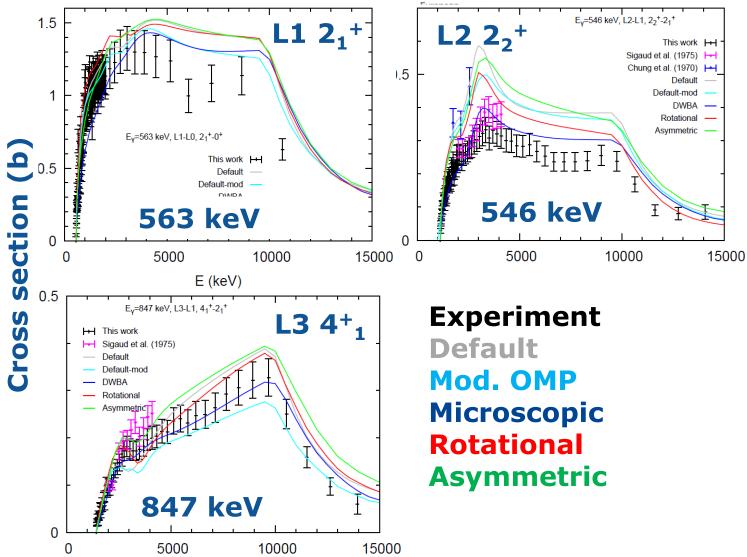
Commission

32 g, 87% enriched in ⁷⁶Ge main systematic uncertainty 10%

Cross section of 2039 keV, $L69 \rightarrow L5$ **< 3 mb** Unshielded: 0.43 event/kg/y (100x above limit)

Shielded: not an issue (3m H2O!) Future experiments?

Experimental results • Five gammas, five levels, INL

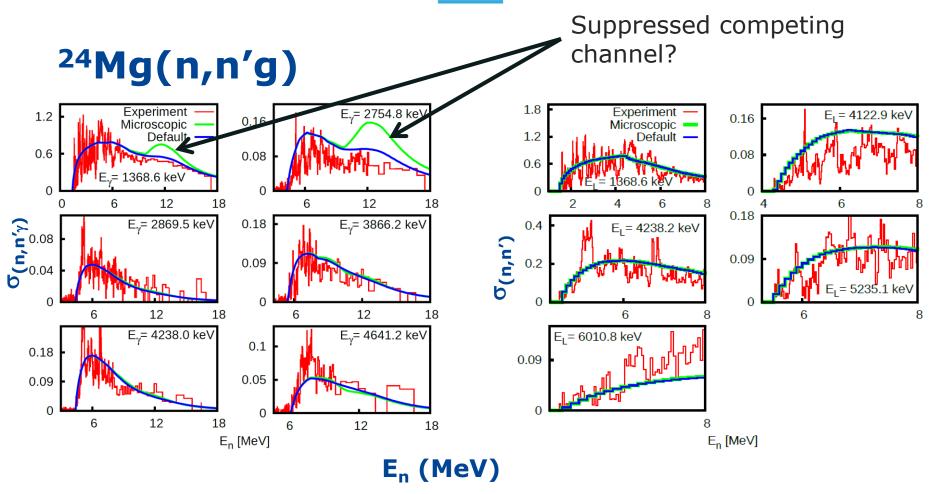

TALYS model calculations

- Default phenom.
 - KD omp
 - GC LD
 - Kopecky-Uhl γ-strength
- -Modified OMP
- -Effect of deformation
- -DWBA, Rotational, Asymmetric (Toh et al. PRC 2013).
- -Microscopic
 - JLM omp, LDA, HF dens.
 - enhanced combinatorial LD
 - HFB γ-strength
 - Here similar to default (not shown)

Joint Research Centre

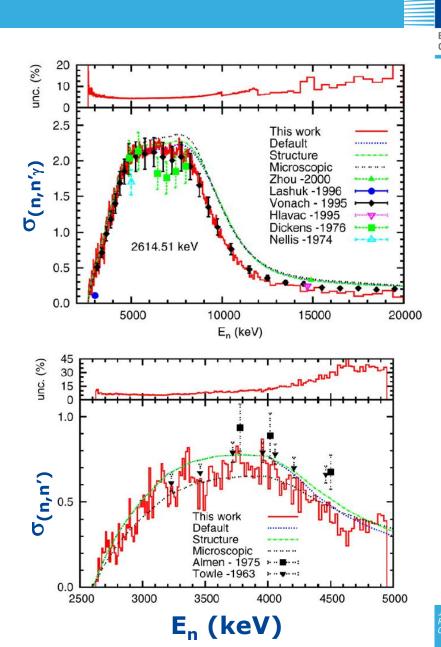
Gamma emission cross sections

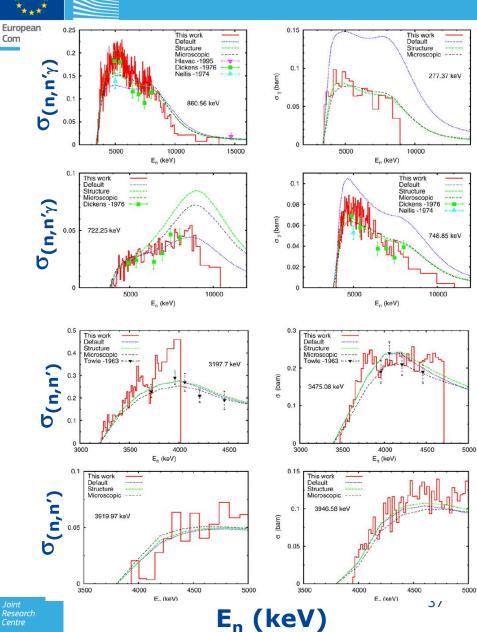
Neutron energy (keV)



24Mg(n,n'g) modeling

Microscopic model Level densities Hilaire, Goriely Optical model Bauge Gamma strength functions Goriely Compared with default semi-empirical model of TALYS





²⁰⁸Pb(n,n'γ)

Angular distributions γs: not isotropic

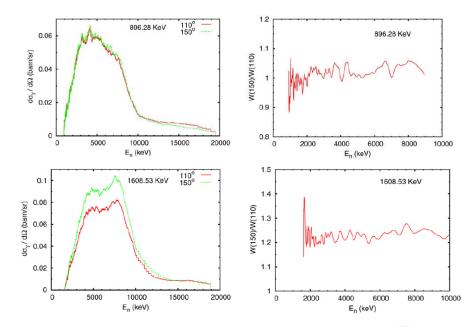


Fig. 5. Left: Smoothed differential gamma production cross-section for the 1608.53 keV transition in ²⁰⁹Bi. Right: The ratio $W(\theta)$ of the angular distribution at 150 to that at 110 degrees for the same transition.

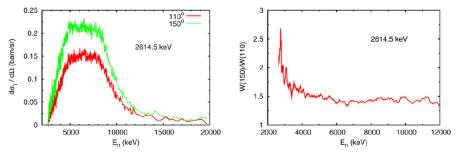


Fig. 3. Differential gamma production cross section for the 2614.51 keV transition in ²⁰⁸Pb. Left: smoothed curves from the threshold up to 20 MeV at two angles, 110° and 150° . Right: the ratio between the angular distribution W(θ) at 150° and 110° .

²⁰⁸Pb top ²⁰⁹Bi left

Table 1:	Low-lyin	g stat	tes in	$^{168}\mathrm{Er}$		Europear Conventional HF	Deformed HF		Conventional HF	Deformed HF
State	E_x	J	K	π	Level	Cross Section	Cross Section	Level	Cross Section	Cross Section
1	$\frac{L_x}{0.0}$	0	0	+	1	1.0	1.0	1	1.00	1.00
2	0.08	2	0	+	2	1.84	0.39	2	3.04	0.63
2	0.08	4	0	+	3	0.28	0.04	3	1.89	0.24
			0		4	10^{-9}	7×10^{-9}	4	0.49	0.05
4	0.549	6		+	5	1.66	0.78	5	2.93	1.35
5	0.862	2	2	+	6	0.86	0.31	6	2.64	0.90
6	0.895	3	2	+	7	8×10^{-10}	5×10^{-9}	7	0.043	0.004
7	0.93	8	0	+	8	0.25	0.08	8	1.85	0.52
8	0.99	4	2	+	9	0.08	0.02	9	1.04	0.253
9	1.12	5	2	+	10	0.25	0.10	10	1.71	0.64
10	1.13	4	4	-		2	MeV		6 Me	V

Summary 4

A new Hauser Feshbach code has been developed which includes K as a quantum number in calculating decay of the compound nucleus. Very small effects are found for the continuum. Cross sections for the population of resolved final levels are frequently changed by 40% or more. A systematic tendency is found such that cross sections for levels of large J are reduced and cross sections for low J states are enhanced. Cross sections for K = 0 states are reduced relative to those of states of the same J with K > 0.

6 MeV

Accounting for K in transmission coefficients Varenna 2012 (PRC)

Hauser Feshbach Calculations in Deformed Nuclei

S. M. Grimes

Dramatic effect; Should it be accounted for? W data IPHC may help

19 March 2014

168**F**r

Conclusions

Interaction theory-experiment is essential to make best use of expensive experiments

Interpretation of results

Implications for what is not measured

Avoid unnecessary approximations in reporting experimental results

(N,n'g) data

Non-actinide cases Are pretty well modeled semiempirically and microscopically with certain interesting exceptions (physicist's opinion)

Are just not modeled well enough (engineer's opinion)

HPRL

Successful in guiding work to be done Needs a review to account for all the follow-up New directions

